
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17783  | https://doi.org/10.1038/s41598-022-22747-3

www.nature.com/scientificreports

Investigation of turning points 
in the effectiveness of Covid‑19 
social distancing
C. Neuwirth1* & C. Gruber2

Covid‑19 is the first digitally documented pandemic in history, presenting a unique opportunity to 
learn how to best deal with similar crises in the future. In this study we have carried out a model‑based 
evaluation of the effectiveness of social distancing, using Austria and Slovenia as examples. Whereas 
the majority of comparable studies have postulated a negative relationship between the stringency of 
social distancing (reduction in social contacts) and the scale of the epidemic, our model has suggested 
a varying relationship, with turning points at which the system changes its predominant regime 
from ‘less social distancing—more cumulative deaths and infections’ to ‘less social distancing—fewer 
cumulative deaths and infections’. This relationship was found to persist in scenarios with distinct 
seasonal variation in transmission and limited national intensive care capabilities. In such situations, 
relaxing social distancing during low transmission seasons (spring and summer) was found to relieve 
pressure from high transmission seasons (fall and winter) thus reducing the total number of infections 
and fatalities. Strategies that take into account this relationship could be particularly beneficial 
in situations where long‑term containment is not feasible.

Following the global spread of the new SARS-CoV-2 coronavirus, most governments have decided to impose 
restrictions on the  population1 with the objective of reducing social contacts and preventing epidemic peaks 
with the potential to overwhelm national health-care  systems2. These restrictions have involved social distanc-
ing by, for example, banning large gatherings, closing schools and shops, restricting international travel, and 
limiting internal mobility. Understanding whether or not the social contact reduction has had the desired effect 
is critical not only in view of the large societal and economic  costs3, but also because of the predicted negative 
impacts on mental  health4.

Previous studies have shown that such measures have been able to restrict the growth of the  epidemic3, 
that mortality rates have been suppressed as a result of early decisions to close schools, public events and state 
 borders5, and that social distancing has saved  lives6,7. These studies have relied on data collected during the early 
stages of the pandemic, when the stringency and effectiveness of social distancing measures were both high.

Limiting social contacts over the long term may, however, be undermined by the previously-mentioned 
negative societal and economic effects associated with strictly enforced social contact reduction and isolation. 
As shown in a previous exploratory  study8, if social distancing cannot be sustained over a sufficient length of 
time (i.e. from outbreak until vaccination and herd immunity), a large second wave of outbreaks can negate the 
mitigating effects of previously imposed restrictions. This implies that less stringent social distancing may in 
some instances yield better results than more stringent social distancing in terms of reducing the number of 
fatalities, since less stringent social distancing can be maintained over longer periods of time.

The same study also revealed that the magnitude of outbreaks that occur following the lifting of restrictions 
increases according to the stringency of previously applied social distancing, i.e. the suppression of outbreaks 
through social contact reduction preserves the epidemic potential. Explosive outbreaks following an untimely 
termination of stringent social distancing are likely to increase case fatality rates if the surge in the number of 
infected patients exceeds national medical  capabilities9. In such situations, less stringent social distancing meas-
ures may be more effective in curbing the number of fatalities, not only because they can be applied over longer 
periods of time but also because if they are lifted prematurely the resulting outbreaks are likely to be smaller.

We investigated these hypotheses using a model-based systems analysis. The objectives of this research were 
(A) to calibrate a mathematical compartment model against one-year long epidemiological time series for Austria 
and Slovenia, (B) to simulate hypothetical no-social-distancing scenarios in order to investigate the added value 
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achieved by reducing social contacts, and (C) to simulate scenarios with less stringent social distancing (increased 
number of social contacts) during the early stages of the pandemic (spring 2020) in order to evaluate potential 
long-term benefits of such a strategy in terms of reductions in infections and fatalities.

The first section below provides a detailed discussion of the method and the data. This is followed by a com-
bined results and discussion section that is structured according to the above-mentioned research objectives.

