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Predicting walking‑to‑work 
using street‑level  imagery 
and deep learning in seven 
Canadian cities
Dany Doiron1*, Eleanor M. Setton2, Jeffrey R. Brook3, Yan Kestens4, Gavin R. McCormack5, 
Meghan Winters6, Mahdi Shooshtari2, Sajjad Azami7 & Daniel Fuller8,9

New ‘big data’ streams such as street‑level imagery are offering unprecedented possibilities for 
developing health‑relevant data on the urban environment. Urban environmental features derived 
from street‑level imagery have been used to assess pedestrian‑friendly neighbourhood design and to 
predict active commuting, but few such studies have been conducted in Canada. Using 1.15 million 
Google Street View (GSV) images in seven Canadian cities, we applied image segmentation and object 
detection computer vision methods to extract data on persons, bicycles, buildings, sidewalks, open 
sky (without trees or buildings), and vegetation at postal codes. The associations between urban 
features and walk‑to‑work rates obtained from the Canadian Census were assessed. We also assessed 
how GSV‑derived urban features perform in predicting walk‑to‑work rates relative to more widely used 
walkability measures. Results showed that features derived from street‑level images are better able 
to predict the percent of people walking to work as their primary mode of transportation compared 
to data derived from traditional walkability metrics. Given the increasing coverage of street‑level 
imagery around the world, there is considerable potential for machine learning and computer vision 
to help researchers study patterns of active transportation and other health‑related behaviours and 
exposures.

Street-level imagery is becoming ubiquitous, via proprietary sources such as Google Street View (GSV) and 
openly via crowd-sourcing efforts like Open Street Cam. These new ‘big data’ streams are offering unprecedented 
possibilities for developing health-relevant data on the urban  environment1,2. With images extracted from GSV or 
other similar sources, deep learning algorithms can be trained to identify features within the urban environment 
such as vehicles, bicycles, buildings, vegetation, people, and sidewalks, which can themselves be turned into 
geospatial data. Such data can then be used to assess spatial variations in health-relevant urban characteristics 
such as the presence of sidewalks and parks, or neighbourhood greenness, or to predict other exposures such as 
air pollution, noise, and socio-economic status.

Applying deep learning algorithms to street-level imagery is an increasingly popular method to conduct 
neighbourhood environment audits or to derive exposure variables used in health research. An early focus of 
these emerging tools has been to make use of street-level imagery to characterize micro-scale urban environments 
conducive to active commuting and physical  activity3,4. Street-level imagery has been shown to be an effective 
data source for auditing walkable  streets5, predicting pedestrian volumes and neighbourhood  walkability4, and 
identifying changes to the built environment such as implementation of traffic calming  measures6. International 
studies have shown associations of urban features extracted from street-level imagery with walking and cycling 
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patterns, as well as health  indicators7–10. Few studies however have explored the relationship between features 
derived from street-level imagery and active commuting in  Canada11, and no study to date has examined these 
relationship in multiple cities across a country with the diversity of Canada. Walking and cycling patterns in 
Canadian cities may be different compared to previously examined locations in the  UK9, and the  USA10, because 
of differing built environment characteristics, topography, and weather.

This manuscript has two objectives. First, to examine the associations between features of the urban 
environment derived from street-level images and walking-to-work rates from the Canadian Census. Second, 
to compare how GSV-derived features perform in predicting walk-to-work rates relative to more widely used 
walkability  measures12,13. We hypothesize that neighbourhood features derived from street-level imagery 
using deep learning algorithms will be associated with spatial patterns of commuting by walking and that 
their predictive ability is comparable to area-level walkability metrics. Assessing these relationships can help 
inform how readily available imagery data can be used to derive geographically consistent metrics of the urban 
environment that are relevant to health.

Materials and methods
Study areas. Our study area included data from seven large cities from across Canada: Vancouver, 
Edmonton, Calgary, Winnipeg, Toronto, Montreal and Halifax. Study cities were selected to provide a good 
representation of Canadian urban environments in terms of population/size, geographic location, climate, city 
age, and urban form diversity. Municipal boundaries for the year 2015 were determined using the DMTI Spatial 
Inc. (Desktop Mapping Technologies Inc.) Municipal Amalgamation File (MAF)14.

