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Analyzing the GHSI puzzle 
of whether highly developed 
countries fared worse in COVID‑19
Sofija Markovic1, Igor Salom2, Andjela Rodic1 & Marko Djordjevic1*

Global Health Security Index (GHSI) categories are formulated to assess the capacity of world 
countries to deal with infectious disease risks. Thus, higher values of these indices were expected 
to translate to lower COVID‑19 severity. However, it turned out to be the opposite, surprisingly 
suggesting that higher estimated country preparedness to epidemics may lead to higher disease 
mortality. To address this puzzle, we: (i) use a model‑derived measure of COVID‑19 severity; (ii) 
employ a range of statistical learning approaches, including non‑parametric machine learning 
methods; (iii) consider the overall excess mortality, in addition to official COVID‑19 fatality counts. 
Our results suggest that the puzzle is, to a large extent, an artifact of oversimplified data analysis 
and a consequence of misclassified COVID‑19 deaths, combined with the higher median age of the 
population and earlier epidemics onset in countries with high GHSI scores.

It is natural to assume that the most prosperous world countries, well organized and with the most advanced 
medical institutions, would soon gain an advantage in the global race to minimize the harm from a new viral 
infection. This expectation is quantified in the form of the Global Health Security Index (GHSI)—a measure of 
preparedness for various health emergencies, precisely of the kind of the present COVID-19  pandemic1. The 
categories included in this index were carefully designed to help countries identify weaknesses primarily in their 
healthcare systems but also in their political and socio-economic structure, as well as to guide the process of 
reinforcing their health security  capacities2–4. To this end, capacities to prevent medical hazards, to timely detect 
and report them, to rapidly respond in these situations, to comply in all these with international norms, as well 
as the health system capacity, and the overall vulnerability to biological threats—are all separately assessed and 
assigned a specific GHSI category: Prevent, Detect, Respond, Norms, Health and Risk, respectively.

With the COVID-19 pandemic, the GHSI scores were put for the first time to a real-life global test – which 
they failed, according to most of the published attempts to assess their correlation with the epidemic  scale5–18. 
An unexpected positive correlation between the GHSI categories and differently calculated  mortality5–7,12,14,17 
and infection  spread5,7,8,10,12–14 – deserving to be called the "GHSI puzzle" – suggested that the GHSI cannot be 
used to describe the national pandemic  preparedness19. As this result seemed highly convincing, the focus was 
shifted to the search for explanations of the GHSI  inappropriateness19. Thereby, the observed large COVID-19 
infection counts in highly developed (high GHSI countries) motivated the firm opinion that their responses were 
“sclerotic and delayed at best”20. The first-ranked country in the GHSI 2019 list, the USA, provided a striking 
example. Despite its top overall score of 76/100—equaling roughly twice the average score of 38.9—COVID-19 
has taken a devastating toll in the US, especially in the first wave of the  pandemic21,22, introducing a two-year drop 
in life  expectancy23. It was pointed out that GHSI scores cannot anticipate how a country decides to respond to 
epidemics, so these scores cannot be expected to necessarily be predictive of reported infections and  fatalities24,25.

However, it is also necessary to revisit the methodological approaches that lead to the unintuitive relation 
of GHSI scores to the observed pandemic effects. First, the outcome variable, assumed to depend on the GHSI, 
should measure the relevant, effective epidemic burden to reasonably represent the country’s overall success in 
minimizing the harm from the epidemic. Significantly, it should predominantly depend on the aspects of pre-
paredness rather than other prevailing factors. As noted above, the GHSI predictivity was analyzed for different 
mortality and infection rates, yielding mostly positive correlations, and these variables depend on factors that 
directly or indirectly increase the frequency and range of personal contacts 26 and thus promote the disease spread 
27. Developed countries, typically carrying high GHSI scores, are characterized by intense population mobility 
and mixing due to ease of travel, higher local concentrations of people, and business and social activities. So, 
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the consequential rapid disease spread may cancel and overshadow the ameliorating effects of large prepared-
ness capacities, explaining the lack of a negative correlation of the GHSI with COVID-19 growth numbers. In 
addition, these outcome variables depend on the calculation time frame, and there are even examples of inci-
dence rates with negative dependence on the GHSI 18. Therefore, it is quite nontrivial to select the appropriate 
outcome variable (among mortality and incidence rates) for describing the relationship between the GHSI and 
the epidemic burden.

The relation of the GHSI with clinical severity measured by the Case Fatality Ratio (CFR), as a more obvious 
indicator of the burden magnitude, was considered in a few papers 8,13,16, with the most extensive study (for a 
large number of countries and with including numerous other potential predictors) carried out in 13—and the 
connection turned out to be positive. This is genuinely perplexing since CFR is an objective measure of disease 
severity, thus expected to be causally independent of the disease transmissibility. Consequently, there is no obvi-
ous explanation why higher GHSI would be linked to a worse case fatality ratio.

