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Predicting 180‑day mortality 
for women with ovarian 
cancer using machine learning 
and patient‑reported outcome data
Chris J. Sidey‑Gibbons 1*, Charlotte Sun 2, Amy Schneider 2, Sheng‑Chieh Lu 1, Karen Lu 2, 
Alexi Wright 3,4 & Larissa Meyer 2

Contrary to national guidelines, women with ovarian cancer often receive treatment at the end of 
life, potentially due to the difficulty in accurately estimating prognosis. We trained machine learning 
algorithms to guide prognosis by predicting 180‑day mortality for women with ovarian cancer 
using patient‑reported outcomes (PRO) data. We collected data from a single academic cancer 
institution in the United States. Women completed biopsychosocial PRO measures every 90 days. 
We randomly partitioned our dataset into training and testing samples. We used synthetic minority 
oversampling to reduce class imbalance in the training dataset. We fitted training data to six machine 
learning algorithms and combined their classifications on the testing dataset into an unweighted 
voting ensemble. We assessed each algorithm’s accuracy, sensitivity, specificity, and area under the 
receiver operating characteristic curve (AUROC) using testing data. We recruited 245 patients who 
completed 1319 PRO assessments. The final voting ensemble produced state‑of‑the‑art results on the 
task of predicting 180‑day mortality for ovarian cancer paitents (Accuracy = 0.79, Sensitivity = 0.71, 
Specificity = 0.80, AUROC = 0.76). The algorithm correctly identified 25 of the 35 women in the testing 
dataset who died within 180 days of assessment. Machine learning algorithms trained using PRO 
data offer encouraging performance in predicting whether a woman with ovarian cancer will die 
within 180 days. This model could be used to drive data‑driven end‑of‑life care and address current 
shortcomings in care delivery. Our model demonstrates the potential of biopsychosocial PROM 
information to make substantial contributions to oncology prediction modeling. This model could 
inform clinical decision‑making Future research is needed to validate these findings in a larger, more 
diverse sample.

Ovarian cancer is the most common cause of death for patients with gynecologic cancers in the United States, 
and it is responsible for 5% of cancer-related deaths in women  overall1. More than 70% of patients with ovarian 
cancer are diagnosed with late-stage disease due to ineffective  screening2. While nearly half of women diagnosed 
with ovarian cancer survive five years after diagnosis (47%), only 29% of those diagnosed with late-stage disease 
live that  long3.

Despite initial response to chemotherapy, most patients with ovarian cancer experience disease recurrence and 
eventually develop chemoresistance to multiple lines of  therapy2. Treatment for recurrent ovarian cancer seeks 
to maximize survival and quality of life (QoL). While cure rates have not improved significantly in recent years, 
there has been a notable prolongation of survival through the careful sequential use of  drugs4. Many treatments 
can be associated with painful and distressing side effects, including neuropathy, mouth sores, nausea, vomiting, 
and fatigue which can severely reduce patient  QoL4. For women with recurrent disease, chemotherapy inevitably 
becomes palliative rather than curative. There are often genuine tradeoffs between attempts to prolong survival 
and reduce symptoms while maintaining quality of life (QoL)4.

OPEN

1Section of Patient-Centered Analytics, Department of Symptom Research, University of Texas MD Anderson 
Cancer Center, Houston, USA. 2Department of Gynecologic Oncology and Reproductive Medicine, University 
of Texas MD Anderson Cancer Center, Houston, USA. 3Department of Medical Oncology, Dana Farber Cancer 
Institute, Boston, USA. 4Department of Medicine, Harvard Medical School, Boston, USA. *email: cgibbons@
Mdanderson.org

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-22614-1&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:21269  | https://doi.org/10.1038/s41598-022-22614-1

www.nature.com/scientificreports/

Although national guidelines recommend that intensive, hospital-based care be avoided at the end of life, 
40–60% of women with recurrent ovarian cancer receive aggressive care near  death5–9. Failure to meet guidelines 
for end-of-life (EoL) care reduces patient quality of  life10. There is growing evidence that high-cost, high-intensity 
treatments delivered at the EoL are not associated with improved quality of life, quality of care, or medical 
 outcomes11,12.