Urban features extracted from GSV images. The most recent Google Street View (GSV) images 
available between 2009 and 2017 were extracted by the Canadian Urban Environmental Health Research 
Consortium (CANUE)15 for each postal code within seven Canadian cities. Single-Link Indicators (SLI) from 
DMTI Spatial Inc. postal code locations circa 2015 were employed to identify the exact location at which to 
extract GSV images. For each postal code, the SLI is the geographic coordinate that best represents the location 
where the majority of the population lives within a postal code zone. In Canadian urban areas, postal codes 
(including residential and commercial addresses) typically correspond to one side of a city block or even a single 
building in densely populated areas. We extracted images at street locations closest to each postal code SLI x, y 
coordinate. For a given location, GSV captures 12 images. This includes six horizontal images that form a 360 
degree view at that location and six images taken at a 60 degrees angle looking upwards, to create a 360 degree 
view of taller buildings. For this project, we only made use of the 6 horizontal images to avoid double counting 
of features since horizonal and 60 degree angle images overlap, and given that most of the features of primary 
importance are only visible at street level. The capture date of each image was also collected.

Two deep learning methods were used to extract urban features (e.g. persons, bicycles, buildings) from 
street-level images: (i) image segmentation (IS), which extracts the percent pixel coverage of features in an image, 
and (ii) object detection (OD), which extracts counts of features in an image. Both of these methods have been 
used in the past for research on neighbourhood design and built environment. Nguyen and colleagues made 
use of IS algorthims to quantify the level of street greenness and OD algorithms to identify the pressence of 
crosswalks and determine building types (single detached house vs other) to examine relationships with obesity 
and  diabetes7 and a number of other health  outcomes8 across the USA. Nagata et al. made use of IS in order 
to derive different urban form factors that can predict older adult’s leisure walking behaviour in  Tokyo16. IS 
algorithms were also used by Yin and Wang to quantify the proportion of sky in GSV images, which was used 
to show inverse associations with pedestian counts in Buffalo, New  York16. Li et al.17 and Cai et al.18 employed 
IS to estimated street-level greenness. Finally, OD methods have been shown to be a reliable approach to detect 
and count pedestrians with reasonable  accuracy4.

We used freely available and powerful machine learning algorithms along with pre-trained datasets to 
derive urban features from GSV images. Pyramid scene parsing network (PSPNet)19 IS algorithms pre-trained 
using labelled images from the CityScapes  dataset20 were employed to extract percent pixel coverage of features 
including persons, bicycles, buildings, sidewalks, open sky (without trees or buildings), and vegetation within 
GSV images corresponding to each postal code. You Only Look Once (YOLO) version  321 OD algorithms pre-
trained with the Common Object in Context (COCO)  datasets22 were applied to extract counts of persons, 
bicycles and buildings for the same locations. Both PSPNet and YOLO models are well-documented and relatively 
easy to implement. In IS models, we made use of the six GSV images that look out horizontally for a given SLI x, y 
location (Fig. 1), while only three horizontal images (i.e. every second image) were used in OD models to reduce 
double-counting of objects. Images looking upwards at a 60 degree angle were not used in our analyses. We did 
not evaluate the accuracy of PSPnet or YOLO via comparison with our own ground truth images; however, 
PSPNet is reported to segment CityScape images with 80% accuracy, as indicated by the mean intersection over 
union (MIoU)17, and YOLO version 3 has a mean object precision (MaP) score of 58 when employed on the 
COCO image set, indicating that for detected objects (threshold set at 50% to confirm a positive object detection), 
the bounding box overlaps an average of 58% compared to ground truth bounding  boxes23.

