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Evolutionarily conserved gene 
expression patterns for affective 
disorders revealed using 
cross‑species brain transcriptomic 
analyses in humans, rats 
and zebrafish
Konstantin A. Demin 1,2*, Nataliya A. Krotova 1,2, Nikita P. Ilyin 1,2,4, David S. Galstyan 2,3, 
Tatyana O. Kolesnikova 4, Tatyana Strekalova 5, Murilo S. de Abreu 6, Elena V. Petersen 6, 
Konstantin N. Zabegalov 4 & Allan V. Kalueff 3,7,8*

Widespread, debilitating and often treatment‑resistant, depression and other stress‑related 
neuropsychiatric disorders represent an urgent unmet biomedical and societal problem. Although 
animal models of these disorders are commonly used to study stress pathogenesis, they are often 
difficult to translate across species into valuable and meaningful clinically relevant data. To address 
this problem, here we utilized several cross‑species/cross‑taxon approaches to identify potential 
evolutionarily conserved differentially expressed genes and their sets. We also assessed enrichment 
of these genes for transcription factors DNA‑binding sites down‑ and up‑ stream from their genetic 
sequences. For this, we compared our own RNA‑seq brain transcriptomic data obtained from 
chronically stressed rats and zebrafish with publicly available human transcriptomic data for patients 
with major depression and their respective healthy control groups. Utilizing these data from the three 
species, we next analyzed their differential gene expression, gene set enrichment and protein–protein 
interaction networks, combined with validated tools for data pooling. This approach allowed us to 
identify several key brain proteins (GRIA1, DLG1, CDH1, THRB, PLCG2, NGEF, IKZF1 and FEZF2) as 
promising, evolutionarily conserved and shared affective ‘hub’ protein targets, as well as to propose 
a novel gene set that may be used to further study affective pathogenesis. Overall, these approaches 
may advance cross‑species brain transcriptomic analyses, and call for further cross‑species studies into 
putative shared molecular mechanisms of affective pathogenesis.

Stress evokes a wide range of behavioral, molecular and physiological  responses1–7 in vivo, also triggering vari-
ous affective disorders, including anxiety, depression and post-traumatic stress disorder (PTSD)  clinically8–11. 
While these neuropsychiatric disorders are widespread, debilitating and often treatment-resistant12–14, their 
understanding is complicated by heterogeneity and unclear pathological mechanisms and risk  factors15,16. To 
address these problems, animal (experimental) models are widely used for studying stress pathogenesis and 
recapitulating clinical affective  disorders17–19.

Commonly utilizing various chronic unpredictable stress (CUS)  protocols20–24, these experimental mod-
els typically involve rodents exposed to varying stressors for several  weeks22,24–27, to evoke anxiety- and/or 
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depression-like ‘affective’ behavioral and physiological  alterations28–30 that resemble those observed  clinically31,32. 
Recognized as an important novel model organism in the central nervous system (CNS) disease modeling, the 
zebrafish (Danio rerio) is widely used in translational  biomedicine33–36. Complementing rodent neurobehavioral 
evidence, zebrafish are also becoming popular in stress  research37,38. Their growing utility in this field is sup-
ported by the fact that zebrafish are highly homologous to humans both genetically and  physiologically39,40, and 
have evolutionarily conserved neurotransmitter  systems41,42 and  neuromorphology43,44. Like rodents, zebrafish 
are currently widely used in modeling stress-related affective  disorders45–47, typically utilizing various aquatic 
protocols, assays and tests adapted from those in  rodents48–52.

However, all animal models are rather difficult to fully parallel in humans, necessitating novel methods of 
translating experimental modeling results into clinical setting. Aiming to target ‘core’, evolutionarily conserved 
pathogenesis, and recognizing the importance of cross-species analyses in CNS  research53,54, here we performed 
an in-depth pilot cross-species/cross-taxon analysis of brain transcriptomic data in zebrafish, rats and humans, 
in order to identify putative novel ‘shared’ molecular targets for affective CNS disorders evoked by chronic stress.

Results
In general, our study aimed to identify common differentially expressed (DE) genes and/or enriched gene sets 
in contrasts between (1) human subiculum data from patients with major depressive disorder (MDD, based on 
DSM-IV criteria) vs. healthy controls available from NCBI’s Gene Expression Omnibus (GEO)  database55, (2) 
rat hippocampus samples following chronic unpredictable stress (CUS) vs. unexposed controls, and (3) zebrafish 
whole-brain CUS-exposed samples versus unexposed controls (see the “Methods” section for details, as well as 
Supplementary Table S1 and Fig. 1). The study utilized several different methods to establish potential relation-
ships between the species-specific and cross-species data.

Briefly, Experiment 1 aimed to directly search for common patterns in the differential gene expression data 
(i.e., identifying DE genes for each species) and in gene set enrichment results (i.e., identifying the enriched sets 
for each species by analyzing the expression of sets of genes instead of individual genes), searching for similar 
genes (using orthologues) or gene sets (using Kyoto Encyclopedia of Genes and Genomes,  KEGG56) in these 
data. Additionally, Experiment 1 analyzed the enrichment of DE genes for transcription factors DNA-binding 
sites (TFBSs) down- and up- stream from their genetic sequences.

Experiment 2 pooled all individual species’ raw RNA sequencing (RNA-seq) data by their orthologs, gen-
erating combined ‘interspecies’ data that were further analyzed for comparison between affective pathogenesis 

Figure 1.  Schematic summary of the study design and analyses.
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(MDD humans + CUS rats + CUS zebrafish) vs. controls (healthy humans + control rat + control zebrafish data). 
These data were further processed using the DE and gene set enrichment analyses, similar to Experiment 1.

Experiment 3 applied the Fisher’s meta-analysis  approach57 to combine interspecies data. Briefly, the individ-
ual species-specific data were first processed using the DE or gene set enrichment analyses (using only the genes 
that have orthologues in all three species), and then the p-values obtained for each species were further included 
in Fisher’s meta-analysis57. Finally, Experiment 4 utilized another approach, as we generated protein–protein 
interaction network for selected identified common/shared genes that have orthologous in all three species. We 
next analyzed the maximal cliques (MCs, subgraphs in which all nodes are connected to each other, as  in58) for 
this network, and used them as gene sets for further enrichment analysis (similar to other enrichment analyses 
described above, but using MCs instead of Kyoto Encyclopedia of Genes and Genomes (KEGG)56 sets). These 
sets were analyzed for enrichment for individual species data first and then further combined into interspecies 
data using the Fisher’s meta-analysis57.

Overall, Experiment 1 focused on direct species-to-species comparisons of brain gene expression data. Specifi-
cally, if some genes were DE in the experiment, we next evaluated whether their respective orthologues appear 
in another animal species or in clinical data. Utilizing traditional direct two-species comparisons of lists of gene 
orthologues using Venn diagrams, Experiment 1 revealed 25 DE genes for human subiculum, 47 for rat CUS 
hippocampus and 196 for zebrafish CUS whole brain samples (Supplementary Tables S1–S3). No orthologous 
DE genes were identified as shared/common between the species using the HomoloGene  database59 (www. 
ncbi. nlm. nih. gov/ homol ogene, see Fig. 2 and Supplementary Material 2 online). Generally Applicable Gene Set 
Enrichment (GAGE)  analyses60, performed on raw data counts similarly to the DE gene analysis, identified 56 
altered KEGG sets in human, 69 in rat, and 32 in zebrafish data (Fig. 2 and Supplementary Tables S4–S6). Sets 
that were simultaneously altered in all three species include calcium signaling, extracellular matrix-receptor (ECM-
receptor) interaction, cell adhesion molecules (CAMs), and neuroactive ligand-receptor interaction KEGG pathways 
(Fig. 2). Notably, one upregulated set (oxidative phosphorylation) was affected in both rat and zebrafish samples, 
and two downregulated pathways (spliceosomes and RNA transport) were common between humans and rats.