While CFR is a specific measure of severity, its shortcoming is being time-dependent and affected by the vary-
ing lag between case detections and fatal outcomes (in addition to lacking a direct mechanistic interpretation in 
terms of the disease dynamics)28. Instead, we choose a timing-independent measure of severity: m/r value that 
we previously derived from an epidemic  model29, which represents the ratio of population-averaged mortality 
to recovery rates (so that many fatalities and/or slow recovery correspond to higher epidemic severity). It can be 
shown that this measure is independent of the SARS-CoV-2 transmissibility and directly relates to the asymptotic 
CFR value calculated at the end of the epidemic wave, so it does not rely on an arbitrary time frame. Thus, we 
could estimate it straightforwardly using the data from the end of the first pandemic’s peak, avoiding interpreta-
tion of complex effects of vaccination and different SARS-CoV-2 strains on the disease severity.

Furthermore, we aimed to check if the observed positive GHSI correlations with various measures of epi-
demics intensity may be an artifact of the applied methods that are not well adapted for the problem complexity 
– i.e., cannot extract the impacts specific to individual factors entangled in mutual correlations. To that end, 
we searched for the m/r predictors among a number of variables on 85 countries using methods such as the 
regularization-based linear regressions (Lasso and Elastic Net)30, and non-parametric machine learning tech-
niques (Random Forest and Gradient Boost)30. Together with different GHS Indices, we also included a number 
of sociodemographic and health-related variables in the analysis, in line with a recent result that factors external 
to GHSI may aid in characterizing countries’ ability to respond to epidemic  outbursts31. Finally, we investigated 
the relationship between the GHSI and the total excess deaths, which was not performed before; the main 
advantage of such analysis is that, unlike official COVID-19 figures, total excess deaths counts do not depend on 
diagnosis and reporting  policies17,18. Combined together, our results, to a large extent, solve—or more precisely 
dissolve—the puzzle: it is not justified to relate high GHSI values (i.e., high estimated country preparedness) 
with an unsatisfactory pandemic response and high severity/mortality burden.

Results
Analysis based on COVID‑19 case counts. Univariate analysis (Fig. 1) reveals a statistically significant 
positive correlation of all selected GHSI categories with our severity measure (m/r), demonstrating the puzzle. 
Strikingly, GHSI categories show the highest positive correlations compared to all other variables in the analysis. 
Also, they are highly correlated with measures of a country’s development (e.g., GDP per capita and HDI), so 
that, on average, more developed countries have higher GHSI.

However, the univariate analysis does not control for simultaneous effects of multiple factors that can influ-
ence the disease severity. Additionally, many factors that we initially included as potentially important (and 
thus considered in the analysis) may not significantly influence the severity, so retaining them in the final model 
would introduce large noise. Another problem is that many factors are mutually highly correlated. Consequently, 
we next applied linear regressions with regularizations and feature selection (Lasso and Elastic Net, which can 
eliminate non-significant predictors), combined with PCA on groups of related variables (to partially decorrelate 
the variable set while retaining its interpretability).

Mutually related variables were thus grouped in three categories (age, chronic disease, prosperity) on which 
PCA was performed (Supplement Fig. 1, Supplement Table 2), while the other variables remained unchanged 
(Supplement Table 1). The data were then independently analyzed using Lasso (Fig. 2A) and Elastic net regres-
sions (Fig. 2B), which were implemented in the so-called “relaxed”30 way to reduce noise from the multidimen-
sional data.

