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A predictive model 
for hospitalization and survival 
to COVID‑19 in a retrospective 
population‑based study
Alejandro Cisterna‑García1, Antonio Guillén‑Teruel1, Marcos Caracena1, 
Enrique Pérez1,4, Fernando Jiménez1, Francisco J. Francisco‑Verdú2, Gabriel Reina3, 
Enrique González‑Billalabeitia4,7, José Palma1, Álvaro Sánchez‑Ferrer5,6 & Juan A. Botía1,8*

The development of tools that provide early triage of COVID‑19 patients with minimal use of 
diagnostic tests, based on easily accessible data, can be of vital importance in reducing COVID‑
19 mortality rates during high‑incidence scenarios. This work proposes a machine learning model 
to predict mortality and risk of hospitalization using both 2 simple demographic features and 19 
comorbidities obtained from 86,867 electronic medical records of COVID‑19 patients, and a new 
method (LR‑IPIP) designed to deal with data imbalance problems. The model was able to predict with 
high accuracy (90–93%, ROC‑AUC = 0.94) the patient’s final status (deceased or discharged), while 
its accuracy was medium (71–73%, ROC‑AUC = 0.75) with respect to the risk of hospitalization. The 
most relevant characteristics for these models were age, sex, number of comorbidities, osteoarthritis, 
obesity, depression, and renal failure. Finally, to facilitate its use by clinicians, a user‑friendly website 
has been developed (https:// aleja ndroc ister na. shiny apps. io/ PROVIA).

The virus responsible for Coronavirus disease 2019 (COVID-19), the severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), is a highly transmissible and pathogenic betacoronavirus that appeared in late 2019 
in Wuhan,  China1. As of February 2022, it has had a tragic effect on the world’s population health resulting in 
more than 5,8 million deaths and 412 million cases worldwide, becoming the most important global health crisis 
since the era of the influenza pandemic of  19182,3. The symptoms of COVID-19 are wide and may include fever, 
cough, fatigue, gastrointestinal issues, sore throat, anosmia, hyposmia, and neurological  symptoms4–7. Some of 
these symptoms can persist after recovery, particularly fatigue and  dyspnea8. The mortality rate of COVID-19 
worldwide is around 1.5% since the pandemic began until February 2022 according to the World Health Organi-
zation (WHO). Although, we are aware of the existence of people more likely to develop a critical illness and 
eventually  die9. In addition, it has been proven that vaccines reduce COVID-19 death  rates10,11. For instance, 
the latest Centers from Disease Control and Prevention (CDC) release from the United States concluded that 
unvaccinated people have more COVID-19-associated death risk (mortality rate is around 1.39%) than fully 
vaccinated people (mortality rate is around 0.78%) with or without booster  doses12. Due to the high contagious-
ness and rapid spread of SARS-CoV-2, many countries have to manage intense periods of the disease, which are 
known as  waves13. In these periods, hospital resources, intensive care unit (ICU) capacity and healthcare system 
saturation can contribute to the increase in case  fatality14. Hence, clinical management of patients, quick risk 
stratification strategies, and optimization of the use of resources are important to reduce the fatality  rate15,16.

Electronic medical records (EHR) are one of the main resources to improve the way we approach patient man-
agement and move toward a more efficient triage of COVID-19 patients. Thus, patient demographic and health 
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data available through healthcare systems have been used for COVID-19 patient prognosis and evolution through 
the use of semi-automated Artificial Intelligence (AI) systems. For example, a machine learning-based XGBoost 
model has been developed to predict patient mortality rates more than 10 days in advance with an accuracy of 
about 90%, using three biomarkers as main indicators for predicting COVID-19 prognosis, lactate dehydroge-
nase (LDH), high-sensitivity C-reactive protein (hs-CRP), and lymphocyte  count17. A higher ROC-AUC (0.96) 
was obtained with clinical data of patients at admission using four machine learning methods including logistic 
regression, support vector machine, decision tree with gradient boosting, and neural  network18. Using LASSO 
and a predictive equation with binary logistic regression based on pre-existing comorbidities and demographic 
data it was concluded that these variables demonstrated a good ability to discriminate severe from non-serious 
outcomes using only this historical information with an AUC of 0.7619. A further study developed models based 
on machine learning with different techniques, LASSO, novel univariate and pairwise, but concluded that no 
model was able to outperform a model based solely on age, where age had an AUC of 0.85 and balanced accuracy 
of 0.7720. Another model was able to predict the risk of hospital/ICU admission and death already at diagnosis 
with a ROC-AUC of 0.902 by focusing only on a limited number of comorbidities and demographic variables, 
such as age, sex, and  BMI21. In all of the above cases, the healthcare dataset is imbalanced, as individuals with the 
most severe disease episodes are in the minority, so a supervised machine learning approach aimed at modeling 
them will suffer from imbalance. Moreover, the predictors considered for such studies are difficult to obtain. For 
example, LDH, albumin (ALB), blood urea nitrogen (BUN), hs-CRP, and lymphocytes require the use of blood or 
urea tests; or else the taking of measurements with specific physical devices, as is the case for BMI, temperature, 
and oxygen saturation. Therefore, these models are far from being realistically usable for early triage of patients 
in times of emergency oversaturation.