While traditional DE analyses here yielded no common genes between the three species, studying enrichment 
of significantly altered genes for transcription factors DNA-binding sites (TFBSs) down- and up- stream from 
their genetic sequences (see the “Methods” section  and61 for details) revealed 291 differentially represented (DR) 
human, 249 rat and 80 zebrafish TFBSs, with 19 DR TFBSs shared by all three species (Fig. 3 and Supplementary 
Tables S7–S9).

In general, the results of Experiment 1 show that direct comparisons of gene orthologues may not be an 
efficient approach to find commonalities in RNA-seq data between species-specific samples. Furthermore, given 
that TFBSs and GSEA analyses were similar to traditional DE gene analyses, utilizing data for a wide range of 
genes organized within specific established molecular pathways may be more informative to compare gene 
expression patterns between species.

Instead of comparing gene expression profiles as a post-hoc analysis, Experiment 2 pooled raw RNA-seq data 
counts, thus combining the species-specific data prior to any differential expression analysis, aiming to achieve 
better inter-species data compliance. To globally analyze gene expression data in all three species, we compiled 
a pooled interspecies list of counts for all their common orthologous genes, using the HomoloGene database 
 map59 (see Supplementary Material 2 and www. ncbi. nlm. nih. gov/ homol ogene), thus generating the combined 
‘human MDD + rat CUS + zebrafish CUS’ dataset of genes to be compared with the pooled control dataset con-
sisting of control groups from all three species. Using such gene list, Experiment 2 yielded no differences in DE 
human orthologue genes by comparing stressed vs. normal controls for all three species (NS; p adjusted > 0.05). 
However, this lack of significant effects was rather unsurprising, given high heterogeneity of species-specific 
data, and the fact that their Principal Component Analysis (PCA) revealed most main effects as species-specific 
(Fig. 4). In contrast, our GAGE  analysis60 of these data was more sensitive, yielding 91 altered molecular pathways 

Figure 2.  Venn diagrams for differentially expressed (DE) genes or enriched gene sets (GSEA, gene set 
enrichment analysis) using similar raw RNA-seq data counts comparing subiculum in human major depressive 
disorder (MDD) vs. control, hippocampi in rats exposed to chronic unpredictable stress (CUS) vs. unexposed 
controls, and in zebrafish CUS-exposed vs. unexposed control whole brain samples, using 1:1:1 orthologues 
from the HomoloGene  Map59 (Experiment 1, see the “Methods” section for details). Overall, these direct 
species-to-species comparisons revealed no common DE genes and very few common DE gene sets.

http://www.ncbi.nlm.nih.gov/homologene
http://www.ncbi.nlm.nih.gov/homologene
http://www.ncbi.nlm.nih.gov/homologene
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Figure 3.  Summary of common/shared over- and under-represented transcription factors DNA binding sites 
(TFBSs) among differentially expressed (DE) genes with high (p < 0.01) vs. low (p > 0.7) statistical variability 
in human, rat, and zebrafish data using the CiiiDer TFMs  software61 (Experiment 1). Only TFBSs with 
both p < 0.05 for gene coverage p-value and p < 0.05 for the distribution of the number of TFBS, were considered 
significantly altered. TFBSs were sorted by their gene coverage p-value. Data are represented as log2-enrichment 
values, calculated according to the CiiiDer TFMs  manual61.

Figure 4.  The principal component analysis (PCA) of Experiment 2 data, studying cross-species samples 
mapped using 1:1:1 orthologous map pooled into stress (major depressive disorder, MDD/chronic unpredictable 
stress, CUS) or control groups. Note high data heterogeneity that prevented direct combining cross-species data 
here, and the lack of clear separation between the groups in other principal components (PC) studied (data not 
shown). PC 1—principal component 1, PC 2—principal component 2.
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(Supplementary Table S10). Importantly, these findings closely parallel data obtained earlier in Experiment 1 
(Fig. 2, Supplementary Tables S4–S6), since all 4 sets (found to be enriched in all three species in Experiment 1) 
were similarly enriched in Experiment 2 (Fig. 2, Supplementary Tables S4–S6 and S10). Furthermore, among 
these 4 sets, three sets (Neuroactive ligand-receptor interaction, calcium signaling and ECM-receptor interaction) 
were the most altered in Experiment 2, supporting their likely high impact on affective pathogenesis in all three 
species.

Overall, Experiment 2, similarly to Experiment 1, yielded poor DE gene profiling results, hence calling for 
other tools to be applied to better combine and analyze the brain gene expression data. In contrast, GSEA was 
efficient in both Experiments 1 and 2, further supporting high efficiency of this approach to detect commonali-
ties in RNA-seq data.

However, a key methodological issue of GAGE analyses utilized in Experiments 1 and 2 here was its reliance 
on the pre-set KEGG pathways, that may have no direct connection to affective pathogenesis per se, and can only 
partially correspond to the observed phenotypes. For example, while the KEGG calcium signaling pathway may 
relate to some disturbances in depression, it can neither fully explain nor recapitulate the disorder, and some of 
the genes within this pathway may have no effect on depression pathogenesis. To account for these limitations, 
Experiment 3 probed the ability of Fisher’s meta-analysis to combine p-values from different experiments (in 
order to improve data combination). Likewise, Experiment 4 also applied the graph theory-based MC analy-
sis (see further), to obtain set enrichment results for targets that are more functionally related to the affective 
pathogenesis.

Fisher’s meta-analyses were efficient to compare combined interspecies DE genes’ and gene sets enrichment 
p-values. In summary, examining the potential of Fisher’s meta-analysis57 to compare gene-orthologues data, 
Experiment 3 yielded 15 human, 29 rat, and 62 zebrafish DE orthologues (Supplementary Tables S11–S13). 
Fisher’s meta-analysis of these data identified 66 DE genes, including 15 DE genes altered in the same log2 fold 
change (l2fc) direction in all three species, supporting that they all changed their expression in a similar way 
across the species (Fig. 5 and Supplementary Table S14). While our GAGE  analyses60 revealed 24 altered human, 
42 rat and 109 zebrafish pathways (Supplementary Tables S15–S17), their Fisher’s meta-analysis57 identified 112 
pathways shared by all three species (Supplementary Table S18).

To examine whether Fisher’s meta-analysis data at least partially correspond to direct differentially expressed 
(DE) gene analyses applied earlier (Experiment 1), we constructed the Protein–Protein Interaction (PPI) net-
work for shared DE genes (identified in Experiment 3) and DR TFBSs (identified in Experiment 1) with high 
enrichment level (p = 8.31e − 09), using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) 

Figure 5.  Heatmap representing log2 fold change of the genes significantly altered according to Fisher’s meta-
analysis57 (left panel) or volcano plots for selected genes (right panel) in Experiment 3.
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online  database62 (https:// www. string- db. org/). Overall, these results support strong inter- and intra-connection 
between the TFBSs’ Experiment 1 and DE meta-analyses’ Experiment 3 data (Fig. 6). After ranking all vertices in 
the PPI networks by the  Degree63,  BottleNeck64, Betweenness and DMNC||MNC65 approaches (i.e., characterizing 
their overall ‘hubness’ within the network), we excluded genes with mixed direction (increased or decreased, 
compared to control) of expression changes in the stressed groups (see the “Methods” section for details), choos-
ing only vertices that were highly ranked by at least two separate graph theory-based methods independently, 
thus yielding 4 proteins from the TFBS study and two proteins from the meta-analysis study as ‘hub’ vertices 
(Table 1), including 3 up-regulated or overrepresented (IKZF1, FEZF2, and VWF) and 3 down-regulated or 
underrepresented proteins (FLI1, ARNT and ERG, Fig. 5, 6).