In total nine features were calculated for each postal code. With the IS method we calculated the number of 
pixels in each set of six images for: people [Person IS], bicycles [Bicycle IS], buildings [Building IS], sidewalks 
[Sidewalk IS], sky [Sky IS], and vegetation [Vegetation IS]. With the OD method, we used three images to 
calculate the count of: people [Person OD], bicycles [Bicycle OD], and buildings [Building OD]. In addition to 
data computed at the postal code SLI x, y coordinates, we calculated average percent pixel coverage and counts 
of each feature within all neighbouring postal codes in eight buffers of 250-m increments. Moving averages of 
each of the nine features listed above were therefore calculated in all postal codes x, y locations within buffer 
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distances of 250, 500, 750, 1000, 1250, 1500, 1750 and 2000 m from the original observation. The distributions 
of Sky IS and Vegetation IS metrics were normally distributed. All other GSV image-derived metrics showed a 
right-skewed distribution. In order to assess correlations with walk commuting, we therefore log-transformed 
each remaining seven metric using log(x + 1) given the presence of zero values.

Walkability data. The Canadian Active Living Environments (Can-ALE)  dataset12,24 was used to compare 
the performance of features derived from street-level imagery in predicting walking commuting rates with 
that of pan-Canadian neighbourhood active living measures. The Can-ALE database, which is created using 
Geographic Information System (GIS)-based approaches, includes measures of intersection density, dwelling 
density, points of interest, and transit stops, which are features of the urban environment shown to be related 
to active transportation and physical activity patterns of Canadians. Further details on Can-ALE can be found 
 elsewhere25. Each feature was calculated within one-kilometer circular buffers based on centroids of 2016 
Canadian Census Dissemination Areas (DA) and calculated as z-scores. Dissemination Areas are geographic 
units composed of one or more adjacent city postal codes and the smallest geographic area for which all Canadian 
Census data are distributed. To allow analysis with features extracted from street-level images at the postal code, 
all single link postal code locations within a DA were assigned the same Can-ALE values.

Commuting data. Walk-to-work rates were obtained from the 2016 Canadian Census. They correspond to 
the percentage of the working population using walking as their primary mode of transportation to reach their 
work destination. Statistics Canada reports census data at the DA level, which represents an average population 
of 400 to 700 individuals. As with Can-ALE data, we assigned walk commuting shares to all postal codes within 
each DA. There was a mean of 30 (SD = 47) postal codes per DA when considering data for all seven cities. Due 
to a strong right-skewed distribution, the walk-to-work rate variable was log-transformed for all postal codes in 
which some individuals reported walking to work (i.e. walk-to-work rate > 0%). DAs reporting zero percent of 
the population walking as the primary mode of transportation to work were not included in our analyses.

Season. The image capture date was used to examine whether the season in which the image was taken 
modified the association between the percentage of people walking to work and the GSV features. We define 
seasons as winter (January, February, and March), spring (April, May, and June), summer (July, August, and 
September), and fall (October, November, and December).

Statistical analysis. Statistical analyses proceeded in three main steps. First, for all seven cities combined, 
Pearson correlation coefficients were calculated for the log-transformed walk-to-work rates and all nine GSV 
features calculated (i) at postal code SLI x, y location and, (ii) for averages of GSV features within the eight 
predefined 250-m buffer distances from postal codes. Features with Pearson correlations of > 0.45 or < − 0.45 
with walk-to-work data across all seven cities were subsequently used in regression models. For GSV features 
with strong correlations with log-transformed walk-to-work in analyses combining all cities, we also calculated 
Pearson correlations for each city separately in secondary analyses. Further given seasonal variations in the 
Canadian climate and its potential impact on the number ‘Person’ features we might see in GSV images 
throughout a year, calculations of Pearson correlations for log transformed ‘Person’ features with log walk-to-
work rates were stratified by season.