Basic model structure
The Covid-19 outbreaks in Slovenia and Austria were modeled using the same compartmental model that was 
used in a previous exploratory investigation into Covid-19 and social  distancing8. In order to address the large 
number of asymptomatic  infections10,11, as well as potential increases in case fatality rates due to an excess 
demand for health  facilities9,12, the model extends the standard SIRD (susceptible-infected-resistant-deceased) 
model and includes the following compartments: susceptible S(t) , infected—infection unknown I(t) , infected in 
isolation II(t) , resistant symptomatic RS(t) , resistant asymptomatic RA(t) , deaths D(t) , deaths caused by denied 
ICU treatment DL(t) . Accordingly, the compartments of the infected, resistant and death were each split into 
subcompartments of (A) unknowingly infected who infect others I(t) and knowingly infected who do not infect 
others II(t), (B) resistant who developed no symptoms RA(t) and resistant who had symptoms RS(t) and (C) 
those who died due to denied ICU treatment DL(t) and those who died despite ICU treatment D(t) (see Fig. 1).

To calculate the proportions of populations in each compartment we made the simplified assumption that 
the entire population N was initially susceptible. Those susceptible become infected over time by

with ir being the infection rate (i.e. the proportion of contacts between infected and uninfected individuals that 
result in infections) and cui the number of contacts between infected and uninfected, which is calculated as

where cd is the number of social contacts per day.
Asymptomatic infected become resistant as

and symptomatic infected are isolated (isolated infected cannot infect others) on confirmation of the disease by

with af  being the fraction of the infected that are asymptomatic, da the duration of asymptomatic infection, and 
d the time between infection and isolation.

Isolated individuals (i.e. home quarantined or hospitalized) die (Eq. 5), die due to a shortage of ICU capabili-
ties (Eq. 6), or become resistant (Eq. 7).

(1)
dI(t)

dt
= ircui

(2)cui = I(t)
cdS(t)

N

(3)
dRA(t)

dt
= I(t)

af

da

(4)
dII(t)

dt
= I(t)

1− af

d

(5)
dD(t)

dt
= II(t)

CFR

ds

(6)
dDL(t)

dt
=

ICUd − ICUs

ds
if ICUd > ICUs; 0 otherwise

Figure 1.  Schematic representation of model compartments susceptible S(t), infected—infection unknown I(t), 
infected in isolation II(t), resistant symptomatic RS(t), resistant asymptomatic RA(t), deaths D(t), deaths caused 
by lack of ICU DL(t), compare Eqs. (1–7).
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The new parameters in these equations are ds : the duration of distinct symptomatic sickness, CFR : the case 
fatality rate, ICUd : the intensive care demand, and ICUs : the intensive care supply.

To calculate the intensive care demand, we take the critical fraction of II(t) that requires admission to inten-
sive care. This fraction is denoted as cf .

We complemented this simple model realization with Google Mobility inputs and recorded ultraviolet light 
intensities to approximate variations in the number of daily social contacts cd and variations in seasonal trans-
missibility. The effects that these inputs had on transmission dynamics were systematically parametrized by 
means of a Powell optimizer, in order to calibrate the model against statistical records. To test whether alterna-
tive calibrations would yield a similar model fit, we conducted 100,000 additional Monte Carlo simulation runs 
per country. A full description of our approach to consider seasonality and social contacts in the model can be 
found in the following sections; “Seasonality” and “Social contact reduction”.

Seasonality. Covid-19 seasonality is particularly evident at higher latitudes, where there is greater seasonal 
variation in environmental  indicators13. However, the causal explanation for seasonality remains unclear. For 
instance, seasonal variations in environmental conditions may change the transmissibility of the virus through 
the germicidal effects of  radiation14, or through changes in human social behavior, or alternatively by affecting 
the immune response and severity of Covid-1915. We implemented seasonal forcing as a function of transmis-
sibility and ignored the possible effects of seasonal indicators on immunization, severity, and mortality.