Experiment 4 aimed to establish novel, functionally more valid (than using the KEGG approach) sets of 
genes that may better correspond to the pathogenesis of affective disorders. In the graph theory, a clique is a 
subset of vertices of a graph such that every two distinct vertices in the clique are adjacent (connected), thus 
forming a complete  subgraph66. MCs represent cliques that cannot be extended by including one more adjacent 
vertex, meaning that it is not a subset of a larger  clique58. Applying the clique analyses here, Experiment 4 iden-
tified 121219 MCs for the PPI network constructed using the entire set of orthologous genes, including 21938 
non-ribosomal MCs (with a maximum size of N = 29) that were further analyzed as gene sets using  GAGE60, to 
compare their enrichment (bidirectionally altered, i.e., including both under- and over-representation in absolute 
values, regardless the direction of individual gene expression changes) in each species in affective (CUS/MDD) 
samples vs. control (Fig. 7 and Supplementary Material 3). Fisher’s meta-analysis of these data identified a total 
of 257 enriched MCs containing 253 unique proteins (Supplementary Table S20 and Fig. S2).

Figure 6.  The network of protein–protein interactions (PPI) constructed for differentially expressed (DE) genes 
from Experiment 3 or differentially represented (DR) transcription factors (TF) binding sites (TFBSs) from 
Experiment 1, using the STRING online  database62 (https:// www. string- db. org/, see the “Methods” section and 
Fig. 3 and 5 for details).

https://www.string-db.org/
https://www.string-db.org/
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As a proof-of-concept approach, we also applied GAGE  analysis60 to the set containing these 253 genes, 
finding it to be significantly enriched in stress vs. control groups in all three species (Fig. 8 and Supplementary 
Table S21). Notably, this set was not only enriched in depressed human prefrontal cortex (PFC) data, but was 
also less enriched following antidepressant treatment in stressed animals, based on both zebrafish and rat data 
(drug vs. stress groups; Fig. 8 and Supplementary Table S21). Overall, this collectively indicates that this set was 
enriched in the original datasets even when analyzed using traditional methods (without any data combination), 
and may also have some predictive validity as well, given its responsivity to antidepressant treatment.

To identify the most consistent/stable expression changes across the three species, our further analyses focused 
on genes from the set with similar changes in expression (increased or decreased) for each species (Fig. 9). In 
silico Experiment 4 generated a PPI network consisting of a total of 45 proteins, including those encoded by 6 
genes (GRIA1, DLG1, CDH1, THRB, PLCG2, and NGEF) most highly altered (assessed by average l2fc absolute 
values) in all three species (Fig. 10). Five of these genes (except NGEF) were also highly ranked by their l2fc 
absolute values in fluoxetine-treated zebrafish and rats, further implicating them in both stress pathogenesis 
and antidepressant effects (Fig. 11). Finally, our graph theory-based analyses of protein-protein interaction 
(PPI) networks, performed similarly to Experiment 3, helped establish multiple ‘hub’ proteins (Table 1) that 
may also represent promising targets due to their high impact on the PPI. Overall, these PPI analyses reveal the 
potential role of the Wnt-signaling pathway, involving multiple wnt proteins (e.g., WNT2, WNT3A, WNT7A 
and B, WNT8B, WNT10A), a protein with highly altered expression of the corresponding gene among all three 
species found in Experiment 4 (GRIA1), key hormone receptors (TRHR and OXTR), and some other important 
cellular proteins (Table 1).

Discussion
The present study was the first cross-species/cross-taxon in-depth analysis of stress-related CNS transcriptomic 
data from three important organisms (humans, rats and zebrafish), in order to probe their putative shared 
genomic mechanisms in affective pathogenesis. This study also combined several innovative methods of analyses 
(Experiments 2–4) to tackle this problem, contrasting these approaches with more common and traditional, 
direct species-to-species comparisons (Experiment 1). Refining such analyses, Experiments 3 and 4 focused on 
mapping shared orthologous human, rat, and zebrafish genes before differential expression analyses, and were 
also further reinforced by meta-analytical methods, becoming more sensitive among all approaches used here. 
In summary, the results of our analyses are as follows: (1) The use of gene sets-related analysis is highly benefi-
cial to study commonalities in interspecies RNA-seq results relevant to stress-related CNS disorders. (2) Data 
from different species cannot be directly pooled together due to high heterogeneity of their gene expression. (3) 
The meta-analytical approach is highly efficient in combining the interspecies RNA-seq results. (4) The value of 

Table 1.  Top ten vertices analyzed using the Double Screening Scheme (DSS) analysis, combining the Density 
of Maximum Neighborhood Component (DMNC) and Maximum Neighborhood Component (MNC, see 
the “Methods” section for details; DMNC||MNC65),  degree63 or bottleneck 64 approaches, for networks of 
constructed protein–protein interactions (PPI) from Experiments 1 and 3 (Fig. 6) and Experiment 4 (Fig. 10).

Proteins DMNC MNC Proteins Degree Proteins Bottle-neck Proteins Betweenness

1st PPI experiment 1 (TFBSs) and experiment 3 (DE)

IKZF1 0.57 6 INPP5D 8 INPP5D 26 FEZF2 791.91

CD53 0.57 6 ARNT 8 HGF 16 INPP5D 756

ARHGAP25 0.57 6 IKZF1 8 FEZF2 15 PIK3C2B 746.78

INPP5D 0.65 5 TBC1D10C 6 PIK3C2B 15 SMARCD2 639.68

TBC1D10C 0.65 5 CD53 6 SMARCD2 15 ARNT 626.43

MPEG1 0.65 5 ARHGAP25 6 IKZF1 10 IKZF1 519.36

FLI1 0.46 3 FEZF2 5 MYH6 10 LDLR 479.63

NEUROD6 0.31 3 PIK3C2B 5 ERG 10 HGF 455.06

STMN2 0.31 3 LDLR 5 ARNT 9 USH2A 436.33

FEZF2 0.31 2 NEUROD6 5 USH2A 8 NEUROD6 399

2nd PPI experiment 4

WNT8B 0.67 8 SRC 15 PRKACA 31 PRKACA 907.62

WNT3A 0.67 8 CTNNB1 12 SRC 11 CTNNB1 544.30

WNT2 0.67 8 PRKACA 11 CTNNB1 10 CACNA1C 456

WNT7A 0.77 7 CBL 9 CACNA1C 7 OXTR 390

WNT7B 0.77 7 WNT8B 8 OXTR 6 SRC 353.57

WNT10A 0.77 7 WNT5A 8 GRIA1 6 CBL 323.20

SFRP5 0.77 7 WNT3A 8 WNT8B 5 GRIA1 269.11

WNT5A 0.77 7 WNT2 8 CBL 5 COL7A1 168

MAPK11 0.41 7 MAPK14 8 GAB1 4 DLG1 161.54

TRHR 0.64 5 MAPK1 8 RARA 3 WNT5A 106.75
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analyzing gene sets may be increased by using functionally meaningful ways of data extraction, such as finding 
MCs in the targeted PPI networks.