Second, to assess the relative importance of GSV features and Can-ALE metrics in explained variance of log-
transformed walk-to-work rates, we used linear regression and, given the structure of the data (mean of 30 postal 
codes per DA), Bayesian random intercept models implemented using R packages lme4 and brms. The model for 
GSV features included a fixed effect for city along with ‘Person’ OD, ‘Building’ IS and ‘Sky’ IS, and their squared 
terms to account for potential non-linear  associations26. The model for Can-ALE metrics included a city fixed 
effect variable, and street intersections, transit stops, dwellings and points of interests. In both models, variance 
explained of each predictor in log-transformed walk-to-work rates was estimated using  R2 and 95% confidence 
intervals by sampling with replacement using 1000 bootstrap replicates. Individual and overall variance explained 
in log-transformed walk-to-work rates by the three GSV features and four Can-ALE metrics were calculated. 
Linear regressions with bootstrapping were conducted for all cities combined and for each city separately.

Figure 1.  Example of six horizontal Google Street View images for a given postal code location*. *The image 
segmentation algorithm used all images (images 1 to 6) while the object detection algorithm used every second 
image (images 1, 3, and 5) to avoid counting the car twice. Images extracted from Google Street View:  © 2002 
Google.
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Results
Table 1 presents descriptive statistics for the seven cities used in our analyses. The total number of postal codes 
in each city ranged from 11 410 (Halifax) to 85 536 (Toronto). Between 63.5% (Edmonton) and 73.7% (Halifax) 
of postal codes included some individuals reporting walking to work (e.g., non-zero walking to work mode 
share). For these postal codes, we downloaded a total of 1.15 million Google Street View images to be used in 
our analyses. City-specific counts of images ranged from 50 448 images in the city of Halifax to 341 772 images 
in the city of Toronto. Finally, the walk-to-work rate amongst postal codes with > 0% walking commuters ranged 
from 6.5% (Edmonton) to 13.5% (Halifax).

Figure 2 shows Pearson correlation coefficients for the log-transformed walk-to-work rates and features 
derived from street-level images at postal code locations and averaged within 250-m buffer increments. For 
all features, the strength of correlations with log walk-to-work rates increased as values were averaged within 
increasing buffer sizes, up to 1500 m. Within 1500 m, Pearson correlation coefficients of > 0.45 or < − 0.45 were 
found for log ‘Person’ OD (R = 0.62) features, log ‘Building’ IS features (R = 0.46) and ‘Sky’ IS features (R = − 0.59) 
(Fig. 3). These three features were included in subsequent regression models. In city-specific correlation analyses 
for these pre-selected variables, considerable variation in correlation coefficients were found across the seven 
cities, with Pearson R ranging from 0.50 to 0.82 for log ‘Person’ OD (see Fig. S1 in Supplementary information 
file), 0.04 to 0.68 for log ‘Building’ IS (Fig. S2), and from -0.32 to -0.79 for Sky IS features (Fig. S3). When 
calculating correlations for log walk-to-work rates with log ‘Person’ features identified using object detection 
algorithms by season (Fig. S4), stronger correlations were seen for images taken in the winter (R = 0.83) compared 
to images taken in the other seasons (spring R = 0.65; summer R = 0.60; fall R = 0.63).

Table 2 shows the associations between individual features and log-transformed walking rates. The results of 
the linear models and Bayesian random intercept models are similar. All variables except ‘Building’ IS squared 
and ‘Sky’ IS squared were associated with log-transformed walking-to-work mode share. ‘Person’ OD had the 
strongest association with log-transformed walking rates in both linear and Bayesian random intercept models.

The variance explained in log-transformed walking rates by GSV features and Can-ALE metrics are presented 
in Table 3. ‘Person’ OD variables accounted for 14.4% of the variation in the proportion of individuals reporting 
walking to work, while ‘Building’ IS and ‘Sky’ IS accounted for an additional 11.9% and 19.7% of the variation 
in walk-to-work rates, respectively. In total, GSV-derived urban features with city-level adjustment accounted 
for 48.8% of the variation in walk-to-work rates for postal codes where at least some individuals walked to work 
(Table 3). In comparison, the combination of the city fixed effect variable, and Can-ALE metrics accounted for 
39.8% of the variation in walk-to-work rates (Table 3). In city-specific analyses there was a considerable range in 
variance explained in log-transformed walking rates by both GSV features (Table S1a–g) and Can-ALE features 
(Table S2a–g). The cumulative adjusted  R2 ranged from 41.3 to 76.6 for GSV features (Table S1a–g) and from 
38.8 to 68.5 for Can-ALE metrics (Table S2a–g).

