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Pseudogenes and the associated 
ceRNA network as potential 
prognostic biomarkers 
for colorectal cancer
Zhuoqi Li, Jing Zhou, Liankun Gu & Baozhen Zhang*

Colorectal cancer (CRC) is one of the most common and malignant carcinomas. Many long noncoding 
RNAs (lncRNAs) have been reported to play important roles in the tumorigenesis of CRC by influencing 
the expression of some mRNAs via competing endogenous RNA (ceRNA) networks and interacting 
with miRNAs. Pseudogene is one kind of lncRNA and can act as RNA sponges for miRNAs and regulate 
gene expression via ceRNA networks. However, there are few studies about pseudogenes in CRC. In 
this study, 31 differentially expressed (DE) pseudogenes, 17 DE miRNAs and 152 DE mRNAs were 
identified by analyzing the expression profiles of colon adenocarcinoma obtained from The Cancer 
Genome Atlas. A ceRNA network was constructed based on these RNAs. Kaplan–Meier analysis 
showed that 7 pseudogenes, 4 miRNAs and 30 mRNAs were significantly associated with overall 
survival. Then multivariate Cox regression analysis of the ceRNA-related DE pseudogenes was 
performed and a 5-pseudogene signature with the greatest prognostic value for CRC was identified. 
Moreover, the results were validated by the Gene Expression Omnibus database, and quantitative 
real-time PCR in 113 pairs of CRC tissues and colon cancer cell lines. This study provides a pseudogene-
associated ceRNA network, 7 prognostic pseudogene biomarkers, and a 5-pseudogene prognostic risk 
signature that may be useful for predicting the survival of CRC patients.

Abbreviations
CRC   Colorectal cancer
LncRNA  Long noncoding RNA
ceRNA  Competing endogenous RNA
DE genes  Differentially expressed genes
TCGA   The Cancer Genome Atlas
COAD  Colon adenocarcinoma
GEO  Gene Expression Omnibus
qPCR  Quantitative real-time PCR
KEGG  Kyoto Encyclopedia of Genes and Genomes
GO  Gene ontology
BP  Biological process
CC  Cellular component
MF  Molecular function
TF  Transcription factor
CMSs  Consensus molecular subtypes
CRISs  Colorectal cancer intrinsic subtypes

According to the GLOBOCAN 2018 assessment on cancer incidence and mortality published by the Interna-
tional Agency for Research on Cancer, colorectal cancer (CRC) was classified with the third (10.2%) and second 
(9.2%) highest incidence and mortality rates respectively among all cancer  types1,2. Unfortunately, the prognosis 
prediction of CRC remains pessimistic. Molecular biomarkers for diagnosis and prediction have great clinical 
significance with the development of precision medicine. The molecular mechanisms for the development of 
CRC are clinically important for the prognosis and treatment response of patients. In addition to the traditional 

OPEN

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, 
Peking University Cancer Hospital and Institute, Beijing, China. *email: zhangbaozhen@bjmu.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-22768-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17787  | https://doi.org/10.1038/s41598-022-22768-y

www.nature.com/scientificreports/

genetic and epigenetic alterations of protein-coding genes, noncoding RNAs (ncRNAs) were considered to play 
important roles in regulating various biological behaviors, such as cell proliferation, metastasis, apoptosis, dif-
ferentiation, etc.3. Many studies have discovered that endogenous long noncoding RNAs (lncRNAs) can act as 
sponges and competitively bind with RNAs in gene expression regulatory networks, which can influence cell 
fate decisions in cancer  development4. NcRNAs are rising as biomarkers of CRC for diagnosis, prognosis, and 
even prediction of therapeutic  effect5.