Our study presents a technique specially designed to address imbalanced problems applied to streamlining 
and improving the triage of COVID-19 patients according to their age, sex, and comorbidities, based on data 
readily available within the Regional Health System of the Region of Murcia, located in southeastern Spain. This 
allows us to perform a local study in which data are organized in five different sources, including information 
on clinical history, hospitalization services, symptoms, vital signs, performed treatments in more than 100,000 
COVID-19 patients with diagnosis dates ranging from January 4th, 2020 to February 4th, 2021. It must be 
pointed out that this study does not focus on the effects of vaccination. Note that just 1.4% of the total popula-
tion of Spain was vaccinated by the date that the last patient was enrolled in our study (https:// ourwo rldin data. 
org/ covid- vacci natio ns? count ry= ESP). This leaves us with just approximately 402 subjects with a vaccine. The 
technique for dealing with imbalance consists of dividing the original problem into p subproblems, where each 
one will have a perfectly balanced data set associated with it, formed by samples from the original set. Using this 
reasoning, it is possible to build an ensemble logistic regression model that allows obtaining ROC-AUC of 0.94 
to predict the final condition of the patient (discharge or deceased) similar to complex models that combine 
several machine learning methods, and similar or higher than those that combine much more complex data 
based on laboratory or care techniques.

Results
Description and differences of the different types of COVID‑19 patients in our dataset. The 
exploratory analysis of the data from 86,867 COVID-19 patients in a region located in the southeast of Spain 
(Region of Murcia) allowed stratifying the database obtained by age, sex, and specific comorbidities (Table 1), 
following the flow chart for the cohort shown in Fig.  1. Among the cases studied, 93.7% were outpatients 
(N = 81,386), 5.4% were hospitalized non-ICU (N = 4736) and less than 0.85% were patients admitted to the ICU 
(N = 745). The most common symptoms among patients were cough (49.9%), followed by headache (38.3%) and 
myalgia (36%) (Supplementary Table S1). Using the data in Table 1 we can identify the different prototypes of 
patients with COVID-19.

Three types of patients were identified from the exploratory analysis (Table 1), the COVID-19 most com-
mon type of patient that did not require hospitalization was a 38-year-old female (IQR: 22–52) (53.06% of our 
outpatients are female), with 2 chronic pathologies and 2 affected systems, whose most common pathologies 
or comorbidities were arterial hypertension (15.00%), followed by obesity (9.24%), depression (9.02%), and 
asthma (8.64%). In contrast, the prototypical COVID-19 hospitalized non-ICU patient was a 62-year-old male 
(IQR: 47–79) (51.73% were men), with 5 chronic pathologies, with 4 affected systems, and with more frequent 
pathologies or comorbidities such as arterial hypertension (46.79%), diabetes mellitus (25.27%), obesity (21.28%), 
osteoarthritis (18.03%) and depression (16.89%). Finally, the profile of the patient admitted to the ICU was 
a 62-year-old male (IQR: 52–71) (70.34% of ICU patients were male), with 5 chronic pathologies, 3 affected 
systems, and whose most frequent pathologies or comorbidities were arterial hypertension (47.79%), followed 
by obesity 29.53%, diabetes mellitus 28.72%, and osteoarthritis (18.03%). COVID-19 Patients in the ICU had 
almost twice the possibility of dying than those hospitalized not admitted to the ICU (31.28% vs. 13.81%), far 
removed from that presented by outpatients (0.31%).

To further study the differences between discharged COVID-19 patients (survivors) and those who deceased 
(non-survivors), the data in Table 1 were reorganized in Table 2. The prototype of the surviving patient was 
a 39-year-old female (IQR: 23–53) (52.72% are female), with 2 chronic pathologies, 2 affected systems, and 
with more frequent pathologies or comorbidities similar to those previously described for the non-hospitalized 
patients. In contrast, the profile of the non-surviving patient was clearly different and represented by an 83-year-
old man (IQR: 75–88) (56.00% were men), with 8 chronic pathologies, 5 affected systems, and whose prevalent 
pathology or comorbidity was arterial hypertension (75.64%), far from the subsequent ones such as diabetes 
mellitus (42.33%), obesity (29.36%), osteoarthritis (27.93%) and depression (23.31%). In addition, three variables 
were highly relevant to the patient’s final status (Fig. 2). Thus, the older the patient t(1237) = 116.9, p < 2.2 ×  10–16, 
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the greater the number of chronic pathologies t(1151) = 42.15, p < 2.2 ×  10–16 and the greater the number of 
affected systems t(1163) = 47.2, p < 2.2 ×  10–16, the greater the probability of death (Fig. 2). A similar distribution 
of the above variables was observed when the population was divided into the three initial groups (outpatients, 
hospitalized non-ICU, and ICU) (Supplementary Fig. S1). The relationship between gender and patient status 
was significant  (X2