The variety of environmental predictors with the potential to affect Covid-19 transmissibility presents another 
challenge to model parametrization. Investigations into Covid-19 seasonality have suggested a significant rela-
tionship between ultraviolet (UV) light and rates of spread of Covid-19. Multivariate investigations found that UV 
light had the strongest correlation with Covid-19  growth16 and that UV light was the only statistically significant 
 predictor17 of those investigated (UV light, temperature, and humidity). Similar results in favor of UV light have 
been obtained by comparing the effects of ozone with those of UV  light18.

We therefore took into account the effects of UV radiation in the model by modifying the infection rate ir with

where ir(t=0) is the infection rate at model initialization, �UVI is the change in the daily measured UVI (ultravio-
let index) relative to the UVI at model initialization, and UVIE is the effect of UVI on the infection rate, expressed 
as a percentage (i.e. per unit increase in UVI, ir increases by UVIE).

The daily UVI in Eq. (8) was obtained from OpenW eathe r API for seven Austrian provincial capitals and the 
Slovenian capital Ljubljana. The requested geographic locations correspond to European capitals as provided by 
EFRAI NMAPS. The Austrian local data is arithmetically averaged.

Social contact reduction. The behavior of individuals affects the dynamics of the epidemics, and vice 
versa. When an outbreak occurs, social contacts are often constrained by governmental regulations but reduc-
tions in social contacts can also occur spontaneously as individuals respond to news from public sources about 
the spread of the  disease19. This behavior change reduces the average number of new infections produced by each 
infected individual and the severity of the epidemic, which in turn has an effect on subsequent governmental 
decisions and public social behavior.

To capture these dynamics during the Covid-19 crisis, social contact surveys have been carried out for coun-
tries such as  Luxemburg20 and the  US21. The use of survey data in a Covid-19 model is, however, constrained by 
the limited geographic and temporal coverage of the surveys. Mobility data presents an important alternative 
proxy for social  contacts22. However, uncertainty associated with mobility data used as a proxy arises from the 
possibility of decoupling between mobility volumes and the number of social contacts that are infectious. Pre-
cautionary measures such as wearing a mask or maintaining a distance even when encountering individuals, are 
likely confounding  effects23. Investigations into the relationship between transmission and mobility have revealed 
significant correlations during the early phase of the pandemic but also yielded evidence for a decoupling of 
transmission from mobility following the relaxation of strict control  measures22.

In view of these tradeoffs, we decided to use Google Mobility data for reasons of coverage and transferability. 
These data reflect the movement of people under six categories: “Parks”, “Residential”, “Grocery and Pharmacy 
Stores”, “Workplaces”, “Retail and Recreation”, and “Transit Stations”. Mobility volumes are represented as positive 
and negative percentage changes with respect to a 5-week baseline period (January 3–February 6, 2020). The full 
technical details can be obtained from Googl e’s Commu nity Mobil ity Repor ts.

Of the available mobility classes, “Retail and Recreation” was considered to be the most appropriate for use as 
a proxy for variations in the number of social contacts on a cross-national scale. This category includes environ-
ments such as restaurants, cafes, shopping centers, theme parks, museums, libraries and movie theatres, which 
are particularly affected by cross-national policies of closing non-essential  facilities24,25. We therefore used the 
“Retail and Recreation” mobility class m to scale the initial number of social contacts per day cd(t=0) as

(7)
dRS(t)

dt
=

II(t)

ds
−

dD(t)

dt
−

dDL(t)

dt

(8)irUV = ir(t=0) −
ir(t=0) ·�UVI·UVIE

100

(9)cdm = (1−m)cd(t=0).

https://openweathermap.org/api
https://www.efrainmaps.es/english-version/freedownloads/europe/
https://www.google.com/covid19/mobility/index.html?hl=en
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Model parameters. The basic reproduction R0 is the most fundamental parameter in our model. It repre-
sents the number of new infections passed on by an infected person in a completely susceptible  population26. 
Seasonality, as well as social distancing in response to an outbreak, have a modifying effect on R0 , i.e. �UVI  = 0 
and/or m < 0 . The resulting modified R0 is referred to as the effective reproduction R , which reduces over time 
as the pool of susceptible individuals decreases as a result of new infections, i.e.