Competing endogenous RNAs (ceRNAs) can regulate each other at the post-transcription level by competing 
for shared miRNAs. CeRNA networks link the function of protein-coding mRNAs with ncRNAs such as miRNA, 
lncRNA, pseudogenic RNA and circular  RNA6. Recently, the lncRNA related ceRNA crosstalk was highlighted 
in the CRC initiation and  progression7,8. Pseudogenes may derive from gene mutations, or unfaithful gene 
duplications, or retrotransposition of processed mRNAs back into the genome. Accordingly, pseudogenes can 
be categorized into three types: (1) unitary pseudogenes, (2) duplicated or unprocessed pseudogenes and (3) 
processed or retrotransposed  pseudogenes9,10. An increasing number of studies have shown that pseudogenes are 
involved in the occurrence and development of cancer through ceRNA networks. For example, the pseudogene 
PTENP1 could be targeted by multiple PTEN-targeting miRNAs and then regulate the protein level of  PTEN11. 
PTENP1 could bind with miR-21, miR-200c, or miR-20a and regulate the expression of PTEN gene and further 
affect the development of hepatocellular carcinoma, endometrioid endometrial carcinoma, or breast  cancer12–14. 
There are also a few studies on pseudogene function in CRC tumorigenesis and development. For example, the 
pseudogene DUXAP8 could promote colon cancer cell proliferation, migration and invasion by targeting tumor 
suppressor miR-577 and promote the expression of oncogene  RAB1415. The pseudogene FLT1P1 could promote 
VEGFR1 and VEGF-A expression by interacting with miR-520a, thus contributing to CRC cell  growth16.

In this study, we first comprehensively analyzed aberrantly expressed pseudogenes, miRNAs and mRNAs 
in the colon adenocarcinoma (COAD) dataset from The Cancer Genome Atlas (TCGA) and constructed a 
pseudogene-associated ceRNA network for CRC. We also discovered some novel pseudogenes and mRNAs that 
were significantly related to the overall survival of patients with CRC, and identified a five-pseudogene prognostic 
risk signature. More importantly, these results were validated in Gene Expression Omnibus (GEO) datasets and 
qRT-PCR experiments in our CRC samples.

Results
Identification of differentially expressed (DE) pseudogenes, miRNAs and mRNAs in CRC . By 
using the edgeR package and the threshold set at FDR < 0.01 and |log2FC| ≥ 1, we made a comparison between 
the 469 primary CRC samples and 41 normal colon tissues and identified 74 DE pseudogenes (including 42 
upregulated and 32 downregulated pseudogenes), 340 DE miRNAs (203 upregulated and 137 downregulated), 
and 2957 DE mRNAs (1128 upregulated and 1829 downregulated) in tumors. Heatmaps and volcano plots of the 
DE pseudogenes, miRNAs and mRNAs were generated by gdcHeatmap and gdcVolcanoPlot3 in the R platform, 
as shown in Fig. 1.

Construction of the ceRNA network in CRC . To better understand the interactions among these DE 
pseudogenes, DE miRNAs and DE mRNAs in CRC, we constructed a pseudogene-miRNA-mRNA related 
ceRNA regulatory network. First, we found that 31 of 74 DE pseudogenes could be targeted by 185 miRNAs by 
miRcode database. Of the 185 targeted miRNAs, only 17 miRNAs overlapped with the 340 DE miRNAs (Fig. 2a). 
Therefore the 17 miRNAs were selected to predict their target mRNAs through the miRTarBase, miRDB and 
TargetScan databases. There were 430, 844 and 854 mRNAs that could be targeted by the 17 miRNAs and over-
lapped with the DE mRNAs in the 3 databases. The 152 mRNAs presented in all three databases were selected to 
construct the ceRNA network (as shown in Fig. 2b). Finally, we incorporated the 31 pseudogenes, 17 miRNAs 
and 152 mRNAs to build the ceRNA network using Cytoscape software, and the visualized map was shown in 
Fig. 2c. The DE pseudogenes, miRNAs and mRNAs were listed in Supplemental Table 1.