(1, N = 86867) = 34.33, p = 4.64 ×  10–9). Thus, men were more likely to die than women (Table 2, 
Supplementary Fig. S2), and that the highest risk comorbidities or pathologies were renal insufficiency (OR = 1.90, 
95% CI 1.61, 2.24), heart failure (OR = 1.85; 95% CI 1.53, 2.23), stroke (OR = 1.84 95% CI 1.54, 2.20), dementia 
(OR = 1.78; 95% CI 1.50, 1.81) and ischemic cardiomyopathy (OR = 1.58; 95% CI 1.33, 1.88). However, there 
was no significant relationship between asthma, osteoarthritis, and osteoporosis with COVID-19–related death.

ML models. Several machine learning models were developed: (1) to predict the patient’s final condition and 
(2) to predict which patient will need to be hospitalized. The training dataset (85,476 surviving and 891 non-
surviving patients) was used to train the model to predict the final patient’s condition and the test dataset (500 
patients; 250 patients from each class) was used to evaluate this model. To realistically evaluate the model, 101 
test sets were created with the same proportion as the initial set (1/75), i.e., for each deceased COVID-19 patient, 
75 surviving patients were taken.

Two machine learning algorithms (Random Forest and Logistic Regression) were evaluated with or without 
IPIP (Identical Partitions for Imbalance Problems), a method to deal with imbalanced data (see “Methods”). The 
accuracy and Cohen’s Kappa obtained on the test data set for the ensemble models (Fig. 3) showed that the IPIP 
model with logistic regression (LR-IPIP) obtained the best results regarding the final condition of the patient. 
This LR-IPIP model combined the result of the ensemble of 21 logistic regression models. The patient’s final 
condition can be predicted with the LR-IPIP model with a balanced accuracy between 0.90 and 0.93 (Table 3) for 
the imbalanced datasets versus 0.91 for the balanced datasets, balanced datasets are the ones usually used in the 
literature and which give a higher Cohen’s Kappa coefficient (0.83 vs. 0.20). In addition, the ROC-AUC of this 
model for the imbalanced datasets was 0.94 (Supplementary Fig. S3a). The most important factors determining 
the patient’s final condition (Importance Features) obtained by this LR-IPIP model were firstly age (FI: 1.0), 

Table 1.  Demographic characteristics, comorbidities, and final outcome of different types of COVID-19 
patients. Continuous data are reported as median with interquartile range (Q3–Q1), and categorical data are 
expressed as percentages (%). COPD is chronic obstructive pulmonary disease and HIV is Acquired Immune 
Deficiency Syndrome. Deceased (report only when the patient dies).

Characteristics Outpatient Hospitalized (non-ICU) ICU

Number of individuals (N) 81,386 4736 745

Age median (IQR) 38.00 (22.00, 52.00) 62.00 (47.00, 79.00) 62 (52.00, 71.00)

Gender

Male (%) 38,200 (46.94%) 2450 (51.73%) 524 (70.34%)

Female (%) 43,186 (53.06%) 2286 (48.27%) 221 (29.66%)

Comorbidities

Number of Chronic diseases median (IQR) 2.00 (1.00, 4.00) 5.00 (2.00, 8.25) 5 (2.00, 8.00)

Number of systems affected median (IQR) 2.00 (1.00, 3.00) 4.00 (2.00, 5.00) 3 (2.00, 5.00)

Asthma (%) 7032 (8.64%) 398 (8.40%) 70 (9.40%)

Obesity (%) 7516 (9.24%) 1008 (21.28%) 220 (29.53%)

Diabetes mellitus (%) 5212 (6.40%) 1197 (25.27%) 214 (28.72%)

Heart failure (%) 646 (0.79%) 343 (7.24%) 33 (4.43%)

COPD (%) 1059 (1.30%) 350 (7.39%) 46 (6.17%)

Arterial hypertension (%) 12,210 (15.00%) 2216 (46.79%) 356 (47.79%)

Depression (%) 7345 (9.02%) 800 (16.89%) 103 (13.83%)

HIV (%) 121 (0.15%) 10 (0.21%) 3 (0.40%)

Ischemic cardiomyopathy (%) 1349 (1.66%) 420 (8.87%) 75 (10.07%)

Stroke (%) 961 (1.18%) 353 (7.45%) 37 (4.97%)

Renal insufficiency (%) 1267 (1.56%) 515 (10.87%) 66 (8.86%)

Cirrhosis (%) 1672 (2.05%) 256 (5.41%) 57 (7.65%)