Interestingly, some potential protein targets that were up-regulated and had high connectedness in PPI 
networks generated by Experiment 3, include the FEZ Family Zinc Finger 2 (FEZF2) and IKAROS Family Zinc 
Finger 1 (IKZF1), both having zing-finger  Cys2His2-like fold group (zf-C2H2)68 and 36.67-% homology to each 
other, based on protein sequences assessed by the Basic Local Alignment Search Tool (BLAST)  database69. In 
neurons, both FEZF2 and IKZF1 are important TFs that determine neuroprogenitor cell  fate70. FEZF2 also pro-
motes neuroplasticity and neuronal signaling that involves neuroactive ligand-receptor interaction, cell adhesion 
molecules, and calcium signaling  pathways71, thereby strikingly paralleling our KEGG 56 pathways enrichment 
findings here (Fig. 2 and Supplementary Tables S4–S6 and S10). FEZF2 also controls the expression of Helix-
loop-helix (HLH) DNA-binding domain-containing  proteins72,73, such as neurogenins, neurogenic differentiation 
(NEUROD), and ASCL1 orthologues that represent closely related HLH proteins controlling neuronal fate (e.g., 
temporal switch from neuro- to gliogenesis)68,70,74. Interestingly, NEUROD6 was a DE gene found by meta-analy-
sis in the present study, albeit altered in different directions across species (Fig. 6). Similarly, IKZF1 participates 

Figure 7.  Genes expressed in a similar direction in the enriched sets using Fisher’s meta-analysis 57 on maximal 
cliques (MCs) Gene Set Enrichment Analysis (GSEA) data of major depressive disorder (MDD) vs. control 
human or chronic unpredictable stress (CUS) vs. control rat and zebrafish data, mapped to 1:1:1 human 
orthologue using the HomoloGene  database59 (Experiment 4; www. ncbi. nlm. nih. gov/ homol ogene). Data are 
presented as mean log2 fold change.

http://www.ncbi.nlm.nih.gov/homologene
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in neuronal differentiation, including the differentiation of the growth hormone releasing hormone (GHRH) 
cells in mammalian  hypothalamus70, and its genetic knockout in mice evokes pronounced antidepressant-like 
behavior and poorer acoustic  startle75. Collectively, this corroborates our present findings identifying this gene 
as a potential critical ‘shared’, evolutionarily conserved candidate CNS ‘affective’ gene (Fig. 6). Notably, IKZF1 is 
more robustly expressed in microglia than in neurons, oligodendrocytes or astrocytes, as assessed by mean DE 
TFs in human  cortex76. Furthermore, comparison of meta- and TFBS- analyses with this patterned expression 
 data76 suggests that most DE genes and DR TFBSs (Experiments 1 and 3) after stress exposure may be associated 
with primarily microglial (e.g., IKZF1, PRDM1, ELF1, ELK3, ETS2, and FLI1), and with only a few neuronal 
(e.g., NEUROD6) and astrocytic (e.g., FEZF2),  genes76.

Overall, the observed diversity of the cell types implicated in depression is not surprising, as microglia, astro-
cytes, endothelial cells and oligodendrocytes have been extensively studied for their association with affective 
pathogenesis. For example, microglial cells emerge as promising novel targets for depression treatment, repre-
senting important modulators of inflammatory activity in the brain, also key for supporting healthy neuronal 
 connectivity24. Moreover, endothelial dysfunction biomarkers are associated with depression pathogenesis clini-
cally, and are normalized following antidepressant  treatment77. Similarly, astrocytes regulate glucose metabolism, 
neurotransmitter uptake (especially glutamate), synaptic development/maturation or the blood brain barrier 
function, and their role in depression pathogenesis is well supported by clinical and preclinical  studies78,79. 
Finally, postmortem reduction of glial density in amygdala (an important regulator of emotional responses) may 
be primarily due to oligodendrocyte cell  death80, whereas of the down-regulation of oligodendrocytal genes is 
observed in both depressed patients and animal chronic stress  models81. Taken together, the present findings 

Figure 8.  The number of maximal cliques (MCs) in the protein–protein interaction (PPI) network constructed 
from all orthologous genes mapped using 1:1:1 human:rat:zebrafish  HomoloGene59 (www. ncbi. nlm. nih. gov/ 
homol ogene) map in  STRING62 (https:// www. string- db. org/) and OmicsNet (www. omics net. ca/)67 databases.

Figure 9.  Results of Gene Set Enrichment Analyses (GSEA) comparing the set of 253 genes suggested 
using maximal cliques (MCs) and significantly altered in Fisher’s meta-analysis 57 (Experiment 4). All data 
significantly differed from their corresponding controls (p < 0.05). Asterisks denote additional significant 
differences between the groups (p < 0.05). MDD—major depressive disorder, Sub—subiculum, Hip—
hippocampus, Flu—fluoxetine, PFC—prefrontal cortex.

http://www.ncbi.nlm.nih.gov/homologene
http://www.ncbi.nlm.nih.gov/homologene
https://www.string-db.org/
http://www.omicsnet.ca/
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are in line with recent views on depressive pathogenesis implicating multiple brain cell types, and supporting 
the value of studying whole-brain tissue in addition to cell type-specific samples.

The present study also compared all candidate genes found in meta- and TFBS- analyses with publicly avail-
able meta-analyses of cell-specific expression patterns in human and mouse  brain82. Several observations can 
be made based on these analyses. First, as shown in Supplementary Fig. 1, all brain cell types were involved in 
the development of pathological affective states in all three species here. Second, all neuron-specific genes were 
altered bidirectionally between these species, confirming some distinct effects of chronic stress on neuronal 
tissue in various vertebrates reported  previously83. Finally, some key microglial (e.g., IKZF1) and astrocytal 
(e.g., FEZF2) proteins may play an integrative, ‘hub’ role in stress-related ‘affective’ PPI networks generated here 
(Table 1).

However, the present study also has several clear limitations. First, the Fisher’s meta-analysis57 was over-
sensitive to highly-DE genes in individual species (e.g., FEZF2 in rats), thus possibly not properly reflecting its 
potential evolutional conservation, as suggested by other methods used here. Furthermore, our study utilized 

Figure 10.  The network of protein–protein interactions (PPI) constructed for genes expressed in a similar 
direction in the enriched sets using Fisher’s meta-analysis57 on the maximal cliques (MCs) Gene Set Enrichment 
Analysis (GSEA) data of major depressive disorder (MDD) vs. human control or chronic unpredictable stress 
(CUS) vs. rat or zebrafish control data, mapped to 1:1:1 human orthologue using HomoloGene  database59 
(Experiment 4; www. ncbi. nlm. nih. gov/ homol ogene). PPIs were constructed using the STRING online 
 database62 (see the “Methods” section and Figs. 3, 5 for details; www.string-db.org). Data are presented as mean 
log2 fold change between the stress groups from three species, compared to their respective controls. Black 
frames denote genes most highly-ranked as differentially expressed (DE) in all three species (see the “Methods” 
section for details).
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Figure 11.  Heatmap representing fluoxetine effects in animals on brain genes expressed in a similar direction 
in the sets deemed ‘enriched’ using Fisher’s meta-analysis57 on maximal cliques (MCs) Gene Set Enrichment 
Analysis (GSEA) data for major depressive disorder (MDD) vs. human control or chronic unpredictable stress 
(CUS) vs. control rat and zebrafish data, mapped to 1:1:1 human orthologue using the HomoloGene  database59 
(Experiment 4; www. ncbi. nlm. nih. gov/ homol ogene). Data are presented as mean log2 fold change.
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zebrafish whole brain samples, rat hippocampal samples and online human subiculum data, hence possibly 
complicating direct inter-species comparisons. Likewise, only male rat and human data, but mixed-sex zebrafish 
data, were analyzed. However, rat and human data were as close to each other as to zebrafish data in terms of the 
number of identified conservative genes, sets, TFBS or principal components (Experiment 2), thus supporting 
the validity of using zebrafish whole-brain and mixed-sex samples in the pilot analysis here.