Identification of survival-related DE pseudogenes in the ceRNA network. To explore the prog-
nostic value of the DE pseudogenes, miRNAs and mRNAs involved in the ceRNA network of CRC, we con-
ducted Kaplan–Meier curve analysis using R software for CRC patients from the TCGA database. As shown in 
Fig. 3, 7 of the 31 pseudogenes had a significant relationship with overall survival (p < 0.05). Except that GVINP1 
was positively associated with overall survival, the other six pseudogenes DDX12P, NCF1C, FER1L4, NSUN5P2, 
PLEKHA8P1 and RP9P were negatively associated with overall survival. Association analysis for the expres-
sion of these genes with clinicopathological factors of patients in TCGA-COAD showed that DDX12P, FER1L4, 
GVINP1, PLEKHA8P1 and RP9P were related to the T, N, M or pathologic stage (Supplemental Table 2).

In addition, 4 of 17 DE miRNAs and 30 of 152 DE mRNAs in the above ceRNA network were significantly 
associated with the overall survival of patients with CRC (Supplemental Table 1 and Supplemental Figure 1 & 2). 
The Pearson correlation coefficient analysis between the survival-related pseudogenes and mRNAs was carried 
out by using the R package “ggcorrplot”. Figure 4a shows the 30 prognosis related DE mRNAs correlated with the 
7 DE pseudogenes. For example, the pseudogene DDX12P and FER1L4 were significantly positively correlated 
with the DNMT3B gene, GVINP1 and NCF1C were highly correlated with the PPP1R16B, PDGFRA, ENPP2, 
ANKRD33B and SOCS6 genes, PLEKHA8P1 and RP9P were coexpressed with the CCND1 and SNAI1 genes. 
Furthermore, a Sankey diagram was constructed using the R package “ggalluvial” to visualize the interaction 
network among the 7 prognosis-related pseudogenes and the 30 prognosis-related mRNAs through binding 
with 16 DE miRNAs (Fig. 4b).
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Construction of the 5-pseudogene prognostic risk signature. To better understand the prognos-
tic value of the aberrantly expressed pseudogenes in CRC, we calculated the risk scores of DE pseudogenes 
through multivariate Cox regression analysis based on TCGA samples. A total of 453 CRC patients were ran-
domly divided into a training cohort (n = 227) and a validation cohort (n = 226), and no significant differences 
in the pathological characteristics were found between the two groups (Supplemental table  3). A remark-
able prognostic risk model was constructed by multivariate Cox regression in the training cohort including 
four survival-related pseudogenes (NCF1C, RP9P, DDX12P and PLEKHA8P1) and one unrelated pseudo-
gene (YWHAZP4) (Supplemental table 4). The risk scores were calculated using the formula as follows: risk 
score = (0.002045 × expression level of DDX12P) + (0.003879 × expression level of NCF1C) + (0.003856 × expres-
sion level of PLEKHA8P1) + (0.001913 × expression level of RP9P)-(0006358 × expression level of YWHAZP4). 
The training CRC patients were ranked by the risk score and divided into low-risk (n = 114) and high-risk 
(n = 113) groups. The Kaplan–Meier curve showed significantly poorer prognosis in the high-risk group than in 
the low-risk group (p = 0.0059) (Fig. 5a). According to the risk score heatmap, the expression levels of NCF1C, 
RP9P, DDX12P and PLEKHA8P1 were upregulated while the expression level of YWHAZP4 was decreased with 
increasing risk scores (Fig. 5b). The risk score distributions of CRC patients were shown in the high- and low-
risk groups (Fig. 5c). The AUC curve was used to evaluate the efficacy to predict the 1-, 3-, and 5-year survival 
of CRC patients, and they were 0.632, 0.672 and 0.652 in the training cohort and 0.554, 0.644 and 0.785 in the 
validation cohort respectively (Fig. 5d). The results of the validation cohort were consistent with the results of 
the training cohort, which suggested the efficiency of this 5-pseudogene prognostic risk signature. In addition, 
after adjustment for age, gender and pathologic stage, the risk score was still an adequate prognostic indicator in 
multivariate analysis in both the training and validation cohorts (Supplemental Figure 3).