Discussion
We examined the associations between features of the urban environment derived from street-level images using 
deep learning algorithms and walk-to-work rates obtained from the Canadian Census. We also compared the 
predictive ability of GSV features with that of a pan-Canadian dataset of metrics favoring active transportation. 
Our analyses showed that features derived from GSV images using deep learning algorithms can be used to 
explain variations in active transportation rates in areas of Canadian cities where commuting to work by walking 
is known to occur. When combined, ‘Person’, ‘Building’, and ‘Sky’ features derived using widely-available training 
datasets explained 48.8% of variations in walk-to-work rates in the seven Canadian cities included in our analyses, 
within postal codes in which at least some individuals reported commuting by walking. Together, dwelling 
density, transit stop density, street intersection density and points of interests, obtained from the Can-ALE 
dataset, explained 39.8% of walk-to-work variation. While the predictive power of GSV features relative to Can-
ALE metrics was consistently stronger, there were considerable differences in variance explained of walk-to-work 
rates across the seven cities for each set of factors.

Table 1.  Population, area, population density, number of census tracts, and number of street-level images.

Vancouver Edmonton Calgary Winnipeg Toronto Montreal Halifax

Total population 2,463,431 1,321,426 1,392,609 778,489 5,928,040 4,098,927 403,390

Land area  (km2) 2883 9439 5110 5307 5906 4604 5496

Population density 
(persons/km2) 854.6 140.0 272.5 146.7 1 003.8 890.2 73.4

Total number of 
dissemination areas 3430 1599 1721 1179 7368 6198 577

Total number of postal 
codes 59,800 31,684 29,238 17,868 85,536 46,214 11,410

Number of postal codes 
with > 0% walk-to-work 
rates (% of total)

41,580 (69.5) 20,126 (63.5) 20,338 (69.6) 12,542 (70.2) 56,962 (66.7) 31,625 (68.4) 8408 (73.7)

Number of street level 
images used 249,480 120,756 122,028 75,252 341,772 189,750 50,448

Walk-to-work (%) 8.43 6.51 8.07 8.34 7.53 8.06 13.5
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Figure 2.  Pearson correlation coefficients for log-transformed walk-to-work rate and pixel coverage (IS) 
and counts (OD) of different features derived from GSV images within different buffer distances from postal 
codes*. *Walk-to-work rates are for postal codes with > 0% reported walk commuting. Horizontal dashed lines 
show > 0.45 and − 0.45 correlation thresholds used to identify variables for inclusion in subsequent regression 
analyses.

Figure 3.  Linear relationships of GSV features within 1500 m from postal code with log-transformed walk-to-
work rates.
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This research aligns with findings of previous studies conducted in other contexts. In a study conducted in 
the UK, Goel et al. (2018) found a moderate correlation between GSV images with pedestrians and walking for 
transportation in the past month (R = 0.46) and a weaker correlation for walking for any purpose in the past 
month (R = 0.3)9. The authors also reported a moderate correlation between the commute share of walking 
and GSV image observations of pedestrians (R = 0.43). In our study, we found correlations of R = 0.62 between 
the logged proportion of commuting done by walking and ‘Person’ features from GSV identified using object 
detection algorithms. Differences between the results could be partially explained by differences in the sampling 
of images and units of analysis. Goel et al. (2018) used 2000 images selected in 34 Primary Urban Areas in the 
UK, compared to 1.15 million images in 7 cities in our analyses. It is plausible that correlations would be weaker 
between a smaller sample of measures within a larger spatial unit of analysis. Broader physical differences 
between cities in Canada compared to those in the UK could also explain divergence in results. Associations 
between urban features and the proportion of people walking to work were consistent across cities in our study, 
although the strength of the associations varied between cities, in both correlation and linear regressions. Our 
results are consistent with previous research that has shown city  specificity7,8, and suggests that transferability 
of models used to predict walking rates from one city to the other in Canada and internationally generalizability 
might be limited. Exploring the performance of other GSV-derived urban features in other contexts is warranted.