Osteoporosis (%) 2453 (3.01%) 431 (9.10%) 51 (6.85%)

Osteoarthritis (%) 5212 (6.40%) 854 (18.03%) 121 (16.24%)

Arthritis (%) 1111 (1.37%) 132 (2.79%) 21 (2.82%)

Dementia (%) 859 (1.06%) 296 (6.25%) 9 (1.21%)

Chronic pain (%) 39 (0.05%) 9 (0.19%) 4 (0.54%)

Outcome

Discharge (%) 81,132 (99.69%) 4082 (86.19%) 512 (68.72%)

Deceased (%) 254 (0.31%) 654 (13.81%) 233 (31.28%)
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Figure 1.  CONSORT diagram. Flow diagram of the enrollment of subjects, disposition status, and how they are 
analyzed in the study.

Table 2.  Demographic characteristics and comorbidities of discharge and deceased COVID-19 patients. 
Deceased (report only when the patient dies). Continuous data are reported as median with interquartile range 
(Q3–Q1), and categorical data are expressed as percentages (%). We also used odds ratio (OR) and 95% CIs. 
COPD is a chronic obstructive pulmonary disease and HIV is Acquired Immune Deficiency Syndrome.

Characteristics Discharge (survival) Deceased (non-survival) OR (95% CIs)

Number of individuals (N) 85,726 1141 –

Age median (IQR) 39.00 (23.00, 53.00) 83 (75.00, 88.00) –

Gender

Male (%) 40,535 (47.28%) 639 (56.00%) 2.41 (2.11, 2.75)

Female (%) 45,191 (52.72%) 502 (44.00%) –

Comorbidities

Number of Chronic diseases median (IQR) 2.00 (1.00, 4.00) 8 (5.00, 12.00) –

Number of systems affected median (IQR) 2.00 (1.00, 3.00) 5 (4.00, 7.00) –

Asthma (%) 7403 (8.64%) 97 (8.50%) 1.13 (0.90, 1.42)

Obesity (%) 8409 (9.81%) 335 (29.36%) 1.57 (1.36, 1.81)

Diabetes mellitus (%) 6140 (7.16%) 483 (42.33%) 1.55 (1.36, 1.77)

Heart failure (%) 823 (0.96%) 199 (17.44%) 1.85 (1.53, 2.23)

COPD (%) 1290 (1.50%) 165 (14.46%) 1.49 (1.23, 1.81)

Arterial hypertension (%) 13,919 (16.24%) 863 (75.64%) 1.31 (1.12, 1.53)

Depression (%) 7982 (9.31%) 266 (23.31%) 1.24 (1.06, 1.44)

HIV (%) 134 (0.16%) 0 (0.00%) –

Ischemic cardiomyopathy (%) 1631 (1.90%) 213 (18.67%) 1.58 (1.33, 1.88)

Stroke (%) 1145 (1.34%) 206 (18.05%) 1.84 (1.54, 2.20)

Renal insufficiency (%) 1591 (1.86%) 257 (22.52%) 1.90 (1.61, 2.24)

Cirrhosis (%) 1923 (2.24%) 62 (5.43%) 1.41 (1.07, 1.86)

Osteoporosis (%) 2758 (3.22%) 177 (15.51%) 1.06 (0.88, 1.29)

Osteoarthritis (%) 5868 (6.85%) 319 (27.96%) 1.03 (0.89, 1.20)

Arthritis (%) 1214 (1.42%) 50 (4.38%) 1.44 (1.05, 1.98)

Dementia (%) 911 (1.06%) 253 (22.17%) 1.78 (1.50, 2.12)

Chronic pain (%) 50 (0.06%) 2 (0.18%) –
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followed by sex (FI: 0.366), osteoarthritis (FI: 0.194), renal insufficiency (FI: 0.144), obesity (FI: 0.132) and the 
number of affected systems (FI: 0.117) (Fig. 4a, Supplementary Fig. S4).

On the other hand, the model to predict which patient will need to be hospitalized was developed using a 
training dataset (4385 inpatients and 80,290 outpatients), and a test dataset (2192 patients; 1096 patients from 
each class) was used to evaluate this model. In turn, this data was distributed in 25 test sets with the same ratio 
of inpatients/outpatients as in the initial set (1/15). Again, the model with the best results was the LR-IPIP made 
up of 13 logistic regression models (Fig. 3). The need for hospitalization could be predicted with the LR-IPIP 
model with a balanced accuracy between 0.71 and 0.73 (Table 3) for the imbalanced datasets versus 0.72 for the 
balanced datasets. Similar to the other model, the Cohen’s Kappa coefficient is higher for the balanced dataset 
(0.44 vs. 0.16). In addition, the ROC-AUC of this model for the imbalanced datasets were 0.746 (Supplementary 
Fig. S3b). Finally, the significance of the characteristics obtained in that model showed that age (FI: 1.0) was 
also the most relevant characteristic, followed by sex (FI: 0.26), renal insufficiency (FI: 0.12), number of chronic 
diseases (FI: 0.11) and depression (FI: 0.1) (Fig. 4b, Supplementary Fig. S4).