Due to insufficient evidence for a reduced infectiousness of asymptomatic  carriers27, we assumed equal 
infectiousness for both symptomatic and asymptomatic carriers and modeled R0 as

Estimates of the SARS-CoV-2 R0 vary within a broad range, from 1.428 to 8.729, which can in part be explained 
by factors such as differences in social habits,  culture30,31, and the methods used to estimate reproductive 
 numbers32. While mathematical models tend to overestimate R0 , the true R0 for SARS-CoV-2 is expected to be 
around 2–333. This assumption is supported by the results of recent investigations, which suggest a remarkably 
similar R0 in most European countries, with an average value of 2.2 (95% CI 1.9–2.6)31. We initialized our model 
by this number and systematically varied the parameters cd(t=0) , UVIE , and I(t=0) by means of a Powell optimiza-
tion to fit the modeled cumulative deaths to national statistical  records34. We then ran Monte Carlo simulations 
to identify possible alternative model fits in three-dimensional parameter space.

Apart from the calibration inputs, we distinguished between model inputs and derivatives thereof. A complete 
list of model parameters, together with explanations, is presented in Table 1.

Results and discussion
The calibrated compartment model closely reproduced the trajectories of confirmed daily and cumulative deaths 
in Slovenia and Austria (see Fig. 2). Results suggested a higher basic reproduction R0 for Slovenia than for Aus-
tria, due to a larger daily number of social contacts. The R0 estimates for both countries appear reasonable when 
compared with results from a cross-European study by Locatelli et al.31, which proposed R0 = 2.21 for Western 

(10)Rt = R0S(t)/N .

(11)R0 =
cdird

1− af + d
af
da

.

Table 1.  Model parameters. A A systematic review by Meyerowitz-Katz and  Merone38 has indicated that, on 
average, the IFR is 0.68%. Due to the significant dependence of disease severity on  age39, we relied on numbers 
carried out by Streeck et al.40 in a serological study conducted in Germany; a country whose population has a 
similar median age (45.9) to Austria (43.5) and Slovenia (44.1) (EUROS TAT). B CFR =

IFR
1−af

. C This estimate is 
in line with population surveys conducted in countries such as Germany 7.95 (n = 1341)41, France 8 
(n = 2033)42, and Luxembourg 7.1 (n = 1119)20. D We inserted ir(t=0) = 0.0328 into Eq. (11) to obtain an 
R0 value of 2.2. E We used estimates obtained in a Canadian study by To et al.18, due to expected similar 
seasonal dependencies at similar geographic latitudes. A Pakistan study by Adnan et al.43 suggested a UVIE 
value of 18%. F The selection of this parameter was motivated by a notable similarity between two observations: 
(a) The duration of presymptomatic infection (6 days)35, and (b) the time between illness onset and reporting 
(7.1 days on average)44. G The outbreak size corresponds to the number of detected cases at the first emergence 
of the disease in Austria (Feb. 25th) and Slovenia (Mar. 5th 2020), according to ECDC. H In Austria, ICU 
admissions of known infected dropped from a maximum of 7% during the first wave of the pandemic to about 
1% from summer 2020 onwards (AGES). The high ICU admission rates during the first wave of the pandemic 
are likely to have been a result of the limited testing capabilities. Austrian records show that the number of tests 
conducted increased by a factor of more than 20 between April 2020 and February  202134. We therefore used 
the lower benchmark for Austria and Slovenia.