From Fig. 2, we see that age PC1 is the dominant predictor in both methods, unsurprisingly suggesting that 
the older population is more severely affected by COVID-19. Furthermore, epidemic onset appears to be an 
important factor negatively associated with the disease severity, meaning that earlier epidemic onset is associ-
ated with higher severity of the disease. Of all four analyzed GHSI categories, the disease detection index is 
selected as the most important, with an (unintuitive) positive effect on m/r. While positive contribution was also 
obtained through univariate analysis, its magnitude diminishes when the more advanced analysis is used, i.e., 
in Fig. 2, PCA followed by multivariate regressions with regularization. Consequently, while the paradox is still 
there (positive contribution of one of GHSI categories), the regression coefficient of this predictor significantly 
decreases (e.g., compared to age) as the analysis progresses from univariate to multivariate (with feature selec-
tion and correlated variables accounted for). Also, in Elastic net regression (Fig. 2B), net immigration appears 
to contribute negatively to the disease severity, which we will further discuss below. The obtained results remain 
robust when the regression methods are applied to the initial data without PCA, when besides 18 demographic 
parameters, Detect, Respond, Health and Risk GHSI categories (Supplement Fig. 2), or Covid index (Supple-
ment Fig. 3) are used.
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In the analysis above, we grouped variables in subsets according to their natural interpretation (e.g., age-
related, chronic diseases, country prosperity) for PCA. While this approach facilitates the interpretation of 
the regression results, there is also some arbitrariness in the grouping criteria. This motivated us to perform 
supervised PCA—a mathematically well-defined procedure that chooses the variables for PCA solely based on 
their numerical correlation with the response variable. The optimal hyperparameter values, selected through 
cross-validation, were θ = 0.05 for correlation coefficient cutoff and n = 6 for the number of retained principal 
components. The selected six principal components were used as predictors in a linear regression model with m/r 
as the response variable. As only two principal components, PC1 and PC4, turned out to be significant predictors 
(with the standard significance cutoff of P < 0.05) in the linear regression, we proceeded to further analyze these 
principal components. The results in Fig. 3 show scatterplots of PC1 and PC4 vs. m/r and variables entering 
PCA. One can see a high correlation of m/r with PC1, which technically makes it a good risk index for COVID-
19 severity – though some of its constituents, such as GHSI, have an unintuitive contribution to m/r. More 
importantly, PC1 shows that the composite variable, which can explain much of the variability in m/r, contains 
GHSI categories intertwined with HDI and GDP in terms of their effect on m/r. Consequently, the unintuitive 
positive contribution of GHSI to m/r (as well as the absence of negative contribution in more complex models) 
may be an indirect consequence of some effect that increases m/r for more developed countries (for which both 
HDI/GDP and GHSI are high). We will further explore this possibility through the analysis of excess deaths.

Figure 1.  Graphical representation of the predictor correlation matrix (as the matrix is symmetric, only its 
upper half is shown). Colors correspond to the magnitude of Person correlation coefficients, as indicated by 
the color bar on the right, while asterisks correspond to the statistical significance of the results (‘ ’ – P > 0.05, 
‘ * ’ – 0.05 > P > 0.01, ‘ ** ’ – 0.01 > P > 0.001, ‘ *** ’ – P < 0.001 ). Correlations of m/r and selected three Global 
Health Security Index categories, relevant for the pandemic, are also represented by scatterplots in the inset. m/r 
– disease severity measure, Overall – Overall GHSI, Prevent – GHSI Prevent category, Detect – GHSI Detect 
category, Respond – GHSI Respond category, Health – GHSI Health category, Norms – GHSI Norms category, 
Risk – GHSI Risk category, Covid – a combination of COVID-related GHSI indicators, BUAPC – built-up area 
per capita, UP – urban population, MA – median age, IM – infant mortality, GDP – gross domestic product 
per capita, HDI – human development index, IE – net immigration, RE – refugees, CH – blood cholesterol 
level, AL – alcohol consumption, OB – prevalence of obesity, SM – prevalence of smoking, CD – prevalence of 
cardiovascular diseases, RBP – raised blood pressure, IN – physical inactivity, BCG – BCG vaccination coverage, 
ON – the onset of the epidemic, PL – air pollution. The figure was created using  R55 corrplot  package56, in 
RStudio integrated development environment for  R57.



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17711  | https://doi.org/10.1038/s41598-022-22578-2

www.nature.com/scientificreports/

The regression methods used so far do not account for nonlinearities or possible interactions between pre-
dictor variables. For this reason, we applied machine learning methods based on ensembles of weak learners 
(decision trees), Random Forest, and Gradient Boost, on the same set of predictors and PCs used in the linear 
regression models above. Figure 4 shows the estimate of variable importance (A and D) and Partial Dependence 
(PD) plots (B, C, E, F) for the variables with the highest importance in explaining disease severity. PD plots also 
provide information about the direction (positive or negative) in which the predictors affect m/r. We obtain 
age PC1 as by far the most important variable, where older age promotes the disease severity. Detect GHSI and 
epidemic onset also appear above the standard importance threshold. However, the estimated effect of Detect 
GHSI is now small, based on both the variable importance and PD plots that show a much larger dependence 
of m/r on age PC1.

Analysis of excess deaths. We next focus on excess deaths (see the definition in Methods), where we 
again use several univariate and multivariate approaches. As predictors, we here use COVID-19 counts, GHSI, 
and demographic variables, which we separated into mutually related subsets on which PCA was performed (see 
Supplement Table 3 and Supplement Fig. 4). In Fig. 5, which shows Random Forest results, we see that Counts 
PC1, which equally well reflect COVID-19 infection and death case counts, are by far the most dominant predic-
tor of excess deaths. While expected, this is also a highly nontrivial result, given that the two quantities (excess 
deaths and classified COVID-19 deaths) are inferred in an entirely independent manner, and that in-principle 
ununiform policies of COVID-19 related deaths classification are applied in different  countries32. This result 
is robust, i.e., consistently obtained through different methods, ranging from simple univariate regressions to 
linear regressions (with variable selection and regularization), see Supplement Figs. 5 and 6 and Supplement 
Table 4. The only other predictor with importance above the threshold in Fig. 5 is CFR (which we also calculate 
in saturation, i.e., at the end of the first wave), which has a small to moderate positive effect on m/r, though much 
smaller than the COVID-19 case counts.