Figure 2.  Feature distribution. Distribution of age, the number of affected systems, and the number of 
comorbidities regarding the final patient outcome. We clearly see different distributions of these variables 
between discharge and deceased patients.

Figure 3.  Accuracy and Cohen’s kappa resulting from the different models. (a) Accuracy boxplots obtained in 
the test of the models trained for each problem. (b) Cohen’s Kappa coefficients boxplots obtained in the test of 
the models trained for each problem.
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Discussion
In this study, we have analyzed the different COVID-19 patient types in Southeastern Spain (n = 86,867). In 
contrast to most COVID-19 studies that developed predictive models in the literature that handle less than 5000 
 patients17–21. In addition, we have presented a technique specially designed to treat imbalance problems (IPIP), 
with which we have developed machine learning models to predict the final state of the patient and the need for 
hospitalization of those. We trained and evaluated the models with and without IPIP, which efficiently manages 
the imbalance in the data according to our results (Fig. 3).

Regarding characterizing the different kinds of prototypical COVID-19 patients, in this region, the COVID-
19 most common type of patient that did not require hospitalization is a 38-year-old woman, with 2 chronic 
pathologies whereas the hospitalized COVID-19 patient prototype is a 62-year-old man, with 5 chronic patholo-
gies. We identified age, gender, and the number of comorbidities as important to distinguish between outpatient 
and hospitalized. Several studies have also found that hospitalized COVID-19 patients are more commonly 
older, male, and associated with more comorbidities such as obesity, diabetes mellitus, and  hypertension22,23. In 
addition, we could find statistically significant differences for age (p < 8.0 ×  10–3), the number of comorbidities 
(p < 2.5 ×  10–3), and gender (p < 2.2 ×  10–16) between ICU and hospitalized non-ICU patients, although those dif-
ferences are smaller than between outpatient and hospitalized. ICU patients were around a year younger than 
hospitalized non-ICU patients and had fewer comorbidities (Supplementary Fig. S1). Therefore, we hypothesized 
that clinicians included patients more likely to survive in the ICU because of the limited number of available ICU 
slots or the risk of the male gender. We also detect even more differences for those features between survivors 
(discharge patients) and non-survivors (deceased patients) (Fig. 2). In our region, the discharge patient prototype 
is a 39-year-old woman, with 2 chronic pathologies while the deceased patient prototype is an 83-year-old man, 
with 8 chronic pathologies. According to several studies, our results show that older patients are more likely to 

Table 3.  Metrics obtained in the test dataset using the best training model. Balanced tests are sets with the 
same number of patients of each class. Imbalanced tests are sets with the same proportion of classes as the 
original dataset, where the number of examples for each class label is not balanced. Those sets are made up by 
a chosen number of samples of patients for each class. For imbalanced tests we report the mean (95% CIs) of 
each metric, and for balanced tests we report the value of each metric.

Metrics

Deceased/discharge Hospitalized/outpatient

Imbalanced tests Balanced test Imbalanced tests Balanced test

Balanced accuracy 0.92 (0.90, 0.93) 0.91 0.72 (0.71, 0.73) 0.72

Cohen’s Kappa 0.20 (0.18, 0.21) 0.83 0.16 (0.15, 0.17) 0.44

Sensitivity 0.93 (0.88, 0.96) 0.92 0.72 (0.70, 0.74) 0.71

Specificity 0.91 (0.90, 0.91) 0.91 0.73 (0.72, 0.73) 0.73

Positive predictive value (PPV) 0.12 (0.11, 0.13) 0.91 0.15 (0.14, 0.15) 0.72

Negative predictive value (NPV) 1 (0.99, 1) 0.92 0.98 (0.97, 0.98) 0.72

Figure 4.  Feature importance. (a) The most important factors determining the patient’s final condition 
(Importance Features) obtained by the LR-IPIP model. (b) The most important factors determining the need for 
hospitalization obtained by the LR-IPIP model. NCD is the number of chronic diseases.
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 die24–26, and also male patients are more likely to die (OR = 2.41, 95% CI 2.11, 2.75) (Table 2, Supplementary 
Fig. S2)27,28. When it comes down to comorbidities, we found that asthma, osteoporosis, and osteoarthritis are 
not associated with COVID-19–related death. A large number of studies report that patients with asthma are not 
at risk of severe COVID-1929,30. For osteoarthritis association with COVID-19–related death we found a study 
that reported similar OR = 0.84 (95% CI 0.65–1.08)31. For osteoporosis, it is known that women are more at risk 
of developing osteoporosis than  men32. It seems that some particular kinds of osteoporosis complications are 
associated with more risk of COVID-19 exitus, however, this study did not adjust the risk by age and  gender33. 
The rest of the comorbidities evaluated in our study were associated with an increase in mortality risk. These 
comorbidities or pathologies are diabetes mellitus, dementia, obesity, heart failure, COPD, arterial hypertension, 
ischemic cardiomyopathy, stroke, renal insufficiency, cirrhosis, and arthritis. Several studies obtain the same 
results for those  comorbidities31,34,35. Regarding depression, in line with our results, a meta-analysis identified 
that depression is associated with more COVID-19-related  death36. All the results mentioned above are important 
to ensure that the characteristics and comorbidities of our population were not unique. In addition, we believe 
that due to the similarity with other COVID-19 studies our data could be useful to develop predictive models.