Parameters Type Value(s)

Basic reproduction R0 Derivative 2.231

Infection fatality rate IFR Derivative 0.36%A

Case fatality rate CFR Model input 0.53%B

Initial social contacts per day cd(t=0) Calibration input 8C

Initial infection rate ir(t=0) Model input 0.0328D

Effect of UVI on infection rate UVIE Calibration input 13%E

Time between infection and isolation d Model input 7  daysF

Duration of distinct symptomatic sickness ds Model input 14  days35

Duration of asymptomatic infection da Model input 14 days

Fraction of asymptomatic among infected af Model input 33%36

Outbreak size I(t=0) Calibration input AUT 2 SLO  2G

Number of ICU beds ICUs Model input AUT 2000 SLO  13337

Fraction of confirmed cases that need intensive care cf Model input 1%H

https://ec.europa.eu/eurostat/databrowser/view/DEMO_PJANIND__custom_952303/default/table?lang=en
https://www.ecdc.europa.eu/en/covid-19/data
https://covid19-dashboard.ages.at/
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European countries, and with a previously published comprehensive review by Liu et al.33, which indicated that 
estimates of R0 in recent studies appear to have stabilized at between 2 and 3.

Monte Carlo simulations did not yield any better solution in terms of the root mean square deviation (RMSD) 
between model outputs and recorded data. The parameters used in Monte Carlo runs with the lowest RMSD 
converged towards those identified by the Powell optimization (see Fig. 3). We therefore stuck with the calibra-
tion parameters obtained from the Powell optimization.

A simulation using these calibration inputs showed the cumulative number of infections by April 23rd 2021 
to be 2,148,000 in Austria and 1,203,000 in Slovenia. When compared to the national records of confirmed 
 cases34, our model therefore suggests that 75% of infections in Austria and 82% of infections in Slovenia are 
undocumented. An even lower ascertainment rate of approximately 1 identified case in 12 infections was obtained 
using a combined data and inference approach for France over a 7-week period from mid-May to the end of 
June  202045,46. Other  studies47,48 have estimated similarly high levels of undocumented infections in a variety of 
countries including France, Italy, Spain, China, and the United States. Due to the gradual extension of national 
testing capabilities, the proportion of undetected infections to date would now presumably be lower. Neverthe-
less, our results as well as those in other relevant publications suggest high prevalence and a relatively moderate 
severity of SARS-CoV-2.

Other  studies49–51 have reported a decline in the effectiveness of social distancing with higher basic repro-
duction and prevalence. In order to investigate the effectiveness of social distancing in controlling the spread of 
Covid-19, we compared the fatality numbers from the data-calibrated model run against those from a simula-
tion run without any social distancing. Social contacts in the no-social-distancing scenario were modeled using 
the Google Mobility baseline data as a proxy for the pre-pandemic situation (see “Social contact reduction”).

Results showed that social distancing in Austria and Slovenia greatly mitigated the initial outbreaks (spring 
outbreaks 2020) but amplified subsequent outbreaks (winter outbreaks 2020/21) (see Fig. 4A,C). Although social 
distancing was shown to be highly effective in reducing fatalities during the early stages of a pandemic, these 
benefits tend to be lost over the longer term as evident from U-shaped relative fatality curves in Fig. 4B,D. These 
curves represent the ratio of the number of fatalities in scenarios with social distancing to those in scenarios with 
no social distancing (e.g. a relative fatality value of 0.6 indicates that social distancing reduced fatalities by 40%).

A sensitivity analysis revealed a considerable sensitivity of relative fatality curves to variations in R0 . The 
application of social distancing in high R0 scenarios resulted in multiple waves of outbreaks and U-shaped rela-
tive fatality curves as depicted in Fig. 4B,D (i.e. benefits are lost over the long term), whereas low R0 scenarios 
resulted in single outbreaks and L-shaped relative fatality curves. In other words, as anticipated by others, social 

Figure 2.  Results of Powell optimization for Austria (A,B) and Slovenia (C,D), showing the calibrated model 
outputs (black) together with national statistics on Covid-19 deaths as a 5-days moving average (grey). The 
fitted model parameters are cd(t=0) = 8.28, UVIE = 8.77 and I(t=0) = 3829 for Austria with RMSD = 121.44 , and 
cd(t=0) = 10.01, UVIE = 11.9 and I(t=0) = 1379 for Slovenia with RMSE = 30.96 . See model parameters in Table 1 
for explanation of symbols. The basic reproduction number  R0model is estimated from the model’s average 
effective reproduction Rt between the day of the first detected Covid-19 case and the implementation of national 
social distancing measures, i.e. between February 25th and March 15th for Austria and between March 5th and 
March 12th for Slovenia.
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distancing is effective in low R0 scenarios but less effective in high R0 scenarios. Given the projected R0 values 
for Slovenia and Austria, social distancing may have reduced fatalities within the study period by about 40% 
and 63%, respectively.