Research has shown that oncologists’ tendency to overestimate survival drives, at least in part, the under-
utilization of existing EoL  services13. Christakiset and colleagues demonstrated that oncologists overestimate 
patient prognoses by a factor of five and are even less accurate when they have longstanding relationships with 
patients or frequent visits—both of which are true for ovarian  cancer11. There is a critical need to support clini-
cal decision-making by developing prediction tools that can reliably identify when a woman is nearing the EoL. 
These tools could empower clinicians and patients with the timely information needed to help patients make 
medical decisions congruent with their informed preferences.

Patient-reported outcome measures (PROMs) are standardized tools that allow patients to report on their 
wellbeing, health, and functioning. The data from PROMs is helpful to inform clinical practice as well as research 
and quality improvement  initiatives14,15. While PROMs are increasingly collected to inform clinical care; PRO 
data are not well represented in many EHR  systems16. Because PROMs can capture comprehensive indicators 
of patient health and wellbeing at frequent intervals and with high accuracy, we hypothesize that PRO data may 
be beneficial for developing robust prediction tools.

In this manuscript, we attempt to create a solution to the issue of poor prognostication around the end-of-life 
by using longitudinal PRO data to develop a novel ML algorithm to accurately and sensitively predict transition 
to end-of-life for women with ovarian cancer.

Methods
We recruited patients from a single large academic cancer institution in the United States. After study enrollment, 
we collected baseline assessments were using electronic forms administered through REDCap electronic data 
capture  software17. Thereafter, PROMS were administered longitudinally every 90 days until death or discharge 
to hospice. All participants provided written informed consent. Ethical approval was provided by the MD Ander-
son Institutional Review Board and all research was conducted in accordance with the Declaration of Helsinki.

We included six PROMs in our data collection, which measured symptom severity and interference (MDASI-
OC)17, health status (EQ-5D, depression, and anxiety, using the CESD and GAD-7)18,19, and health-related quality 
of life (FACT-OC)20. A list of measure and their assessment time points is shown in Table 1.

International guidelines were used to inform our algorithm development  protocol21,22. We have used these 
techniques in prior  research23–25. We used the Prediction Model Study Risk of Bias Assessment Tool (PROBAST) 
to help ensure the generalizability of our  models26. Data were cleaned, centered, and  normalized27,28. We created 
variables to represent the change in PROM scores between the current and baseline assessments. The entire 
dataset was randomly partitioned with a 2:1 ratio into training and testing datasets with stratification around 
the outcome variable to ensure equal proportions of events to non-events in both datasets. We used k-means 
Synthetic Minority Oversampling Technique (SMOTE) to oversample the cases within the minority  class29,30. This 
approach has been shown to improve the performance of algorithms in class imbalanced  datasets31,32. Creating 
synthetic data is associated with overfitting risk, which we mitigated using feature selection, cross-validation, 
and independent testing techniques discussed below. We did not apply SMOTE to the testing dataset. Other 
studies predicting discharge mortality following acute ischemic stroke have successfully utilized oversampling 
to create a 1:1 ratio of classes in their previously imbalanced training  dataset33.

Missing data were imputed using multiple chained equations (MICE); fewer than 5% of data points were 
missing and deemed missing at  random34. We did not impute data for the outcome variable.

Outcome variable and performance metrics. Death within 180 days of an assessment was the pre-
dicted outcome variable. We reached a consensus that this time point was suitable for signaling a transition to 
the EoL and prompting productive EoL conversations. We decided that sensitivity, the ability to correctly iden-
tify women who will die within 180-days of assessment, was a key performance metric alongside area under the 
receiver operating characteristics curve (AUROC).

ML models. We evaluated seven ML algorithms. We have experience using each of these  models23,35,36. We 
have found that by combining several tools, it is possible to assess the relative strengths of the models in terms 

Table 1.  Study domains, measures, and assessment frequency.