Since the beginning of the pandemic, there have been many studies that have reported some important clini-
cal characteristics (predictors) for mortality in patients with COVID-19 through the development of ML-based 
models. Selected characteristics used as inputs for the development of these models included baseline data, 
clinical symptoms, associated comorbidity, and clinical indicators. However, these studies have two fundamental 
problems: the low number of patients due to the number of parameters studied greatly restricts the cohort and 
the strongly imbalanced data. To bridge these drawbacks, in this work we tested different ML models consider-
ing basic data easily accessible in an emergency care setting and based on clinical data from EHR to help during 
early patient triage. We definitely obtained promising results when predicting the patient’s final condition using 
the LR-IPIP model (0.92 balanced accuracy, ROC-AUC = 0.94). In terms of variable importance, ML detects Age 
(FI: 1.0), gender (FI 0.366), osteoarthritis (FI: 0.194), renal insufficiency (FI: 0.144), obesity (FI: 0.123), and the 
number of systems affected (FI: 0.117) as the most important variables to predict exitus. The model also detected 
comorbidities such as dementia, diabetes mellitus, and COPD. These features are associated with more risk of 
COVID-19–related death according to our model. In a similar direction, these comorbidities are associated 
with severe clinical manifestations observed in older adult  patients37,38. Comorbidities such as cardiovascular 
disease, hypertension, and diabetes although are highly prevalent in older adults have been associated with worse 
outcomes in COVID-1931,34,35. Studies that rely on comorbidities to predict death based on ML usually rank age 
as one of the most influential  variables39,40, in fact, a meta-analysis with 611,583 patients demonstrates an age-
related increase in mortality. Thus, the highest mortality occurs in patients > 80 years, in whom it was 6 times 
higher than in younger  patients41. Similarly, gender is an important feature for several ML-based  studies39,42, our 
model identified that male patients are more likely to die, perhaps due to the distribution of our data (OR = 2.41, 
95% CI: 2.11, 2.75), which is in agreement with previous  work27,28. Similar to our model, another ML-based 
study identified obesity as an important  feature43. However, to the best of our knowledge, this is the first time 
that a model reports osteoarthritis as an important feature. The beta values in the ensemble model showed that 
osteoarthritis is associated with less risk of COVID-19–related death (Supplementary Table S2). This might be 
in agreement with a study using UK biobank data (OR = 0.84, 95% CI 0.65–1.08), although it is not statistically 
 significant31. In addition, the osteoarthritis distribution in our population is not statistically associated with the 
patient’s final condition. Note that, although we have no conclusive evidence on this, patients with osteoarthri-
tis may be subjected to medication. Interestingly, we might think that medication could play a role in patients 
with osteoarthritis and COVID-19, however, Wong et al. reported that non-steroidal anti-inflammatory drugs 
(NSAIDs) medication is not associated with a higher risk of COVID-19 death for osteoarthritis  patients44. 
Dementia, together with the number of affected systems and the number of comorbidities, also appear among 
the most relevant characteristics, which is in agreement with the aforementioned factors in other studies, and 
in the case of dementia, with the results obtained from a cohort of 12,863 individuals from the UK Biobank 
who lived in the community and were over 65 years of age (1814 individuals ≥ 80 years of age) were tested for 
COVID-19, where it was seen that all causes of dementia increased the risk of death related to COVID-1945. 
Regarding accuracy, our LR-IPIP model obtained a balanced accuracy between 89 and 93% (ROC-AUC = 0.94) 
in predicting the patient’s final condition. Accuracy was similar to or higher than others if we compare our results 
with several studies. For instance, Gao et al. reported an accuracy between 80.6 and 96.8%18 which is a large 
confidence interval besides they used more complex clinical data points on admission. Chatterjee et al. reported 
a balanced accuracy of 72%20, perhaps due to the low number of COVID-19 patients. Finally, another ML-based 
study was able to predict the risk of death already at diagnosis with a ROC-AUC of 0.90221.