Figure 1.  Differentially expressed RNAs from TCGA-COAD compared with adjacent normal tissues. (a–c) DE 
pseudogenes, miRNAs and mRNAs are hierarchically clustered by R software. The upper horizontal axis denotes 
the cluster analysis of each sample, blue indicates adjacent normal tissue and red indicates tumor samples. The 
left longitudinal axis indicated the cluster analysis of DE RNAs. The blue and red blocks represent relatively 
low and high expression respectively. (d–f) Each RNA analysis was plotted into the volcano map and the red 
dots represent the upregulated DE genes with log2FC ≥ 1 and adjusted p value FDR < 0.01, while the green dots 
represent downregulated genes with log2FC ≤ -1 and FDR < 0.01. FC, fold change. FDR, false discovery rate.
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Validation of the DE pseudogenes through a GEO dataset and our CRC samples. To validate 
the expression alteration of the seven DE pseudogenes between normal and primary CRC tissues, we analyzed 
the 7 DE pseudogenes in a GEO dataset, CRC samples from our hospital and colon cell lines at the same time. 
The expression of all seven pseudogenes in 113 pairs of CRC samples from Peking University Cancer Hospital 
were measured by qRT-PCR. Except for GVINP1 and NCF1C, the expression of the other 5 prognosis-related 
DE pseudogenes (DDX12P, FER1L4, NSUN5P2, PLEKHA8P1 and RP9P) were higher in tumor tissues than 
in cutting edge normal tissues, which was totally consistent with the results of TCGA samples. Unfortunately, 
the expression levels of these 7 pseudogenes were not found to be related to overall survival in the 113 CRC 

Figure 2.  Construction of the ceRNA network for DE pseudogenes-miRNA-mRNA. (a, b) the overlapping DE 
miRNAs and mRNAs in different databases. (c) the ceRNA network. Round rectangles represent pseudogenes, 
diamonds represent miRNAs, and ellipses represent mRNAs. Blue represents downregulated genes, while red 
represents upregulated genes.

Figure 3.  Kaplan–Meier curve analysis of DE pseudogenes in the ceRNA network. Seven pseudogenes were 
found to be significantly related to overall survival with p < 0.05. (a) DDX12P, (b) FER1L4, (c) GVINP1, (d) 
PLEKHA8P1, (e) NCF1C, (f) NSUN5P2, (g) RP9P.
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samples. Five of the seven DE pseudogenes were also validated in 18 pairs of CRC samples from GSE50760. The 
expression of these pseudogenes was confirmed in the normal colon cell line CCD-18Co and 4 CRC cell lines 
(Fig. 6). In addition, the prognostic values of some individual pseudogenes were validated in TCGA-READ and 
GSE14333 datasets, results shown in Supplemental Figure 4.

The function and pathway enrichment analysis of DE mRNAs. To explore the possible regulatory 
mechanisms of the prognosis-related DE pseudogenes in CRC, the 152 DE mRNAs involved in the pseudogene-
miRNA-mRNA related ceRNA network were further selected for GO annotation and KEGG pathway enrich-
ment analysis to analyze the possible functions and molecular pathways of these genes. The GO biological pro-
cess (BP) analysis showed that the DE mRNAs were mainly involved in the regulation of cell differentiation, cell 
migration and locomotion (Fig. 7a). The cellular component (CC) analysis showed that many of these mRNAs 
might be components of the receptor complex (Fig. 7b). The molecular function (MF) analysis suggested that 
these mRNAs played roles in regulating the transcription of some genes because they were significantly asso-
ciated with transcription regulatory region DNA binding, RNA polymerase II regulatory region DNA bind-
ing, regulatory region nucleic acid binding, DNA− binding transcription activator activity and so on (Fig. 7c). 
Moreover, KEGG pathway analysis revealed that these mRNAs had a clear relationship with cancer, as they were 
enriched in pathways such as microRNAs in cancer, EGFR tyrosine kinase inhibitor resistance, and pathways in 
several kinds of cancers (Fig. 7d).