Domain Measure Frequency

Demographic information Baseline

Symptoms MDASI-OC Baseline, 90 days

Depression CESD-20 Baseline, 90 days

Anxiety GAD-7 Baseline, 90 days

Health-related quality of life EQ5D-5L Baseline, 90 days

Cancer-related quality of life FACT-O Baseline, 90 days
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of their prediction power and gain unique insights into the variables driving model performance. We included 
algorithms that fall along a continuum from interpretable linear algorithms to more complex, and therefore less 
interpretable, nonlinear  algorithms23.

Logistic regression with elastic net regression (GLM). We used elastic net regularization, which combines Ridge 
and Least Absolute Shrinkage and Selection Operation (LASSO)  techniques37,38. The hyperparameters were 
lambda (the degree of regularization) and alpha (the type of regularization where alpha = 1 is the LASSO and 0 
is the ridge penalty and values in between represent the elastic net penalty.

General additive model (GAM) with spline smoothing. The GAM algorithm provides a nonlinear extension to 
logistic regression, allowing us to model more complex relationships within the data. The hyperparameter was 
degrees of freedom.

Regression trees (tree). Regression trees create predictions by partitioning data into a series of decision nodes. 
The hyperparameters were the number of features to include and the maximum depth of the trees.

Gradient boosted trees (treeboost). Gradient boosting trees expand on the regression tree algorithm by creating 
multiple trees which are sequentially developed to reduce the error across the training set. The hyperparameters 
were the number of trees to include, the number of features, and the maximum depth of each tree.

Multivariate adaptive regression splines (MARS). The MARS algorithm can describe nonlinear interrelation-
ships between features and automatically select only the most relevant  features39. We evaluated hyperparameters, 
including number of prunes (the terms included in the final model) and the number of interactions allowed 
between variables.

Support vector machines (SVM). Support vector machines utilize complex feature space transformation in 
order to apply a hyperplane to separate the different  classes40. The utilization of the radial basis function allows 
complex nonlinear interactions to be  modeled23. We assessed both ’C’ (the penalty applied for each misclassified 
datapoint) and gamma (the curvature of the decision boundary) hyperparameters.

Neural networks (NN). Neural networks are designed to mimic the features of the mammalian  cortex41. They 
include an input layer, several hidden layers, and an output layer. Feature values are combined and modified 
using an activation function for complex nonlinearities within the data. The hyperparameters we assessed were 
the number of hidden layers and units within those layers.

We used tenfold cross-validation to develop models using the training  data42. For all models, hyperparameters 
were optimized utilizing a random grid  search43.

We combined the prediction from the individual algorithms described above into a final classification to 
derive our final predictions. We took the final classification, which most algorithms decided on. Numerous 
studies demonstrate that using an ensemble can reduce prediction  error44. Studies have shown combined pre-
processing (e.g., SMOTE) techniques and ensemble methods outperform preprocessing techniques alone on 
class imbalanced  data45.

We opted to assess discrete binary predictions (i.e., event/no event) rather than probabilistic predictions 
(e.g., 80% mortality risk) from our models for three reasons. First, we used algorithms that are known to per-
form well in binary classification tasks but have issues with both over- and under-confidence when predicting 
continuous probabilities, such as neural networks and support vector  machines46. Second, in our experience, 
calibration is negatively affected by oversampling. Third, combining poorly-calibrated probability predictions, 
rather than robust binary predictions, into an ensemble could reduce our predictions’ final performance rather 
than improve them.

Results
Baseline and clinical characteristics. We show the baseline patient demographic information in Table 2. 
Overall, the 243 participants completed 1319 assessments (median 5 per patient), and 143 assessments were 
completed within 180 days of a patient dying.