However, because of uncertainties in the modeling, it is important not to overinterpret these figures. Our 
results should be viewed as exploratory rather than predictive. Nevertheless, we interpret the observed and mod-
eled patterns as strong indicators that multiple epidemic waves have been caused by the application of social 
distancing policies under high R0 conditions. A similar explanation has previously been proposed for the multiple 
waves of the influenza strain seen in Sydney, Australia, during the 1919  pandemic52.

Figure 3.  Parameter values from 100,000 (each) Monte Carlo simulation runs: red dots for Slovenia 
and blue dots for Austria. Random parameters were generated based on a uniform distribution between 
a minimum value equal to the ‘ Fitted model parameter − 20% ’ and a maximum value equal to the 
‘ Fitted model parameter + 20% ’. Large dots represent the 100 simulation runs with lowest root mean square 
deviation (RMSD) of modeled from recorded cumulative deaths. Best model fit for Austria: RMSDmin = 122.87 
with cd(t=0)=8.29, UVIE = 8.80, and I(t=0) = 3799 and for Slovenia: RMSDmin = 31.23 with cd(t=0) = 10.01, 
UVIE = 11.89 and I(t=0) = 1329. See model parameters in Table 1 for explanation of symbols.

Figure 4.  Comparison of simulated outbreaks with and without social distancing in Austria (A,B) and Slovenia 
(C,D). (A,C) Simulated outbreaks with social distancing (calibrated against recorded data) and simulated 
outbreaks with no social distancing. (B,D) Relative fatalities, i.e. ratio of the number of fatalities in social 
distancing scenarios to those in no-social-distancing scenarios.
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Moreover, it is speculated that subsequent outbreaks (winter 2020/21) would have been smaller if social 
distancing during initial outbreaks (spring 2020) was less stringent (i.e. increased number of social contacts in 
spring 2020). In order to investigate this hypothesis, we simulated less stringent social distancing by gradually 
increasing recorded mobility volumes (Google Mobility data) by 1% increments in the model for the duration 
of the initial outbreaks (spring 2020) in Austria and Slovenia (see Fig. 5, A and D).

These scenarios revealed the existence of tipping points at which the system changes its dominant regime from 
‘less social distancing—more cumulative deaths’ to ‘less social distancing—fewer cumulative deaths’. In order 
to understand this counterintuitive result, we need to consider the effective reproduction numbers. Effective 
reproduction Rt is depleted over time as a function of total infections (see Eq. 10). As a result, low Rt and small 
outbreaks follow high Rt and large outbreaks, and vice versa (see Fig. 5B,E). Moreover, due to seasonality, Rt was 
lower in spring 2020 (small outbreaks) than in fall and winter 2020/21 (large outbreaks).

This causes two independent effects that explain why, in some of the scenarios, less stringent social distanc-
ing is associated with a smaller cumulative number of deaths (compare Fig. 5A with Fig. 5C as well as Fig. 5D 
with Fig. 5F). The first effect (Effect 1) was that less stringent social distancing in spring 2020 led to a balanced 
allocation of infections among spring 2020 and winter 2020/21 outbreaks (increased number of infections in 
spring and reduced number of infections in winter), relieving the pressure on national health care systems dur-
ing the winter of 2020/21 and reducing the overall infection fatality rates (IFR). The second effect (Effect 2) was 
that less stringent social distancing in spring mitigated high potential winter outbreaks, which overall reduced 
the total number of infections.