We then analyzed the unexplained deaths with the same approach described above for the excess deaths. 
The unexplained deaths are the difference between the excess deaths and COVID-19 deaths, i.e., those excess 
deaths not attributed to COVID-19 (for the definition, see Methods). From Fig. 6, we see that the most important 
predictor is demo PC1, which has a clear negative association with unexplained deaths (see the corresponding 
PD plot). These results are robust, i.e., independently obtained by several different univariate and multivariate 
analyses (Supplement Figs. 7 and 8 and Supplement Table 5). As demo PC1 is strongly related to country GDP/
HDI (see Supplement Fig. 4), more developed countries are associated with a smaller number of unexplained 
deaths. The other demographic-related PC components above the importance threshold (demo PC 4 and 6) 
have a smaller influence on unexplained deaths and can also be related to the negative influence of HDI/GDP 
(see Supplement Fig. 4). Interestingly, GHSI PC1 (highly correlated to all GHSI categories) is also selected as a 
significant predictor, negatively associated with unexplained deaths. This implies that higher GHSI (significantly 
correlated to HDI/GDP) is associated with fewer unexplained COVID-19 deaths.

Discussion
Although the m/r quantity does not depend on the epidemic growth rate, which is boosted by the large contact 
rate in countries with high GDP, HDI, and GHSI, the univariate analysis shows that GHSI categories significantly 
correlate with this measure of severity – having the highest correlation of all considered variables. This could 
be naively interpreted as a higher likelihood of dying from COVID-19 in well-equipped medical facilities than 
in settings ranked by far lower GHSI. In the subsequent two parallel analyses—Lasso and Elastic Net on PCs 

Figure 2.  Lasso and Elastic Net regressions with m/r as the response variable. (A) Regression coefficients of 
variables selected by Relaxed Lasso regression, (B) Regression coefficients of variables selected by Relaxed 
Elastic Net regression, age PC1 – age principal component 1, Detect – GHSI Detect category, Respond – GHSI 
Respond category, IE – net immigration, IN – physical inactivity, ON – the onset of the epidemic.
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obtained from three predefined groups of variables, on one side, and the Supervised PCA, on the other – the 
positive effect of GHSI is acknowledged, primarily through the Detect category. However, it is smaller than the 
effects of PCs brought to the fore, determined by factors like the population median age, the epidemic onset, and 
the net immigration. Thereby, the diversity of the variables constituting PC1 in the supervised PCA, together 
with multiple GHSI categories, additionally questions the GHSI significance, as it makes it hard to separate the 
influence of the GHSI from the influences of other variables related to the country development level (HDI/
GDP). Finally, the variable importance analysis points to a robust and dominant influence of the age PC1, while 
a positive influence of the GHSI Detect category is present but almost negligible compared to the age PC1 effect.

Moreover, the Random Forest method selects the Onset as an additional variable with higher significance than 
the GHSI Detect. Therefore, our results show that oversimplified analytical methods play a major role in the puz-
zle: While simple pairwise correlations indeed strongly suggest that "better healthcare leads to higher COVID-19 
mortality", there is hardly any hint of such paradox with advanced machine-learning analyses. Instead, old age 
and an earlier epidemic onset are likely behind the increased disease severity—and simple univariate analysis 
fails to identify these confounding variables, both significantly correlated with the GHSI.