While a number of different features extracted from both image segmentation and object detection models 
have been used in the literature, it is still unclear which features are consistently associated with walking or 
physical activity. Using Google Street View images from the City of Buffalo, Yin et al. (2016) found positive 

Table 2.  Associations between individual GSV features and log-transformed walk-to-work rates, all cities 
combined. *Models included a fixed effect for each city. OD object detection, IS image segmentation, and CrI 
credible interval.

Predictors

Linear model* Bayesian random intercepts*

Estimates (95% CrI) Estimates (95% CrI)

Person 1500 OD 0.44 (0.43 to 0.45) 0.44 (0.44 to 0.45)

Person 1500 OD*2 − 0.03 (− 0.03 to − 0.03) − 0.03 (− 0.03 to − 0.03)

Building 1500 IS − 0.01 (− 0.01 to − 0.01) − 0.01 (− 0.01 to − 0.01)

Building 1500 IS*2 0.00 (− 0.00 to − 0.00) 0.00 (− 0.00 to − 0.00)

Sky 1500 IS 0.02 (0.02 to 0.03) 0.02 (0.02 to 0.03)

Sky 1500 IS*2 0.00 (− 0.00 to − 0.00) 0.00 (− 0.00 to − 0.00)

Random effects

σ2 0.07

τ00 0.00 DA_uid

ICC 0

N 14,330 DA_uid

Observations 191,581 191,581

R2/R2 adjusted 0.488/0.488 0.488/0.488

Table 3.  Relative importance GSV features, Can-ALE metrics for log-transformed walk-to-work rates, all 
cities combined. The  R2 was calculated from linear regression models that included the variables indicated. 
The 95% confidence intervals of the  R2 increments were estimated by sampling with replacement using 1000 
bootstrap replicates. OD object detection, IS image segmentation, and CI confidence interval.

Relative importance, adjusted  R2 (95% CI)

Percent of variation in walk-to-work rates explained by GSV features

City 2.8 (2.7, 3.0)

Person OD + Person  OD2 14.4 (14.2, 14.6)

Building IS + Building  IS2 11.9 (11.7, 12.1)

Sky IS + Sky  IS2 19.7 (19.5, 19.9)

All factors combined 48.8 (48.1, 49.6)

Percent of variation in walk-to-work rates explained by Can-ALE metrics

City 3.6 (3.4, 3.7)

Street intersections 6.3 (6.2, 6.4)

Transit stops 9.3 (9.1, 9.5)

Dwellings 9.5 (9.3, 9.6)

Points of interest 11.2 (11.0, 11.3)

All factors combined 39.8 (39.1, 40.4)
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associations between the proportion of sky extracted using machine learning and pedestrian  counts16. Nguyen 
et al. (2021) used 31 M images from 2196 counties in the United States to show that the presence of non-single-
family homes and single-lane roads was associated with greater physical  inactivity8. Nguyen et al. (2018) used 
430 000 images from Salt Lake City, Chicago and Charleston and showed that green streets, crosswalks and 
commercial buildings/apartments had relative obesity prevalence that were 25%-28% lower than individuals 
living in zip codes with the fewer of these urban  features7. In Hong Kong, pixel coverage of street-level greenery 
extracted from Google Street View images was also associated with higher odds of walking and total walking 
 time27. In our study, when combining data for seven cities strong correlations were seen for ‘People’, ‘Building’ 
and ‘sky’ features. However, the performance of each of these features in predicting walking varied considerably 
in city-specific analyses. Finally, for all cities combined, neither vegetation nor sidewalk pixel coverage were 
strongly correlated with walk commuting.