The modeled scenarios showed that these effects are strong enough to reduce the cumulative fatality num-
bers to below the fatality numbers actually recorded in Slovenia, if modeled social interactions were greatly 
increased (see Fig. 6). This was mainly due to a distinctly misbalanced allocation of Slovenian infections, with 
a small spring outbreak and a much larger winter outbreak, which exceeded national medical capabilities. In 
model scenarios with less stringent social distancing in spring, this misbalance was corrected and both IFR and 
fatalities were reduced (Effect 1). Moreover, less stringent social distancing in spring reduced the overall infec-
tion numbers in a large range of the simulation runs (Effect 2). A similar effect was previously anticipated in 
a modeling study by Engelbrecht and  Scholes53, who predicted large-scale subsequent outbreaks due to initial 
containment of the disease, the presence of a large pool of susceptible individuals, and favorable conditions in 
the form of a full winter period.

Figure 5.  Less stringent social distancing (implemented in the model through a mobility increase) during the 
initial outbreak and the corresponding effective reproduction and cumulative deaths for Austria (A–C) and 
Slovenia (D–F). (A,D) Google Mobility volumes, increased in 1% increments (+ 0% = orange, + 80% = pink). 
(B,E) effective reproduction Rt in less stringent (pink) and more stringent (orange) social distancing scenarios. 
(C,F) Cumulative deaths in less stringent (pink) and more stringent (orange) social distancing scenarios.
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Conclusion
In this study we applied methods of model-based systems analysis to investigate the effectiveness of social dis-
tancing measures in the mitigation of Covid-19, using Austria and Slovenia as examples. Our results showed 
that contact reduction has drastically curbed infections and fatalities during the early stages of the pandemic. 
However, these benefits tend to be lost over the long term due to large outbreaks at a later stage of the pandemic, 
i.e. fatalities in model scenarios with social distancing gradually approximated fatality numbers in scenarios 
without any social contact reduction. Declining effectiveness of social distancing can be explained by initial 
containment and the presence of a large pool of susceptible individuals that coincides with elevated transmis-
sibility in fall and winter. A sensitivity analysis showed that an increase in the basic reproduction number R0 
further diminishes the effectiveness of social distancing, which is highly relevant given the presumed gains in 
transmissibility of newly emerging variant strains of SARS-CoV-254.

In view of these preconditions and the expected ineradicable nature of the pathogen, easing social-distancing 
during low-transmission seasons in order to relieve pressure from high-transmission seasons was found to miti-
gate large winter outbreaks. This strategy is particularly effective in curbing the overall number of infections and 
fatalities where health care capabilities are likely being overwhelmed by larger outbreaks, where there is distinct 
seasonality, and where due to high R0 long term containment is not feasible.

This effect is of course subject to the condition that reinfection is ignored by the model. A study carried out 
in the Tyrol (Austria) by Deisenhammer et al.55, however, showed a stable and persisting antibody response 
against SARS-CoV-2 6 months after infection suggesting that reinfections are unlikely to be very significant.

Moreover, the presented mathematical model employs an aggregated view, representing the characteristics of 
groups such as infection fatality risk or daily social contacts via average  properties56. We deliberately constrained 
the complexity of our model for reasons of tractability, uncertainty of available data—e.g. large uncertainty 
regarding age-specific  IFR57—generalizability and cross-national transferability of key conclusions.

The presented analysis suggests reconsidering greedy mitigation strategies that are aimed at minimizing social 
contacts at all times and that in many cases do not produce an optimal solution. Total eradication and prolonged 
containment strategies have only proved epidemiologically successful in the long-term for few countries, some 
of which are characterized by consistently high solar irradiation and negligible seasonality (e.g. Singapore), or 
by geographic isolation (e.g. New Zealand). In order to further investigate the validity of our hypothesis, we plan 
to transfer our method to other geographic regions.

Data availability
The datasets generated and/or analyzed during the current study are available in a public GitHub repository: 
https:// github. com/ simsy nser/ Socia lDist ancin gCovid.
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