Figure 3.  Supervised Principal Component Analysis. Scatterplot of (A) PC1 and m/r, (B) PC4 and m/r, (C) 
PC1 and variables entering PCA, (D) PC4, and variables entering PCA. m/r – mortality over recovery rate, 
Detect – GHS Detect category, Respond – GHSI Respond category, Health – GHSI Health category, Risk – 
GHSI Risk category, BUAPC – built-up area per capita, UP – urban population, MA – median age, IM – infant 
mortality, GDP – gross domestic product per capita, HDI – human development index, IE – net immigration, 
RE – refugees, CH – blood cholesterol level, AL – alcohol consumption, OB – prevalence of obesity, SM – 
prevalence of smoking, CD – prevalence of cardiovascular diseases, RBP – raised blood pressure, IN – physical 
inactivity, BCG – BCG vaccination coverage, ON – the onset of the epidemic, PL – air pollution.
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Three severity predictors robustly selected by different methods – the median age, the epidemic onset, and 
the net immigrations – are generally supported by other studies’ results, obtained in combinations with other 
 predictors6,8,11,13,14. The fact that our analysis singled them out argues about their dominant roles. Old age is 
undoubtedly a dominant risk factor for developing severe illness and dying from COVID-196,8,13,14. The onset 
variable, not acknowledged only by the Random Forest, is obtained with a negative association to  severity11,33. 
The time in which the pandemic reached a country may have been a significant factor in the first wave, as 
countries could use it to organize medical resources and adjust treatment protocols, learning from the experi-
ences of those affected earlier. The Elastic net and the supervised PCA results identify the net immigration as 
a negative contributor to the COVID-19 severity. The supervised PCA groups this variable inside the same PC 
with the percent of refugees. This negative effect of immigration in the broader sense on the severity should 
not be interpreted through a hypothetical mitigating effect of the full lockdowns on the virus spread, rapidly 
imposed in those countries expecting a massive inflow of  people13,34, because m/r is independent of the disease 
transmissibility. Rather than being more efficient in treating COVID-19, countries leading in net immigration 
probably had an additional under-privileged  population35 whose deaths from COVID-19 were more frequently 
misattributed to other causes, e.g., a lack of medical insurance or a general reluctance to go to  hospitals36,37. If so, 
the presence of immigrants did not decrease the actual COVID-19 mortality, but only the officially recognized 
toll (further discussed below).

We further demonstrate that the reliability of COVID-19 data also plays an important role. Many factors can 
lead to underreporting, or even overreporting, of COVID-19 deaths: testing capabilities, protocols for classifying 
causes of death, to outright political  influences38. Since these factors can be highly variable between countries, we 
considered the overall excess deaths as an alternative measure to official COVID-19 mortality statistics. We obtain 
that, similarly  to39, the excess deaths variable depends almost only on the sheer number of COVID-19 cases (itself 
not significantly correlated with any other of our predictor variables, see Fig. 1), together with some influence 
of the CFR value (where CFR itself is dominantly correlated with median age, and with epidemic onset—pos-
sibly due to the accumulated experience in medical treatments). The counterintuitive connection of COVID-19 
severity with GHSI categories (and country’s prosperity) does not appear when considering the overall excess 
mortality. Another perspective on the phenomenon is gained by considering the "unexplained deaths" variable, 
quantifying the part of the overall excess deaths not officially attributed to COVID-19 mortality. We obtained 
that unexplained deaths are smaller in developed countries with high GHSI scores. Other studies also found 
a similar relationship between unaccounted excess deaths and the lower average income/fewer physicians per 
 capita6,8,14,37,38,40. This strongly suggests that underreporting COVID-19 deaths plays another crucial role in the 
GHSI puzzle, i.e., that the actual COVID-19 toll in low GHSI countries is higher than the official figures reveal.

For our present purposes, it is not crucial whether the excess deaths represent direct COVID-19 victims or 
indirect pandemic causalities of reduced access to healthcare services (i.e., due to overwhelmed medical facilities): 

Figure 4.  Machine learning algorithms and Partial dependence (PD) plots with disease severity as the response 
variable. (A) Variable importance estimates for Random Forest regression, (B–C) PD plots corresponding 
to Random Forest, (D) Variable importance estimates from Gradient Boost regression, (E–F) PD plots 
corresponding to Gradient Boost. The dashed lines in A and D correspond to the mean variable importance in 
the given model. HDI PC1 – human development index PC1, Chr PC1 – chronic diseases PC1, Detect – GHSI 
Detect category, Respond – GHSI Respond category, Health – GHSI Health category, BUAPC – built-up area 
per capita, OB – obesity, SM – smoking, IN – physical inactivity, ON – epidemic onset, m/r – disease severity 
measure.
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GHSI scores should reflect capabilities to cope with both aspects of the pandemic consequences. Nevertheless, 
most of the unaccounted deaths likely represent direct consequences of SARS-CoV-2 infection, especially in 
countries where the difference between the official COVID-19 mortality and the excess of deaths is substantial. 
Namely, our results are based on the excess of deaths that occurred during a relatively short time window of the 
first pandemic wave (a few months), where the negligence of other/chronic medical conditions (e.g., postponed 
oncological or cardiological check-ups and treatments) will unlikely have such immediate effects on mortality. 