Discussion
Pseudogenes are abundant in the human genome and conventionally considered as nonfunctional “junk genes.” 
However, recent studies have revealed that pseudogenes are aberrantly expressed in cancers and may function 
in tumorigenesis through pseudogene-derived lncRNA transcripts. They may serve as ceRNAs by competitively 
binding to shared miRNAs, thus affecting both their cognate genes and unrelated genes and playing an important 
role in regulating ceRNA  networks17,18. To deeply explore the underlying mechanisms of pseudogenes in CRC 
carcinogenesis and development and investigate novel candidate biomarkers for CRC diagnosis and prognosis 
prediction, in this study, we identified DE pseudogenes, miRNAs and mRNAs between CRC tumor tissues and 
adjacent normal tissues and constructed a ceRNA network. To the best of our knowledge, this report may be the 
first to describe the regulatory network among pseudogenes, miRNAs and mRNAs in CRC.

There are some evidences that the prognosis-related pseudogenes discovered in this study could regulate 
tumorigenesis and tumor development through ceRNA regulatory networks. For example, NSUN5P2 was found 
to be unfavorable for the prognosis of hepatocellular carcinoma through bioinformatic  analysis19. PLEKHA8P1 
was also implicated as an oncogene and prognosis-related gene in both colorectal and liver  cancer20,21. These 
results are consistent with the results of our findings in CRC. Furthermore, FER1L4 was reported to be an 
oncogenic and adverse prognostic marker in pancancer, renal cancer and  glioma22–24. Meanwhile, FER1L4 was 
also found to act as a tumor suppressor in prostate cancer, gastric cancer, hepatocellular carcinoma and colon 
cancer  cells25–28. GVINP1 was downregulated in lung cancer and related to poor prognosis of patients with lung 
 cancer29,30. However, for the remaining pseudogenes (DDX12P, NCF1C, RP9P, and YWHAZP4), there were no 

Figure 4.  Survival-related 7 DE pseudogenes and ceRNA network. (a) Pearson correlation analysis of the 7 
survival-related pseudogenes and 29 survival-related mRNAs with p < 0.05. Red presents a positive correlation 
and purple presents a negative correlation. (b) Sankey diagram showing interactions between the 7 pseudogenes 
and their matched miRNAs and mRNAs that were significantly related to survival. Each rectangle represents a 
gene, and the connection degree of each gene is visualized based on the size of the rectangle.
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reports on their biological functions in cancers. In our study, we found that YWHAZP4 was a protective fac-
tor for CRC patients while DDX12P, NCF1C and RP9P were adverse factors for CRC patients. Thus, these five 
pseudogenes might be novel prognostic biomarkers for CRC.

The ceRNA network provided a way to uncover the underlying regulatory functions and mechanisms of 
pseudogenes in CRC. We found that the expression levels of survival-related pseudogenes were significantly 
correlated with many protein-coding genes that have been reported to be aberrantly expressed or mutated and 
play roles in tumorigenesis and progression in many kinds of cancers, such as DNMT3B, PDGFRA, SOCS6, 
SNCG, CCND1, and  SNAI131–35. The correlation analysis and Sankey diagram showed candidate miRNAs and 
the regulatory network among the pseudogenes, miRNAs and target genes. Some DE transcription factors (TFs) 
were involved in the ceRNA network might imply a complicated regulatory circuit. For example, SNAI1 and six 
of the seven prognostic pseudogenes could be targeted by 3 miRNAs (hsa-miR-125a-5p, hsa-miR-199b-5p, hsa-
miR-34c-5p) in the ceRNA network. This indicates a potential clue to deeply explore the regulatory mechanism 
and biological functions of these pseudogenes. Notably, some of the features that different models of ceRNA 
predictions have highlighted the importance of the number of MREs on transcripts, the combinatorial effect of 
miRNA molecules, and the number of molecules. The significant cross-regulation may occur preferably when the 
stoichiometry of the interrelated ceRNA and miRNA falls in a narrow range of  equivalence36–38. This important 
point requires special attention when the researchers are validating the crosstalk by experiment.