Training and testing of algorithms. The accuracy, sensitivity, specificity and AUROC for the seven algo-
rithms and the final ensemble are displayed in Table 3. Details of the final hyperparameters used for each model 
are available in the Supplementary Materials. Algorithms generally performed well across all performance met-
rics. Boosted trees displayed the highest accuracy (0.87) and specificity (0.94) but the poorest sensitivity (0.29). 
The neural network produced the highest sensitivity of 0.80, correctly identifying 25 of 35 women in the test 
dataset who died within 180-days of assessment. The confusion matrix for the final ensemble is shown in Table 4. 
The final ensemble had the most consistent performance across all metrics, with sensitivity = 0.71 and specific-
ity = 0.80.

The relative importance of the features in the model is shown in Fig. 1. The Figure demonstrates the impor-
tance of each variable within each model. The change in the FACT-O overall score was the most important 
variable in both the MARS and tree algorithm. The high representation of FACT subscales among the most 
important variables across algorithms demonstrates the value of HRQOL and psychosocial data in making 
mortality predictions.
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Table 2.  Baseline demographic characteristics of study participants.

Mean SD

Age 64 9

People in household 2 1

Marital status N %

Married/partnered 170 70

Divorced 33 14

Widowed 21 9

Seperated 1 0

Single, living alone 10 4

Never married 7 3

Race N %

American Indian/Alaskan native 1 0

Asian 8 3

Native Hawaiin or other Pacific Islander 1 0

Black or African American 21 9

White 203 84

Other 9 4

Education N %

Elementary or lower 7 3

High school non-graduate 32 13

High school graduate 56 23

College (1 year or more) 145 60

Income N %

Less than $25,000 20 10

$25,000–$34,999 9 4

$35,000–$49,999 28 13

$50,000–$74,999 19 9

Greater than $75,000 134 64

Table 3.  Final model performance.

Algorithm Acronym Accuracy Sensitivity Specificity AUROC

Generalized linear model GLM 0.76 0.69 0.77 0.73

General additive model GAM 0.80 0.62 0.87 0.71

Regression tree Tree 0.85 0.34 0.90 0.62

Boosted trees XGTree 0.87 0.29 0.94 0.61

Multivariate adaptive Regression splines MARS 0.85 0.60 0.88 0.74

Support vector machine SVM 0.68 0.74 0.67 0.71

Neural network nnet 0.73 0.80 0.73 0.76

Final ensemble 0.79 0.74 0.75 0.76

Table 4.  Confusion matrix for the final ensemble.

Patient 
died 
within 
90 days?

No Yes

Ensemble prediction of 90-day mortality
No 63 5

Yes 6 11
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Discussion
Machine learning algorithms trained using PROM data offer state-of-the-art performance in predicting whether 
a woman with ovarian cancer will die within 180 days. We present a novel approach which combines longitudinal 
PRO data with ML techniques to achieve high performance and, in so doing, we highlight the importance of 
patient-reported data in ML models of mortality.

At present, the gold standard for prognostication depends upon individual physicians’ assessments of clini-
cal factors (e.g., cancer stage, performance status, response to prior treatments) and more nuanced assessments 
(e.g., past experiences taking care of similar patients). However, the subjective nature of these assessments fre-
quently results in overly optimistic estimates that prevent physicians, patients, and family caregivers from making 
informed end-of-life decisions that are congruent with patients’  preferences47. Several predictive tools have been 
previously developed (e.g. the Palliative Performance Index, Palliative Prognostic Score). While these measures 
have been validated in patients with advanced cancer, they remain dependent upon subjective assessments of 
the patients’ functional status as a core component, without integrating any data from patients themselves. This 
subjective approach is error-prone and may underlie the fact that any women with ovarian cancer do not receive 
guideline-recommended care at the end of life.

Previous attempts have been made to develop end-of-life prediction models in oncology using EHR data. 
These studies have shown good overall performance on the task but have demonstrated very low sensitivity 
(< 0.30), indicating that the models were competent in predicting who would not die following an observation 
but, criticially, were not capable of reliable estimation of patients who would actually die. A systematic review 
conducted by our group found that most models developed to predict mortality for cancer patients suffered from 
high risk of bias relating to the manner in which the work was performed or  reported48.