Figure 5.  Random Forest regression with excess deaths as the response. (A) Predictor importance estimates 
from Random Forest regression, where dashed line represents the importance threshold, i.e., the mean 
importance value, (B–E) Partial dependence plots of predictors with the highest importance estimates from 
Random Forest regression model, CFR – case fatality rate, R0 – basic reproductive number of the virus.
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Besides, if the unexplained deaths were primarily an indirect consequence of saturation of medical resources, 
COVID-19 case counts should reflect this saturation and thus be expected to appear as a relevant predictor of 
unexplained deaths—but this does not happen. On similar grounds, the authors  of39 support the same interpreta-
tion of excess mortality in regions of Italy. As an additional argument, we note that, of all GHS indices, both the 
linear regressions with feature selection (Fig. 2) and the machine learning techniques (Fig. 4) consistently single 
out the Detect score (quantifying testing capabilities) as the one most affecting m/r. This is consistent with the 
interpretation that high GHSI scores—and the Detect index category in particular—are not connected to higher 

Figure 6.  Random Forest regression with unexplained deaths as the response. (A) Predictor importance 
estimates from Random Forest regression, where dashed line represents the importance threshold (the mean 
value of the variables), (B–E) Partial dependence plots od predictor with the highest importance estimates from 
Random Forest regression model, CFR – case fatality rate, R0 – basic reproductive number of the virus.
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COVID-19 mortality but rather reflect better capacity to recognize (i.e., "detect") COVID-19 deaths as such, 
and thus lead to less unexplained deaths. On the other hand, a lower Detect score relates to a larger number of 
unrecognized COVID-19 deaths and falsely lower mortality, adding to the apparent paradox.

We have provided ample arguments that the puzzling connection of high GHSI scores with severe COVID-
19 epidemic outcomes is an artifact of oversimplified analyses and low-quality data, but neither of our methods 
could directly establish the anticipated negative correlation. Notably, the negative correlation with the scale of 
under-reporting of COVID-19 deaths is suggested by our results, demonstrating the effectiveness of better detec-
tion capacity of high-GHSI countries. However, it seems that the anticipated benefits of the elaborated prepared-
ness capacities for minimizing the overall harm did not manifest, at least not directly. Note that our results clearly 
show the strong influence of population age and, in the second place, the epidemic onset on the m/r measure 
of severity. The lather predictor emphasizes the particular vulnerability of the initial pandemic  period11,12. Not 
only did a later onset provide more time to organize a response, but the large unpredictability effect when the 
world encountered an unknown virus, obstructing any organizational efforts 1,41,42, put the first-hit countries in 
an additionally vulnerable position. The lack of knowledge and experience could have primarily determined the 
reach of the initial efforts to minimize severity regardless of the pre-established capacities, and this factor would 
be hard to incorporate in a static preparedness measure such as the GHSI. Nevertheless, the GHSI might show 
a better, anticipated agreement later during the pandemic, when the advantages of the prepared system start to 
reveal. Previous studies, like ours, assessed the GHSI predictivity focusing on the pre-vaccination period, so its 
performance separated from the sensitive, first outbreak period remains largely unexplored.

On the other hand, GHS indices are positively correlated with the population age and negatively correlated 
with the onset time. In turn, if there was no direct influence of GHSI scores on mortality (nor additional con-
founding correlations), we should expect more excess deaths in countries with higher GHS indices—simply 
because the population is, on average, older, while the epidemic came earlier, in these countries. However, 
since the plot in Fig. 6 does not reveal such a trend, and overall excess mortality seems to depend almost solely 
on the number of infected individuals (with neither age nor GHSI playing any role in Fig. 5), there must be a 
factor that compensates for this age and early epidemic onset disadvantage. While we cannot rule out possible 
confounders, it is plausible that the difference in levels of medical care—reflected via GHSI scores—counterbal-
ances these two effects.

In summary, the main goal of this study was to reinvestigate the "GHSI puzzle," giving attention to three 
essential aspects (i) the choice of the effective epidemic burden measure, (ii) the advanced multivariate data 
analysis, suiting the data complexity, and (iii) the analysis of excess deaths data, in addition to more questionable 
official COVID-19 infection and mortality figures. Our results point to a major weak point in the previous efforts 
to assess the predictivity of the GHS index – namely, using the oversimplified methodology, which emphasizes 
the importance of implementing the three essential steps in our analysis mentioned above. We show that high 
GHSI scores cannot be associated with low efficacy in combating epidemics, contrary to the dominant claim in 
academic literature. On the contrary, more developed countries with high GHSI values likely provided better 
quality data due to more reliable reporting of COVID-19 fatality counts. This becomes particularly significant in 
light of the notion strongly supported by our results: that a majority of excess deaths after the first wave should 
be attributed to direct COVID-19 fatalities instead of indirect consequences of the pandemic or other concur-
rent causes.