With the development of precision medicine, there is an increasing demand for finding prognostic biomarker. 
The transcriptional signatures of consensus molecular subtypes (CMSs) and colorectal cancer intrinsic subtypes 

Figure 5.  Characterization of the five-pseudogene risk signature in the ceRNA network in the training and 
validation cohorts. (a) Kaplan–Meier curves for high-risk and low-risk groups classified by the risk scores of this 
signature. (b) The expression profiles of the 5 pseudogenes of each sample. The value of risk increased gradually 
from left to right. (c) The risk score distributions and the survival status of CRC patients. The patients were 
ranked by risk score. (d) ROC curves for predicting the 1-, 3-, and 5-year survival of CRC patients according to 
risk scores.
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Figure 6.  The expression levels of the 7 survival‐related DE pseudogenes in different datasets. (a) In normal 
colon tissues and colon cancer in TCGA. (b) Normal colon tissues and paired colorectal cancer in GSE50760 
dataset of GEO. (c) In colorectal cancer tissues and paired normal tissues collected in our hospital, measured by 
qRT-PCR. (d) In one human normal colon fibroblastic cell line (CCD-18Co) and four human colorectal cancer 
cell lines (HCT116, SW480, RKO, LoVo), measured by qRT-qPCR. *p < 0.05. N.S, not significant.

Figure 7.  GO annotation and KEGG pathway enrichment analysis of the DE mRNAs in the ceRNA network. 
The top 10 enriched GO (a) MF, (b) CC and (c) BP terms as well (d) KEGG pathways. GO, gene ontology; 
KEGG, Kyoto Encyclopedia of Genes and Genomes; MF, molecular function; CC, cellular component; BP, 
biological process.
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(CRISs) have been proposed based on transcriptomics and have potential application for improving prognostic 
 assignment39,40. Recent studies identified stromal genes’ expression might define poor-prognosis subtypes of colo-
rectal  cancer41,42. In this study, we selected and analyzed stromal and epithelial genes to explore the significance 
in the prognostic pseudogene model (as shown in Supplemental Figure 5). The expressions of stromal genes 
TGFB1 and SNAI1 were higher, the epithelial genes CDH1 and EPCAM were lower in the high-risk group than 
in the low-risk group. These results support the predictive potential of the constructed pseudogenes signature.

Conclusion
In conclusion, this study provides a way to uncover the underlying regulatory functions and mechanisms of 
pseudogenes in CRC. Some novel potential diagnostic and prognostic biomarkers for CRC were discovered 
through identification of the 5-pseudogene signature and clinical analysis.

Materials and methods
TCGA data collection and processing. The RNA-seq data of 521 samples and miRNA-seq data of 465 
samples with colon adenocarcinoma were retrieved from the TCGA data portal (https:// portal. gdc. cancer. gov/). 
R software and the package GDCRNATools were applied to read the RNA-seq sample sheet and remove the 
repetitive samples and the samples that were not primary tumors. Finally, 469 primary CRC tumors and 41 
normal tissues in total were collected. The RNA-seq data contained more than 60,000 genes including noncod-
ing genes with the Ensembl Gene ID. For miRNAs, a matrix of 451 primary tumors and 8 normal tissues was 
built with the expression level of all the genes. The miRNA-seq data included more than 2,500 miRNAs with 
annotated miRNA IDs. In addition, the corresponding clinical information was downloaded. The sample sheets 
provided information on case ID, sample ID, sample type and clinical information such as race, ages, gender, 
pathologic stage, vital status, days to death or days to last follow up of the patients. This study was in accordance 
with the publication guidelines provided by TCGA (https:// cance rgeno me. nih. gov/ publi catio ns/ publi catio nguid 
elines). All the packages and databases in the following analysis were well-established open data and require no 
further ethical approval.

Identification of differentially expressed (DE) genes. The edgeR package was used to determine the 
DE pseudogenes, miRNAs and mRNAs between primary tumors and normal tissues, with the threshold set-
ting at an adjusted p value < 0.01 and |log2-fold change (FC)| ≥ 1 based on all transcripts. Benjamini–Hochberg 
method was used to adjust the p value. Heatmaps and volcano maps of the DE pseudogenes, miRNAs and 
mRNAs were also generated using gdcHeatmap and gdcVolcanoPlot3 of the GDCRNATools package in the R 
platform.