The ability of the LR-IPIP model to decide the hospitalization of new patients was not as efficient (balanced 
precision = 0.72; ROC-AUC = 0.75). Regarding the importance of the variables, ML again found that age, gen-
der, and the number of comorbidities were important. Among these, obesity reappears, and renal insufficiency 
and depression appear in a prominent place. Thus, it has been shown that acute renal failure is frequent among 
patients hospitalized for COVID-19 and that only 30% survived with the recovery of renal function at  discharge46.

This research has specific shortcomings. Firstly, due to the highly specific character of this cohort and its 
unavoidable novelty, we were unable to easily obtain an alternative cohort that may be used for replication and 
validation of our findings. Fortunately, this was partially overcome by the fact that individuals came from a variety 
of hospitals in our region with shared data management of electronic health records. As this was a retrospective 
study, the lack of some data was compensated for by including in the study only those demographic data and 
comorbidities that had been correctly recorded. Secondly, another difficulty stems from the strong data imbal-
ance inherent in the research question we make. We tried to compensate this with the development of the IPIP 
method. Thirdly, it must be noted that the data used to build the models was obtained in the absence of vaccina-
tion patterns and new variants of the SARS-COV-2 virus. However, the methodology to build the models can be 
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easily adapted to these new scenarios. Finally, a better understanding of the contribution of different symptoms or 
comorbidities to disease diagnosis could serve to introduce new features in future models, especially to improve 
the prediction of patients who do or do not require hospitalization.

In conclusion, this paper shows the analysis and development of predictive ML-based models with one of 
the largest COVID-19 datasets (n = 86,867) obtained from the health service of the Region of Murcia (Spain). In 
addition, the problem of class imbalance has been addressed by developing a new algorithm, called IPIP, which 
automatically deals with this problem. The model obtained allows predicting with high accuracy the final state 
of the patient, and with reasonable precision which patient will need to be hospitalized, simply by using the 
demographic data and comorbidities accessible at COVID-19 diagnosis by the clinicians. In fact, this LR-IPIP 
predictive model can be used, among other considerations, to prioritize triage of COVID-19 patients when 
health system resources are limited, as is often the case during different waves of COVID-19. To facilitate this 
prioritization of resources, both the corresponding web application and the predictive models are easily accessible 
in open repositories (GitHub), which will facilitate their adaptation to new datasets of future epidemic waves of 
this disease or other respiratory viruses in general.

Methods
Study design and participants. Patients who were diagnosed with COVID-19 consecutively enrolled 
between January 4, 2020, and February 4, 2021, comprised our cohort. A confirmed case with COVID-19 is 
defined as a positive result of antigen test or real-time reverse-transcriptase polymerase-chain-reaction (RT-
PCR) assay for nasal and pharyngeal swab specimens. Patients who were excluded from the "patient stratifica-
tion" table are patients either with an unavailable characteristic (6192 patients), or with still active COVID-19 
disease at the closing date of patient recruitment (9513 patients), or patients with erroneous values that could 
not be possible (1 patient). The data in our analysis and models included 86,867 confirmed COVID-19 patients 
(Fig. 1). Features included in our study derived from the "patient stratification" database which includes infor-
mation for each patient about age, sex, diabetes mellitus, dementia, obesity, heart failure, chronic obstructive 
pulmonary disease (COPD), asthma, arterial hypertension, depression, ischemic cardiomyopathy, stroke, renal 
insufficiency, cirrhosis, osteoporosis, osteoarthritis, arthritis, Acquired Immune Deficiency Syndrome (VIH), 
and chronic pain.

Access to personal data. The information of interest for the study has been obtained from the files of 
medical records of the Murcia Health Service in Spain, without the consent of the holders of the data. The need 
for informed consent was waived by the Bioethics Committee of Universidad de Murcia. This was done in 
accordance with the following criteria:

a. Article 157 of the General Data Protection Regulation (RGPD) recognizes the benefit that access to records 
can provide to research on diseases, so that the results of these studies could be more solid, based on a larger 
population.

b. Article 89.1 of the RGPD confirms this principle as long as the appropriate measures are adopted, in par-
ticular respect for the principle of minimization of personal data. These measures may also include the use 
of pseudonymized or anonymized data.

c. In turn, article 14.5 b) of the RGPD allows the data controller not to inform the interested parties when "said 
information is impossible or involves a disproportionate effort in particular for the treatment for purposes of 
public interest, scientific research purposes or historical or statistical purposes subject to the conditions and 
guarantees indicated in article 89, paragraph 1, or to the extent that the obligation mentioned in paragraph 
1 of this article may make it impossible or seriously impede the achievement of the objectives of such treat-
ment”.

d. The seventeenth additional provision of Organic Law 3/2018, of December 5, on the Protection of Personal 
Data and guarantee of digital rights allows the use of health data for scientific research purposes as long as 
these data have been submitted to prior treatment of pseudonymization or anonymization.

In accordance with the exposed precepts, consent is not necessary for the following reasons:

(1) Access to clinical records for scientific research purposes is lawful, as long as certain guarantees are adopted, 
including respect for the principle of data minimization and that the information obtained is adequately 
pseudonymized or anonymized.