GHSI categories, therefore, do not contradict the observed data and can still be a valuable instrument in ame-
liorating the consequences of future global health-related crises, especially with some refinement to account for 
the country’s vulnerability to a high level of initial unpredictability when it faces an unknown, fast-transmitting 
virus. Refining this and developing similar measures can aid the prevention of future epidemic catastrophes, 
where our study may provide some guidelines on how to perform an accurate assessment of their appropriateness. 
Some of the GHSI shortcomings have already been  reported31 and addressed in the revised GHSI Index  202143, 
where the authors have attempted to improve the index by adding several new subcategories, which can certainly 
be viewed as a step in the right direction. While the lack of a positive association between higher GHSI scores 
and lower disease severity cannot be fully explained by our results, it is possible that including more variables in 
the research and obtaining excess and unexplained deaths data for a higher number of countries (which would 
allow for introducing more predictor variables without the danger of overfitting the data) would help bring to 
light some of the dependencies we were unable to capture in this research. One such variable could be countries’ 
corruption index, as it is reasonable to assume that countries with a higher corruption prevalence, would be less 
transparent in reporting COVID-19-related deaths. Less reported deaths would lead to lower disease severity 
estimates in countries with a higher corruption index, contributing to the paradox. Higher perceptions of cor-
ruption and social polarization have already been identified as contributing to higher excess  mortality31.

Also, the results from later COVID-19 peaks might differ from the first peak, as it is reasonable to anticipate 
that more developed countries, with higher GHSI and, on average, higher healthcare budgets, given enough 
time and resources, would be better prepared for the later COVID-19 waves 44,45. Additionally, a quicker vac-
cine rollout in developed countries could lead to quicker drop in disease severity, regardless of the increasing 
transmissibility of new viral strains 46.

Methods
Data collection and processing. The majority of the data used in this research, including 18 demo-
graphic and health parameters, and the basic reproduction number of the virus was taken from the dataset 
previously assembled  in27. Additionally, Global Health Security Index (GHSI) data were taken  from1. In addi-
tion to the main (Overall) GHSI and six index categories (Prevent, Detect, Respond, Health, Norms, and Risk), 
the Covid index was calculated from the averaged values of COVID-19 related GHSI indicators, according  to47. 
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COVID-19 counts (average and maximal daily cases and deaths) were taken  from48. At the end of the first peak, 
the case fatality rate and severity measure (m/r) for each country were calculated according to the methodol-
ogy described  in29. To determine the numbers of total and excess deaths during the first peak of the pandemic, 
data  from49 was used. Relative excess deaths and relative unexplained deaths (excess and unexplained deaths in 
further text and figures) were calculated as follows:

For the research two datasets were constructed: (i) m/r dataset—a subset of the dataset used  in27, consist-
ing of the data from 85 countries for which both GHSI were available and m/r was inferred; (ii) excess deaths 
dataset—a subset of (i) for which total and excess deaths data was available (59 countries). Since the distribution 
of most variables initially deviated from normality, data was transformed, so that the skewness of the variables 
was as close to zero as possible, with the minimal number of remaining outliers. To obtain the best possible 
results, transformations were applied separately for variables in each dataset. Interpretation of all the variables 
and the used transformation for both datasets are presented in Supplementary Table 1. For easier tracking of the 
course of the research, analyses performed on each dataset are graphically represented by a flowchart in Fig. 7.

Principal component analysis. To partially decorrelate data and reduce dimensionality while retain-
ing relatively simple interpretation of principal components, some of the variables were grouped into mutu-
ally related groups, on which Principal Component Analysis (PCA) was performed. The number of principal 
components retained from each group after the PCA was determined to explain over 85% of the variance of 
the data. PCA grouping was performed independently for both datasets and variables entering PCA; retained 
principal components, and the percentage of variance they account for are presented in Supplementary Table 2 
(m/r dataset) and 3 (excess deaths dataset). New datasets, now consisting of both retained principal components 
and remaining variables that did not enter PCA, were next used as input in univariate and multivariate analyses. 
For easier interpretation of the most relevant principal components, their correlation with the variables enter-
ing PCA is given in Supplementary Figs. 1 and 4. Two now obtained sets of predictors were: (i) variables used 
in m/r regression analysis, consisting of: Detect, Respond, and Health GHSI categories, five selected PCs from 
Supplementary Table 2, and remaining demographic and health parameters that did not enter PCA (BUAPC, 
UP, IE, RE, OB, SM, IN, BCG, ON) (ii) variables used in excess and unexplained deaths analysis with principal 
components consisting of  R0, CFR and 11 principal components from Supplementary Table 3.