Construction of the ceRNA network. The miRcode database (http:// www. mirco de. org/) was used to 
predict the interactions between pseudogenes and miRNAs in the COAD dataset of TCGA. The miRNAs-tar-
geted mRNAs were retrieved using the miRTarBase, miRDB and TargetScan databases, and only the miRNA-
targeted mRNAs present in all three databases were included to construct the ceRNA network. Cytoscape 3.6.1 
software (https:// cytos cape. org/) was used to visualize the ceRNA network. The DE genes were the nodes and 
their interactions were the edges in the network. The Sankey diagram was constructed by using the “ggalluvial” 
and “ggplot2” packages in R software to show the interactions between the survival-associated pseudogenes and 
mRNAs, along with their matched miRNAs in the ceRNA network.

Identification of a 5-pseudogene prognostic risk signature. The 453 CRC patients were ran-
domly divided into a training cohort (n = 227) and a validation cohort (n = 226). Multivariate Cox regres-
sion analysis was performed to identify the prognostic model for the pseudogenes in the ceRNA network, 
and the risk score of the patients with CRC was calculated according to the expression level of the involved 
pseudogenes weighted by the regression coefficient (βpseudogenes), as follows: Risk score = expression of 
pseudogene1 × β1pseudogene1 + expression of pseudogene2 × β2pseudogene2 + ··· expression of pseudo-
geneN × βNpseudogeneN. The pseudogene prognostic model was constructed based on the training cohort and 
then confirmed in the validation cohort. According to the risk score of the prognostic model, the CRC patients 
were divided into two groups of low-risk and high-risk by the median risk score value. Then the Kaplan–Meier 
analysis was conducted by the R package “survival” to generate the overall survival (OS) curve for the two 
groups. ROC curve analysis was conducted by the package “survival ROC” to evaluate the accuracy of the prog-
nostic model of 1, 3, and 5-year survival. In addition, a risk heatmap for the pseudogenes involved in the ceRNA 
network of the patients with CRC was plotted by the R package “pheatmap” combining the gene expression and 
clinical survival data.

Survival analysis and correlation analysis. The R package “survival” was used for survival analysis for 
the DE RNAs involved in the ceRNA network and plotting Kaplan–Meier curves. The R package “ggcorrplot” 
was applied to perform Pearson correlation coefficient analysis between the survival-associated mRNAs and 
pseudogenes in the ceRNA network and carried out by the R function “cor_pmat”. The survival-associated pseu-
dogenes were analyzed with clinical pathological characteristics of CRC patients using the chi-square test and 
t-test in SPSS 20.0 software. p < 0.05 was considered statistically significant.

Validation with a GEO dataset. The GSE50760 and GSE14333 datasets were downloaded from the Gene 
Expression Omnibus (GEO, https:// www. ncbi. nlm. nih. gov/ geo/) database to validate the expression level of the 

https://portal.gdc.cancer.gov/
https://cancergenome.nih.gov/publications/publicationguidelines
https://cancergenome.nih.gov/publications/publicationguidelines
http://www.mircode.org/
https://cytoscape.org/
https://www.ncbi.nlm.nih.gov/geo/
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survival-related genes in CRC and normal tissues. The GSE50760 dataset is an expression profiling by high 
throughput sequencing, containing RNA-seq data of 54 samples (normal colon, primary CRC, and liver metas-
tasis) generated from 18 CRC  patients43. The GSE14333 dataset contained the expression profiling by array of 
290 primary colorectal  cancers44. Student’s t-test was conducted for normally distributed data while the Mann–
Whitney U-test was conducted for nonnormally distributed data in SPSS 20.0 software, with statistical signifi-
cance assigned at p < 0.05.