Our study has a number of strengths. By applying computer vision and deep learning techniques on a very 
large number of images obtained from GSV and multiple cities, we were able to assess predictors of walking 
to work rates across large geographic areas in an automated manner. As highlighted by previous work in this 
field, our results provide evidence of the potential for such technologies to assess active transportation rates in 
a rapid and cost-effective manner. Investigating these relationships across a diverse set of cities also enabled us 
to assess the generalizability of findings in different settings. The machine learning algorithms used in our study 
are freely available, have good accuracy, are well documented, and are relatively easy to implement. Training 
datasets employed for this project are also freely available and have been used elsewhere for similar purposes. 
The methods used in this study therefore facilitate replication of our work by other urban health researchers for 
other cities in Canada, and internationally.

There are a number of limitations to this work. First, because GSV images were obtained at the postal code 
level and walk-to-work rates and Can-ALE factors were obtained at the DA level, all postal codes within each 
DA were assigned the same walk-to-work and Can-ALE values. Second, spatial visualization and geostatistical 
analyses were not performed. We can therefore not link our results to geographic locations. Such analyses should 
be explored in future work ultimately to gain insight into patterns in walk-to-work that could inform future 
applications of imagery. Third, the outcome variable in our analysis is the percent of the population walking 
to work as their primary mode of transportation and was limited to areas where at least some people reported 
walking to work. Our study therefore did not allow us to infer relationships between GSV features and walking 
for reasons other than commuting to work, or for areas where no individuals walk to work. Getting a better sense 
of which urban features contribute to active living would require testing how features extracted from street-level 
images perform in predicting other purposes for walking, including errands or leisure. Unfortunately, Canada 
does not have a national travel survey, and thus such work could only be done where there are regional or 
municipal surveys with detailed information on active transportation behaviour broken down by age or other 
demographic variables, and ultimately, information that is relevant to physical activity levels associated with 
utilitarian and leisure-related transportation. Further, and as mentioned above, our methods for image detection 
can be used in other cities internationally, which would provide insights on the generalizability of associations 
in urban contexts beyond these seven cities. Finally, the use of street-level images to evaluate walking behaviour 
is limited by the types of features that can be captured. Many factors that might support walking behaviour (e.g., 
perceived safety, motor vehicle speeds) cannot be accurately detected by deep learning. Novel deep learning 
methods used to automatically detect and classify community amenities such retail stores from street-view 
imagery should also be explored to improve prediction of walking from GSV  images28.

Conclusion
This paper examined associations between walk commuting and features derived from image segmentation and 
object detection computer vision methods applied to Google street-level images in seven Canadian cities. Results 
showed that features derived from street-level images are better able to predict the percent of people walking to 
work as their primary mode of transportation compared to data derived from traditional walkability metrics such 
as Can-ALE. The results also showed city-level variations in associations between urban features and walk-to-
work mode share. Given the increasing coverage of street-level imagery around the world, there is considerable 
potential for machine learning and computer vision to help researchers study patterns of active transportation 
and other health-related behaviours and exposures. Additional studies in other cities should be pursued to assess 
the feasibility of using GSV features derived from machine learning to estimate environmental exposures and 
health related behaviours such as active transportation in an automated and standardized manner. Successful 
implementation of such novel approaches to characterize the urban environment in different geographical 
contexts has considerable potential to lead to harmonized environmental metrics that can be used for health 
studies and for surveillance purposes such as tracking trends and comparing different geographic areas in terms 
of urban environment characteristics, and for epidemiological research. This information may ultimately direct 
planners and local governments towards modifiable features in the urban environment that favourably influence 
physical activity and other health-related behaviours and exposures in the population.

Data availability
The GSV images underlying the results presented in the study are available via Google’s Street View Static API 
(see: https:// devel opers. google. com/ maps/ docum entat ion/ stree tview). Canadian Active Living Environments 
(Can-ALE) data are available for download from the Canadian Urban Environmental Health Research 
Consortium (CANUE) data portal at https:// canue data. ca/.

https://developers.google.com/maps/documentation/streetview
https://canuedata.ca/
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