Linear regression models. LASSO and Elastic net regressions were used as the implementations of L1 
(LASSO) and L1 and L2 norms (Elastic net) on three variations of the m/r dataset and on excess deaths data-
set with principal components (regressions were implemented separately for excess and unexplained deaths as 
response variables). The variables (and PCs) were standardized before the regressions, so the regression coef-
ficients obtained by these methods can be interpreted as the relative importance of predictors in explaining 
the response variables. Values of the hyperparameters λ in LASSO and α and λ in Elastic Net were determined 
through fivefold cross-validation, with the data repartitioned 40 times. In m/r dataset regressions, the sparsest 
model—with mean squared error (MSE) within 1 standard error (SE) from the minimal MSE—model was cho-
sen. To further reduce the noise in m/r dataset regressions (where the number of predictors retained after the 
first round of regression was relatively high), LASSO and Elastic Net were implemented as “Relaxed”50, meaning 
that the regression was performed in two rounds so that only the variables selected in the first round were used 
as the input for the second round of regression. Regressions were performed on the initial m/r dataset, without 
grouping and PCA and with Detect, Respond, Health and Risk GHSI categories (Supplementary Fig. 2); on a 
dataset containing Covid index and 18 demographic and health variables, without any other GHSI categories 
(Supplementary Fig. 3); and on m/r dataset with principal components (Fig. 2). Since the number of selected 
variables after the first round of regression with both excess and unexplained deaths data was relatively small 
(even though this time minimal MSE model was selected instead of the sparsest), the second round of regression 
was not performed. As an addition to LASSO and Elastic Net for the excess and unexplained deaths analysis, 
Forward stepwise linear  regression30 was performed. In this method, starting from the constant model, a predic-
tor is added to the regression if it improves the fit significantly (P < 0.05 in F-statistics). The process is repeated 
sequentially, adding significant and removing non-significant terms until the best fit is obtained.

Random forest and gradient boost regressions. Two non-parametric, decision tree-based methods 
– Random  Forest30,51 and Gradient  Boost30,52—were implemented on both m/r and excess deaths datasets with 
principal components. These methods are of particular importance, as they can accommodate potential interac-
tion between the variables and highly non-linear relations between the predictors and the response variable. In 
the analysis of disease severity, the m/r dataset with principal components was used, with a constraint that only 
variables correlated to m/r with P < 0.1 in either Pierson, Kendall, or Spearman correlation are used as the input 
in the model. This way, overfitting, which would present a problem for these algorithms, is avoided. As the num-
ber of input variables was smaller in the excess/unexplained deaths dataset, preselection was not required before 
those regressions. Values of the hyperparameters in Random Forest and Gradient Boost methods were selected 
through extensive grid search, by the same method of cross-validation used for LASSO and Elastic Net regres-

relative excess deaths =
excess deaths

total deaths − excess deaths

relative unexplained deaths =
excess deaths − COVID19 deaths

total deaths − excess deaths
.
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sions, and a model with the minimal MSE was chosen to be retained on the entire (reduced) dataset. Unlike 
linear regression models, where regression coefficients measure the impact of each feature on the outcome vari-
able, in these two methods, the contribution of each of the features is measured by feature importance. For each 
decision tree, the feature importance is calculated as the sum of changes in the node risk due to splits for each 
feature, divided by the total number of branch  nodes53. The feature importance for the ensemble is obtained by 
averaging over all the  trees54. Note that, unlike regression coefficients, feature importance does not indicate the 
direction of the association (that is, whether the feature affects the outcome positively or negatively). Therefore, 
the contribution of the relevant variables in Random Forest and Gradient Boost was estimated through Partial 

Figure 7.  Flowchart of the methods applied on each of the datasets. m/r – disease severity measure, GHSI – 
Global Health Security Index, demo – demographic, counts – COVID-19 counts, PCs – principal components, 
Detect – GHSI Detect category, Respond – GHSI Respond category, Health – GHSI Health category, Risk – 
GHSI Risk category, MA – median age, IM – infant mortality, GDP – gross domestic product per capita, HDI 
– human development index, CH – blood cholesterol level, AL – alcohol consumption, CD – prevalence of 
cardiovascular diseases, RBP – raised blood pressure, PL – air pollution.
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Dependence (PD)  plots30, which estimate the effect of a single predictor by considering the average effects of all 
other predictors.

Supervised PCA. Supervised Principle Component  Analysis30 was performed. In this method, PCA is done 
only on those variables that show sufficiently high correlation with the response variable (m/r), where a certain 
number of PCs is then used in multiple regression with m/r as the response. The univariate correlation constant 
cutoff (i.e., the number of variables retained for PCA), and the number of retained PCs, are treated as hyper-
parameters, i.e., determined through cross-validation. Principal components that appeared significant in the 
multivariable regressions were further analyzed.

Data availability
We confirm that all methods were carried out in accordance with relevant guidelines and regulations as publicly 
available data set is used. All data generated or analyzed during this study are included in this published article 
and its Supplementary material.

Code availability
All source codes are available at https:// github. com/Q- bio- Belgr ade/ GHSI_ puzzle.
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