Quantitative real-time polymerase chain reaction validation. Quantitative real-time polymerase 
chain reaction (qPCR) was performed to detect the DE pseudogene expression in both colon cell lines and clini-
cal samples. For cell lines, a human normal colon fibroblastic cell line (CCD-18Co) was purchased from ATCC 
and cultured in MEM plus 15% fetal bovine serum (FBS) and 100 U/mL penicillin/streptomycin (Gibco, USA), 
and four human colon cancer cell lines (HCT116, SW480, RKO and LoVo) were grown in RPMI 1640 medium 
with 10% FBS and 100 U/mL penicillin/streptomycin at 37 °C in a humidified incubator with 5% CO2. A total of 
113 paired human CRC tumor and cutting edge tissues were collected and stored at − 80 °C in Peking University 
Cancer Hospital, China. Research protocols were approved by the Institutional Review Board of the Peking Uni-
versity Cancer Hospital and Institute. All patients in this study provided written informed consent.

Total RNA was extracted using the Direct-zol™ RNA MiniPrep kit (Zymo research, USA) according to the 
manufacturer’s instructions. Then complementary DNA (cDNA) was synthesized using TransScript First-Strand 
cDNA Synthesis SuperMix (TransGen Biotech, China). Next, reverse transcription qPCR (RT-qPCR) was per-
formed using the FastStart Universal SYBR Green Master Mix (ROX) (Roche, Germany) on an ABI-7500 Fast 
system (Applied Biosystems). GAPDH was used as the endogenous reference gene for the cultured cell lines, 
while ALU was used for tissues. The expression levels of the survival-associated pseudogenes in the ceRNA net-
work were determined using the typical ΔΔCt method. The correlations with clinical pathological characteristics 
and survival were also analyzed with the chi-square test, Student’s t-test and Kaplan–Meier test in SPSS 20.0. 
p < 0.05 was considered statistically significant.

The following primer sequences were used in this study: DDX12P, forward, 5′-AGC TCC CGT AGG AGA 
AAA TGC-3′, reverse, 5′-CCT GTG GAG ACC AAG CGG -3′; FER1L4, forward, 5′-ACC GGA GAG ATG TCG AGT 
GA-3′, reverse, 5′-TCA AAG CGG AAC ACA AAG CG-3′; GVINP1, forward, 5′-AGA AGC CAT GAG TGC AGC 
TT-3′, reverse, 5′-TTC CAG CAG CCA CAG AGA TG-3′; NCF1C, forward, 5′-TGT TCC TGG TGA AAT GGC AG-3′, 
reverse, 5′-CTC TGG ATT GAT CGC CCC TG-3′; NSUN5P2,forward, 5′-CCC CCT TAG ATC CGC GCT AT-3′, 
reverse, 5′-TCG GCA TAC CCG AGCCA-3′; PLEKHA8P1, forward, 5′-TGG TAA AAC ATT GCG GCA ACA-3′, 
reverse, 5′-CCC TCT GCA TCC CAA TAC TGAAA-3′; RP9P, forward, 5′-TGA AGG TAA AGA CGG AAG CAC-
3′, reverse, 5′-CCT CTG TTC CTT GGT CAG TGT-3′; GAPDH, forward, 5′-GAG ATG GTG ATG GGA TTT C-3′, 
reverse, 5′-GAA GGT GAA GGT CGG AGT -3′; ALU, forward, 5′-GAG GCT GAG GCA GGA GAA TCG-3′, reverse, 
5′-GTC GCC CAG GCT GGA GTG -3′45.

Functional annotation and pathway analysis for DE mRNAs. The DE mRNAs involved in the 
ceRNA network were input into WebGestalt (http:// www. webge stalt. org/), a functional enrichment analysis web 
tool to study the Kyoto Encyclopedia of Genes and Genomes (KEGG)  pathway46 and gene ontology (GO) func-
tion of these genes. Then the R package “dplyr” and “ggplot2” were used to analyze the results data and plot the 
maps of the top 10 most significant items of the KEGG pathway and GO function analysis. The GO functions 
included biological process (BP), cellular component (CC) and molecular function (MF).

Ethics approval. Research protocols were approved by the Institutional Review Board of the Peking Univer-
sity Cancer Hospital and Institute. All patients in this study provided written informed consent.

Data availability
The datasets used or analyzed during the current study are available from the corresponding author on reason-
able request.
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