Importantly, as a proof of concept, in a separate study we also utilized depression patient PFC data to 
assess the enrichment of the set of 253 genes found here to be altered in all three species (hippocampus in rats 
and human and whole brain in zebrafish) in Experiment 4. Overall, these analyses yielded pronounced enrich-
ment in depressed vs. healthy patients (Fig. 9), thereby supporting the idea of targeting the effects common in 
other brain regions. Similarly, an antidepressant exherted opposite effects on the gene set enrichment (Fig. 9) 
and expression of genes of interest (Fig. 11) in Experiment 4, thus providing further pharmacological validity 
for the study. However, as already noted, variation in brain regions may also affect the study results, for example, 
contributing to the lack of common DE genes between species using traditional species-to-species analyses in 
in Experiment 1. Thus, further follow-up studies may be needed to generate more nuanced insights by focusing 
on sex- and brain area-specific samples.

Finally, using the HomoloGene  database59 (www. ncbi. nlm. nih. gov/ homol ogene) to identify gene orthologues 
across species also presents some limitations because it is currently incomplete, and not all existing gene ortho-
logues are registered there. For example, the IKZF1 orthologue was not identified in the rat genome, albeit the 
Ikzf1 gene exists in rats and is highly homological to the respective human and zebrafish genes, as assessed by the 
BLAST  database69. As such, using a curated database of gene orthologues to simplify their identification may also 
lead to false negatives (e.g., yielding fewer genes due to data deficiency), hence necessitating further manual data 
curation and updating. Moreover, because teleost fish underwent an additional round of whole-genome duplica-
tion, many of the mammalian genes have additional orthologues in zebrafish, resulting in over-representation 
of zebrafish over human and rat genomes. To mitigate this potential confound, the present study used only one 
(most homological) zebrafish ortholog for each such duplicated gene. However, this strategy may also impact the 
results of the study since some of the two gene orthologues may hypothetically have divergent CNS functions, 
brain localization and/or expression patterns.

Another important aspect to consider is the overall validity of animal modelling for human brain disorders. 
The translational relevance of animal models of depression has traditionally been evaluated based on their 
predictive, construct and face  validity84. It is generally accepted that CUS paradigms in rodents fulfill all these 
criteria, since they replicate many symptoms of depression seen in humans (good face validity), show specific 
and selective responses to antidepressants (good predictive validity), and have sound theoretical basis (good con-
struct validity)85,86. However, as with other animal models of depression, CUS-based paradigms themselves have 
several important conceptual and methodological limitations. In fact, while stress is one of the key predictors 
for depression development in  humans87, the exact cause-effect relationships between stress and depression are 
poorly understood. For instance, it is still unclear how stressful events cause pathological changes in the brain 
of depressed patients, and why some other individuals remain stress-resistant or stress-resilient88. Furthermore, 
some symptoms of depression cannot in principle be modeled in animals, either due to their high cognitive 
complexity (e.g., suicidality) or inability of animals to objectively report their internal states (e.g., feelings of 
worthlessness and guilt).

Depression is also a highly heterogeneous disorder in terms of its clinical  manifestations89,90, which further 
complicates adequate studying its symptoms and their modeling in animals. For example, while dysregulated 
neuroendocrine axis is often the most consistent physiological sign of depression, it actually occurs only in ~ 50% 
depressed  patients91. Given the high comorbidity between depression and various other affective disorders (espe-
cially anxiety)92, it is also unclear whether they represent trully distinct brain disorders or diverse manifestations 
of some common overlapping pathological process.

As already mentioned, Experiments 1–3 were more sensitive in identifying similar changes in pathways 
expression than analyses of expression changes in individual genes. However, there are no pathways in the KEGG 
 database56 that have a direct pathological association with CNS affective pathogenesis, since exact molecular 
pathways that contribute to these disorders remain poorly understood. Therefore, it is logical to specifically focus 
on the most affected gene sets in all three species observed in the study independently of curated pathways. To 
address this problem, the present study utilized a novel approach, comparing differences in expression data of 
MCs identified in orthologous PPI networks. Although MC analyses have already been used in various transcrip-
tomic  studies93–96, here we not only applied this approach to CNS transcriptomic data across the three common 
model species, but also enhanced its sensitivity, successfully identifying multiple enriched MCs by combining 
this approach with meta-analytical methods.

Assessing genes that formed significantly altered MCs, we also identified a novel gene set that may be poten-
tially useful for comparing animal and human affective pathological states (used as a curated pathway in data-
bases). For example, this set includes several well-known stress- and affective disorder-related genes, such as 
FOS-, JUN-, MAPK-, Wnt- and adhesion-related genes, thereby further supporting the validity of our approach. 
Importantly, we also identified the most conservative ‘stress’ subnetwork consisting of CNS genes that were not 
only inter-connected (within PPIs), but also changed their expression in the same direction in all three species 
studied here (Fig. 9, 10, Supplementary Table S14). For example, this subnetwork includes several similarly 
expressed “core” genes in all three stressed groups (GRIA1, DLG1, CDH1, THRB, NGEF, and PLCG2), likely 
serving as potential ‘hub’ genes within the subnetwork (Tables 1, 2).

Thus, our analyses successfully identified shared genes that were involved in affective pathology in all three 
species, hence representing likely evolutionarily conserved biomarkers of affective pathology. Furthermore, 
the expression of all genes similarly expressed across all three species, except NGEF, was rescued in the respec-
tive rat- and zebrafish fluoxetine-treated groups, further implicating their importance not only for CNS stress 
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responses, but also for antidepressant treatment, again strongly supporting the validity of the present study’s 
approach and findings.

PLCG2 belongs to the phospholipase C gamma (PLC) family, encoding the enzyme 1-phosphatidylinositol-
4,5-bisphosphate phosphodiesterase gamma-2 (PLCG2) that cleaves the membrane phospholipid PIP2 (1-phos-
phatidyl-1D-myo-inositol 4,5-bisphosphate) to the second messengers  IP3 (myoinositol 1,4, 5-triphosphate) 
and DAG (diacylglycerol) playing a key role in signal  transduction97–99. Another PLC family member, PLCG1 is 
expressed widely within the brain, especially in the cortex and the  hippocampus100, and has been implicated in 
CNS disorders, such as epilepsy, Huntington’s disease, and bipolar and unipolar  depression101–103. In contrast, 
PLCG2 is predominantly expressed in the bone marrow and lymphoid  organs104 and is responsible for heredi-
tary immune and autoimmune  disorders105,106. However, recent mouse studies found PLCG2 expression in the 
granular cell layer of the dentate gyrus and  microglia107, and its mutations are also implicated in Alzheimer’s 
 disease107. Together with our present findings, thus implicates both PLCG1 and PLCG2 as potential factors 
in both neurodegenerative and affective disorders.