Our findings extend prior work by incorporating PRO data into data-driven ML models designed to predict 
180-day mortality. Patient-reported outcome data has been widely praised for accurately reflecting patients’ 
health and experience. In the current study we were able to accurately track patients’ own reports of their symp-
toms, functioning, and QoL across multiple domains. These variables were highly prioritized by the ML models, 
with psychosocial elements of a patient’s life, including emotional and social wellbeing, being among the most 
informative variables in many models. Interestingly, these psychosocial features were often more informative 
than changes in participants’ physical health, symptom severity and interference, and functional status across 
models. These findings suggest that comprehensive patient-reported biopsychosocial information may provide 
key signal when deriving high-quality predictive models. Serious consideration should be given to collecting 
this data in initiatives seeking to develop similar models in other fields.

In terms of ML methodology, we endeavored to apply techniques that have been shown to improve the sen-
sitivity of models trained on class-imbalanced data in other fields, such as financial risk  prediction49–52. Without 
such techniques, the ML models are at risk of learning that they can achieve high accuracy across the entire data-
set without ever correctly identifying the minority class (i.e., patients who die within 180-days of assessment). We 
were able to correctly identify most patients who died within 180-days of assessment. This represents a substantial 
improvement in performance compared to other generic oncology mortality algorithms, which have reported 
sensitivities below 0.3053,54. One limitation of the techniques which we have used to deal with class imbalance 

Figure 1.  Variable importance plots.
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is that it is known to reduce a model’s calibration when presenting a continuous probability. With this in mind, 
we decided to present models that made categorical predictions. Research to reduce the negative interaction 
between oversampling techniques and calibration error is ongoing and future iteration of these models may be 
capable of reliably producing continuous risk  estimates55.

Though our models are highly sensitive, there were false positives. Our intention is that, in practice, this algo-
rithm will be used to identify women who may be at higher risk of death to begin discussions about end-of-life 
care. The algorithm may be beneficial given one criterion for hospice enrollment is an estimated life expectancy 
of six months or less. There is much work to be done on the communication of mortality prediction results to 
patients. Still, we hypothesize that it may be easier to communicate results from predictions that are known to 
sometimes overestimate mortality risk than those which are known to be especially specific.

In the current study, we elected to us an ensemble of ML tools to generate the most robust predictions. There 
are some advantages and disadvantages of this process. We sought to use the ensemble methodology as a way 
of improving prediction quality and balancing out peculiarities of the individual models. To this end, we were 
successful; the ensemble produced the best overall performance across multiple metrics. One disadvantage of 
this approach is the difficulty in interpretating model predictions. Our rationale for accepting this disadvantage 
was that the many of the features we were included were considered to be reflective of transition to end-of-life 
rather than formative (e.g., quality of life and mental health). The purpose of the algorithm is not to identify 
areas amenable to intervention but rather to create a reliable prediction which can inform the correct timing of 
shared decision-making and end-of-life planning.

We acknowledge that our study has limitations. We used data from a single specialty cancer center with a 
preponderance of well-educated, white, and affluent women within our sample. While our study successfully 
demonstrated the utility of PRO data in the development of ML algorithms to predict mortality in this popula-
tion and that our models appear to compare favorably to those developed using electronic health record (EHR) 
data alone; we were unable to make direct comparison between PRO and EHR data in our study. The addition 
of more diverse data including health record data may improve the quality of our predictions. Future studies are 
needed to evaluate the performance of these models in a more diverse group of women and compare the relative 
influence of different data sources, including PRO and EHR data on the development of high-quality models.

In conclusion, we demonstrate that state-of-the-art performance is achievable by developing ML models 
which utilize longitudinal PRO data as well as strategies for overcoming class imbalance. Our models performed 
especially well in terms osf sensitivity and were able to correctly identify most women who would die within 180-
days of assessment. Adopting such models into clinical practice can inform end-of-life clinical decision making 
and improve utilization of guideline-recommended EoL services, including palliative care.

Data availability
The datasets analysed during the current study are not publicly available due to the inclusion of identifiable infor-
mation but de-identified data required for the completion of specific analyses can be made available upon request.
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