The THRB gene generates two alternatively spliced isoforms of the thyroid hormone receptor beta, TRβ1, and 
TRβ2108. Together with another receptor, TRα, these nuclear receptors act as transcription factors that mediate 
the genomic effects of thyroid hormone in various  tissues109,110. Importantly, while thyroid receptors are highly 
expressed in the  brain111,112, thyroid hormones (e.g., acting via brain TRα and TRβ receptors) may modulate 
monoaminergic neurotransmission, thereby affecting mood and  behavior113–116, including strong co-morbidity 
of thyroid dysfunctions with mood  disorders117–119.

The NGEF (Neuronal Guanine Nucleotide Exchange Factor)  gene120 is expressed in the caudate nucleus and is 
involved in the activation of RhoA, Rac1, and Cdc42 (the Ras superfamily-associated proteins), hence modulating 
mitogen-activated protein kinase (MAPK) signaling and cell  junction121. NGEF is also a downstream signaling 
component of the ephrin-A (EphA4) tyrosine kinase receptor, responsible for the formation of neural networks, 
nerve growth, and changes in cell morphology involved in cell  motility122–126. Some genetic studies also implicate 
NGEF in  schizophrenia127,128. However, the CNS functions of NGEF remain poorly understood, and its putative 
role in stress-related affective pathogenesis (as suggested in the present study) merits further study.

The GRIA1 gene encodes the GluR1 (GluA1) protein, a subunit of glutamate α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) receptor, critical for synaptic plasticity, learning, and  memory129–131. 
GRIA1 is ubiquitously expressed throughout the rat and human brain, with the highest expression in the 
 hippocampus132,133. Interestingly, GRIA1-/-knockout mice display hyperlocomotion, increased anxiety, exac-
erbated novelty response, and impaired spatial working memory and object  recognition134–138. Mounting evi-
dence implicates GluR1 dysregulation in uni- and bipolar depression, and schizophrenia 139–141, hence calling 
for further studies of its role in stress in vivo. Rodent GluR1 activity alters in various brain areas following both 
 acute142–145 and chronic  stress143,146–154, with usually downregulated GRIA1/GluR1 expression/protein content. 
However, patterns of GluR1 regulation depend on both the duration of stress and the specific brain area exam-
ined. For example, hippocampal GluR1 is upregulated after shorter-term (< 21 days)143,149,150, but downregulated 
under longer-term (> 28 days), chronic  stress151,153,154. Furthermore, treatment with classical antidepressants (e.g., 
fluoxetine, desipramine, and maprotiline), as well as with atypical fast-acting antidepressant ketamine, elevates 
GRIA1 expression and restores GluR1 level in chronically stressed  rodents155–159. Together with our present cross-
species genomic findings (Figs. 9, 10, and Supplementary Table S14), this strongly suggests GluR1 as a ‘core’, an 
evolutionarily conserved gene involved in affective pathogenesis.

Discs large homolog 1 (DLG1) is a scaffolding protein from the membrane-associated guanylate kinase 
(MAGUK) family that regulates the activation of both B- and T-lymphocytes, encoded in humans by the DLG1 
 gene160,161. Rat Dlg1 localizes in the presynaptic nerve endings of excitatory synapses, as well as in (and along 
with) the bundles of unmyelinated  axons162. In addition to mammalian DLG1, there are several other types of 
DLGs (DLG2 (PSD-93), DLG3 (NE-dlg), and DLG4 (PSD-95)) expressed almost exclusively in the nervous 

Table 2.  A brief summary of genes identified as ‘core’ (‘hub’) in the present study. Evidence corresponds to 
subjective authors’ relative evaluation of genes involved in affective pathology using study results and literature 
analysis (see the “Discussion” section for details).

Genes Link to affective pathogenesis Cellular localization Brief description

CDH1  +  +  + Cell membrane
E-cadherin, involved in adhesion junction and wnt-signaling. Interacts with beta-catenin that is 
highly associated with affective pathology and anxiety clinically and in animal models. Expression is 
modulated with ketamine exposure

GRIA1  +  +  + Postsynaptic membrane Glutamate ionotropic receptor α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 
type subunit 1, associated with affective pathology and anxiety both clinically and in animal models

DLG1  +  +  + Cytosol Scaffold protein regulating glutamate receptors activity

IKZF1  +  + Nucleus Transcription factor regulating neuronal progenitors’ fate. Is associated with depressive phenotype 
in animal models

FEZF2  +  + Nucleus Transcription factor regulating neurogenesis and neuroplasticity

THRB  +  + Nucleus Nuclear receptor to thyroid hormone whose dysfunction is associated with affective pathology

PLCG2  + Cytosol and extracellular plasma Important metabolic protein involved in transmembrane signaling, associated with inflammation 
and neurological diseases

NGEF  + Cytosol, nucleus Understudied protein, associated with mitogen-activated protein kinase (MAPK) signaling and cell 
junction
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 system163 and likely contributing to rodent affective pathogenesis (e.g., Dlg4, but not Dlg1 or Dlg2, decreases 
in mouse hippocampus two days after the forces swim  test164). DLG1 also regulates the activity of the gluta-
mate N-methyl-D-aspartic acid (NMDA) and AMPA  receptors165,166. NMDA receptor antagonists like ketamine 
exert both anxiolytic and antidepressant  properties167, whereas antagonism of AMPA receptors is linked to 
 depression168.

Perhaps the most interesting finding here (Table 2) in the context of affective pathology involves Epithelial-
cadherin (E-cadherin; CDH1), a  Ca2+-dependent cell adhesion  molecule169, whose extracellular region acts as 
an adhesion anchor binding to cadherins on other  cells170, and intracellular region interacts with catenins (e.g., 
α- and β-catenins) and other regulatory  proteins171. Since β-catenin is an important signaling protein in the Wnt-
signaling pathway, the cadherin/catenin complex modulates cellular signal  transduction172. Wnt signaling has 
long been associated with affective  pathogenesis173 and downregulated E-cadherin expression has been reported 
in vitro by ketamine, a novel rapid-acting  antidepressant174. Similarly, a classical antidepressant, fluoxetine, 
impairs CDH1-mediated cell  adhesion175. Unlike other genes, CDH1 is overexpressed in PFC of human MDD 
patients vs. controls (assessed using protocol similar to Experiment 4 here), supporting its important interspecies 
and inter-tissue (including different brain regions) conservation.

In conclusion, translational multidisciplinary approaches remain a cornerstone for innovative CNS research. 
Here, we applied several novel analyses aiming to reveal evolutionarily conserved transcriptomic phenotypes 
across three different vertebrate animal models (zebrafish, rat and human clinical data). Using these approaches, 
we identified GRIA1, DLG1, CDH1, THRB, PLCG2, NGEF, IKZF1, FEZF2 as promising and shared affective 
‘hub’ targets (Table 2), whose further experimental studies may markedly foster translational research of affec-
tive disorders.

Methods
Animals, housing, and chronic unpredictable stress modeling. Wild-type adult zebrafish (n = 6, 1:1 
sex ratio) and Wistar male rats (n = 3; NCBI’s Gene Expression Omnibus (GEO)55 accession number GSE205325 
www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE20 5325) were subjected to the  CUS protocols reported 
 elsewhere32,176, utilizing the 5-week (zebrafish) or 12-week (rats) protocols. Behavioral studies reconfirmed the 
evoked anxiety- and depression-like phenotypes in both  species32,176 induced by CUS. All animals were kept in 
standard conditions, according to national and institutional  guidelines32,176. Additional statements regarding eth-
ical data use are available in Ethical Confirmation statements section and in the original published  studies32,176.

Human subjects. Human transcriptomic data were obtained from the open  source177 (NCBI’s Gene Expres-
sion Omnibus (GEO)55 accession number GSE102556 www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE10 
2556), the Douglas Bell Canada Brain Bank (DBCBQ, Douglas Mental Health Institute, Verdun, Québec). 
The subjects (males, n = 3 for subiculum, n = 4 for PFC study, average age 45) were of European ancestry and 
French-Canadian descent who died suddenly, without prolonged  agony177. Diagnoses were obtained using 
Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV) criteria using the Structured Clinical 
Interview for DSM-IV Axis I Disorders (SCID-I)  interviews178 adapted for psychological  autopsies177. While 
the original  study177 included numerous suicide attempters in the control group, and many samples were from 
patients treated with antidepressants, we excluded these samples from the present in-silico analyses (see Statisti-
cal analyses for details), aiming at more homogenous groups. All methods involving human subjects in the cited 
study were carried out in accordance with relevant guidelines and regulations, as well as in accordance with the 
Declaration of Helsinki. Additional statements regarding ethical data use are available in Ethical Confirmation 
statements section and in the original  study177.

RNA‑sequencing. RNA-sequencing procedures were performed as reported  previously32,176,177. Briefly, ani-
mal brains were dissected on ice following standard procedures, and hippocampus were dissected from the 
whole rat brains using Waxholm Space  atlas179. RNA isolation was performed using the TRI-reagent (Evrogen 
JSC, Moscow, Russia), according to manufacturer instructions. RNA quality was examined using Quantus (Pro-
mega Corporation, Madison, USA), electrophoresis, and QIAxcel (QIAGEN, Venlo, Netherlands). Sequencing 
was performed on Illumina HiSeq2500 (Illumina Inc., San Diego, USA) with 140 bp paired-read (zebrafish) and 
Illumina HiSeq4000 (Illumina Inc., San Diego, USA) with 151 bp paired-read (rat), with at least 20 million reads 
generated for each sample. Human samples from the referenced  study177 involved dorsolateral PFC (BA8/9; 
dlPFC) and ventral subiculum (vSUB) carefully dissected at 4 °C after being flash-frozen in isopentane at − 80 °C 
by highly trained histopathologists using reference neuroanatomical  maps177,180,181. Similar to our rat and fish 
experiments, RNA isolation in clinical samples was performed with TRI-reagent, according to manufacturer 
 instructions177. Samples were sequenced at 50 bp paired-read on Illumina HiSeq2500 with at least 50 million 
reads per sample after two sequential  sequencing177.

Statistical analyses and data handling. Data on human RNA-seq postmortem subiculum and PFC 
expression were obtained from the NCBI’s Gene Expression Omnibus (GEO)55 accession number GSE102556 
http:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE10 2556. Only male control and MDD patients that 
did not receive any treatment and died from natural or accident causes were included in the present analyses, 
resulting in n = 3 for subiculum and n = 4 for PFC. Reads were mapped to zebrafish GRCz11, rat Rnor_6.0, and 
human GRCh38 using RNA STAR 182 and further processed in  featureCounts183 (https:// usega laxy. org/)184. For 
inter-species transcriptomic data comparison, we applied four different approaches (summarized in Fig. 1) uti-
lizing the R  software185, Bioconductor  software186, and the DESeq2  package187. The DESeq2 was chosen as a tool 
efficient for experiments with 12 or fewer replicates, stable within 0.5 fold-change thresholds, and as an approach 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE205325
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consistent with other tools, such as EdgeR (when using exact test), Limma, and  EBSeq32,188. All genes with less 
than 10 counts per all samples were removed from the analysis. DE gene data analyses were next performed 
using the DESeq function. The p-values were adjusted using the Benjamini–Hochberg  correction189. P-value and 
false discovery rate (FDR) were set at 0.05 in all analyses here.

GSEA is a widely used method to study gene expression data in terms of molecular sets, allowing for better 
detection of expression  changes190–193. However, classical GSEA has some limitations, including the inability 
to handle datasets of different sizes and some experimental  designs60. A sub-type of GSEA, GAGE for the set 
analysis addresses these  limitations60, also enabling to choose independent databases to be analyzed depending 
on research goals, and consistently outperforming classical GSEA  methods60. The  KEGG56 (www. genome. jp/ 
kegg/) pathway enrichment analyses were performed on normalized and log2-transformed counts by the GAGE 
 package60, using two-sample Student’s t-test for group comparison of differential expression of gene sets. Both 
up- and downregulated, as well as bidirectionally (using absolute values) altered pathways were analyzed here. 
The p-values were adjusted using the Benjamini–Hochberg  correction189, with the FDR cut-off set at 0.05.

In Experiment 1, we compared DE and enriched gene sets for each species separately. Briefly, the resultant 
gene expression counts mapped to zebrafish GRCz11 (n = 6), rat Rnor_6.0 (n = 3) and human GRCh38 (n = 3) 
were analyzed independently using DESeq2 and GAGE functions comparing stress or MDD to control groups 
for each species (p adjusted < 0.05, Fig. 1). Lists of significantly DE genes in these species were further compared 
by searching orthologues using the HomoloGene  function59 (http:// www. ncbi. nlm. nih. gov/ homol ogene) and 
Venn diagrams. Lists of significantly altered GAGE sets were also compared using their  KEGG56 names. Finally, 
we studied TFBS over- and under-represented in genes with high variability (p values < 0.01 in DE analysis) vs. 
low variability (p > 0.7) using the CiiiDer TFMs software (http:// www. ciiid er. com/) for each  species61 (only TFBSs 
with p < 0.05 simultaneously for gene coverage p-value and for the distribution of the number of TFBS were con-
sidered statistically significant). The potential binding sites were established using position frequencies matrices 
from the Jaspar 2020 core vertebrates  matrix194 (https:// jaspar. gener eg. net/) and searched in the genomes of 
the respective species targeting 1500 bp upstream and 500 bp downstream of the specific genes 61. The resulting 
lists of DR binding sites were similarly compared between the species.

In Experiment 2, we performed interspecies comparison of stress (CUS/MDD) versus control effects using raw 
RNA-seq data counts mapped to human orthologues pooled in combined affective disorder groups (CUS + MDD) 
or in combined control group (animal control + healthy patients) prior to any differential analysis, aiming to 
achieve better inter-species data compliance (Fig. 1). Because all hypotheses in this experiment closely resembled 
each other (i.e., probing the effects of affective pathology on CNS transcriptome in vertebrates), we combined all 
RNA-seq data in one experiment, designing it as a study of affective pathology effects on human transcriptome 
orthologues in vertebrates. Briefly, all counts were mapped 1:1:1 to human orthologues using the  HomoloGene59 
database (http:// www. ncbi. nlm. nih. gov/ homol ogene), resulting in 10353 genes and 24 samples (n = 12) which 
were next assessed for stress (and MDD) vs. control group effects using the DESeq2 and GAGE analyses (p 
adjusted < 0.05).

Experiment 3 used cross-species comparison of stress/MDD vs. control samples using counts mapped to 
human orthologues in separate DE and GSEA analyses for each species, that were further compared using 
the meta-analysis (Fig. 1). Again, because hypotheses from DE and GSEA analyses in different species were 
similar (i.e., probing the effects of affective pathology on transcriptome in human orthologues), it was possible 
to compare different species using meta-analysis. Briefly, DESEq2 analysis was conducted for each species data 
separately, using only the genes successfully mapped 1:1:1 to human orthologues (similar to Experiment 2). The 
resulting 3 DESeq2 analyses were next meta-analyzed using the Fisher’s method (that utilizes one-sided p-values 
combination)57 and the metaRNASeq package in  R195. Significantly altered genes (Benjamini–Hochberg cor-
rection p adjusted value < 0.05), as assessed by meta-analyses, were further selected based on their consistent 
unidirectional expression changes across all three species. Overall, the Experiment 3 design closely resembled 
RNA-seq meta-analysis in other biological studies (e.g., salt stress–responsive genes and pathways in microalga 
Dunaliella196), hence supporting the efficiency of cross-species meta-analyses of orthologues expression to iden-
tify evolutionarily conserved “core” changes.

We also generated a human PPI network in the STRING database (https:// www. string- db. org/) for Homo sapi-
ens62 using TFBSs enriched in Experiment 1 and DE genes from Experiment 3, resulting in 74 proteins connected 
to any other protein, with the largest network consisting of 67 vertices. We used a minimal interaction score of 
0.15 and use all active interaction sources, except text-mining, to construct the network in the STRING database. 
The network was further processed in the CytoScape  software197 (https:// cytos cape. org/) and the  CytoHubba198 
packages to target ‘hub’ genes, using vertices’  degree63,  bottleneck64, and DMNC||MNC65 approaches. Among 
proteins and TFBSs ranked as top 10 hub vertices by any of these approaches, we excluded those showing different 
l2fc directions in meta-analysis, to focus only on conserved hubs that cause similar effects in all species studied.

The MC data in transcriptomic analyses is widely used in  biomedicine93–96. Here, we performed an interspe-
cies comparison of MC enrichment in stress/MDD versus control PPI networks using the OmicsNet (https:// 
www. omics net. ca/) 67 and STRING  databases62 from counts mapped to human orthologues in three different 
experiments for each species (10,353 proteins, resulting in the largest PPI network of 7933 proteins; Fig. 1). In 
the resultant PPI network, we identified all MCs using the Cytoscape plugin  MClique197, finding a total of 121219 
MCs (Supplementary Material 3). The majority (82%) of these MCs consisted of nodes (genes) that all originated 
from the same few ribosomal genes that were further excluded from analyses as non-specific, thus yielding 
21938 (18%) non-ribosomal MCs of interest (Fig. 7). Ribosomal MCs were identified as cliques containing S or 
L Ribosomal Proteins genes (RPS or RPL) as vertices. The final 21,938 non-ribosomal MCs were further analyzed 
as gene sets using GAGE for each species, comparing the bidirectional expression of MC in stress versus control.

Resulting DE MCs were further compared using a meta-analysis to identify MCs with conserved expression 
among species, like DE genes and enriched gene sets in Experiment 3. We then used all the genes composing MCs 
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that were significantly enriched in meta-analysis, to generate a single novel gene set (containing 253 genes) and, 
as a proof-of-concept, compared its expression changes as a whole using the GAGE approach in the individual 
species-specific (non-pooled) stress sample groups. Additionally, we also compared the expression of the same 
253-gene set in human PFC, in rat CUS + fluoxetine hippocampal , and in zebrafish CUS + fluoxetine whole-brain 
samples vs. their corresponding stress-free controls (Fig. 8 and Supplementary Table S21). To further process 
these data, we excluded from the set the genes with different expression directions in the species-specific groups, 
compared to their respective control groups. Finally, we built a PPI network for the remaining 45 genes (45 pro-
teins) and attempted to identify core pathology-related proteins using two additional approaches. One was similar 
to Experiment 3 techniques of graph analyses, identifying vertices  degree63,  bottleneck64, and DMNC||MNC65 
of the vertex. Another approach ranked all vertices using l2fc of each original group, taking top 10 over- and top 
10 under-expressed genes in each group, and then analyzed the lists of genes, identifying 6 genes that are stably 
highly over- or under-expressed across all 3 species. We further compared these gene lists for fluoxetine versus 
stress effects, identifying pronounced antidepressant effects on the expression of 5 of these genes, thus further 
corroborating our findings.

Analyses of all in vivo data in this study were performed online and offline without blinding the analysts 
to the treatments, since all animals and samples were included in analyses, data were analyzed in a fully unbi-
ased automated method, and the analysts had no ability to influence the results of the experiments. The study 
experimental design and its description here, as well as data analysis and presenting, adhered to the Animal 
Research: Reporting of In Vivo Experiments (ARRIVE) guidelines for reporting animal research and the Planning 
 Research199 and Experimental Procedures on Animals: Recommendations for Excellence (PREPARE) guidelines 
for planning animal research and  testing200.

The graph theory‑based analyses. The graph theory-based analyses of gene expression data were per-
formed using the Cytoscape software for biomolecular interaction networks construction and analyses version 
3.8.0197 (https:// cytos cape. org/). The PPI networks were constructed using the STRING (Search Tool for the 
Retrieval of Interacting Genes/Proteins)  database62 (https:// www. string- db. org/). The resultant PPI networks 
were analyzed by the Cytoscape application  cytoHubba198 to probe essential vertices/hubs in PPI networks for 
top 10-degree63 vertices, top 10  bottleneck64 vertices, or top 10 vertices by the Double Screening Scheme (DSS), 
combining Density of Maximum Neighborhood Component (DMNC) and Maximum Neighborhood Com-
ponent (MNC)198, as  in32. The degree of the vertex v was defined as the number of edges of vertex v, thus rep-
resenting the number of a protein’s connections to other  proteins63, similar  to32. The bottleneck vertices were 
determined using the betweenness centrality of the vertex, based on the measuring of the number of shortest 
passes going through the  vertex64, similar  to32. Bottleneck proteins likely represent essential ‘hubs’ in the network 
functioning as connectors bridge-like  proteins201. MNC of the vertex v was defined as a size of the maximum 
connected component of subnetwork N(v) constructed by vertices adjacent to v65, similar  to32. DMNC of a vertex 
v was defined as E/Nε where N is vertex number and E is the edge number of MNC(v), and ε is defined as 1.765. 
DSS was further calculated as follows: for n most possible essential proteins that were expected in the output 
(n is an empirical value), 2n top-ranked proteins were selected by DMNC  method65, similar  to32. The selected 
proteins were then ranked by the MNC values, selecting top n proteins for analyses. The DSS (DMNC||MNC) 
method was chosen here as an effective tool to identify essential proteins within molecular  networks65.

Ethics approval. The study does not include any direct animal or human experimentation and uses pre-
viously published  datasets32,176 from animal experiments approved by the Institutional animal care and use 
committee (IACUC) of St. Petersburg State University and/or the Institute of Experimental animal of Almazov 
National Medical Research Center, that fully adhered to the National and Institutional guidelines and regula-
tions on animal experimentation, as well as to the 3Rs principles of humane animal experimentation. The human 
data used here resulted from publicly available datasets in published studies (approved by the research ethics 
boards of McGill University and UT Southwestern), with necessary written informed consents obtained from 
all  participants177.

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding authors 
upon reasonable request.
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