(2) Obtaining consent would not be a legal requirement, since it would not only entail disproportionate efforts 
but could also hinder the development of the study due to the large amount of information that has been 
analyzed.

(3) The Murcia Health Service, in accordance with the provisions of the aforementioned regulations, has 
submitted this clinical information to an anonymization process, excluding any identifying information 
of the patients, making their identification impossible.

Data description and preprocessing. Epidemiological and clinical data for COVID-19 were collected 
from electronic medical records of the Regional Health System (SMS) from the Region of Murcia (Spain) and 
their use for this work and within all the experiments therein was approved by the Ethics Committee of the 
University of Murcia. Therefore, all experiments were performed in accordance with relevant guidelines and 
regulations. The database stratifying patients diagnosed with COVID-19 (a total of 102,573 patients) includes 
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age, sex, hospital, and primary care unit assigned to the patient, admission information and final status (i.e., the 
patient is cured or has deceased), information on comorbidities, number of chronic pathologies and number of 
systems affected, as well as risk stratum. Other data limiting the number of patients, such as hospital dispensing 
medication (9165 patients), length of stay in each department (8356 patients), information on vital signs (7524 
patients) or information on various symptoms presented by 89,769 patients (headache, fever, dizziness, vomit-
ing, among others) were not used in order to simplify the data necessary for triage of patients in situations of 
hospital system collapse during a pandemic outbreak.

Prediction models. We use machine learning to develop models about questions of interest: what the final 
condition of the subject will be and whether the individual will be hospitalized. We want to be able to answer 
these questions when the patient has just been diagnosed, therefore the only information that we can use for 
that is obtained in a medical review or the previous information available in the EHR of the patient. In this 
study, what we have at our disposition is a table that contains information on the age, sex, comorbidities, hos-
pitalization status, and final outcome of the patients. The available datasets for both questions are highly imbal-
anced, as there are far fewer deceased individuals (1141) than discharged patients (85,726), and there are more 
outpatients (81,386) than hospitalized (non-ICU 4736 and ICU 745). To address these issues, we propose a 
new imbalance-aware and ensemble-based machine learning method. It is called IPIP (Identical Partitions for 
Imbalance Problems). First, we hold out 20% of the data from the minority class and the same number of sam-
ples from the majority class to create a test set. The rest goes into a train set. We then divide the training data 
set into p balanced data sets. This requires setting up a hyperparameter of the algorithm, called variability of the 
proportion. By default, IPIP creates p perfectly balanced (50–50%) datasets for binary classification problems. 
This hyperparameter allows to specify a random interval of variability of that proportion. For example, a value of 
0.05 randomly increments, from 50% up to a 5% more, the proportion of the majority class for each of the p resa-
mples. In this particular problem, the proportion variability hyperparameter was set up to 0.05 for predicting 
the final condition. And for the hospitalization problem we used perfectly balanced datasets. These final values 
were obtained by empirically testing the range of values (Supplementary Fig. S5) how IPIP models behave at a 
range of proportion variability values. Once the p resamples are created, for each, we create a basic ML model. 
All models go into an ensemble whose response aggregation is a simple majority. IPIP selects p depending on n 
(number of samples). Higher values of n lead to lower values of p. For this particular dataset, 75% of the minor-
ity class samples of the train data leads to p = 7 subsets. Within each p iteration, it randomly splits into train and 
test datasets and generates a model with training data and testing with test data. If the new model improves the 
overall quality of the ensemble, it is added. If not, it randomly samples and tries again up to a max number of 
attempts. We use the test set to evaluate the candidate ensemble for improvement. When doing inference, the 
classifier predicts an observation as a member of the majority class when at least 75% of the models classified 
as negative (majority class) will be classified as negative. The final ensemble´s inference in production mode is 
generated by evaluating each one of the models that compose the final ensemble, if 50% of them classify a sample 
as negative (majority class), the final model classifies it as negative. Predictive models found at the literature are 
based on a variety of models: ensembles of decision  trees17, support vector machine classifiers, neural  networks18 
or just simply logistic regression lasso  models19. The IPIP model is an ensemble composed of a set of basic logis-
tic regression models created from different subsamples of the original data. The overall classifier predicts an 
observation as a member of the majority class when at least 75% of the models classified as negative (majority 
class) will be classified as negative. Therefore, the IPIP models are extremally efficient both in terms of comput-
ing and storage requirements.

We created two IPIP models to address each modeling question. One with a baseline algorithm, logistic 
regression, and the other with random  forests47 as basic models based on the Caret R  package48. All models were 
evaluated using five-fold cross-validation. Different values of the number of decision trees for the random forest 
models were tested, and we decided that each random forest model used 200 decision trees, where the impurity 
is the variable importance mode, which is the Gini index for classification. A tune grid was created to choose the 
better minimal node size of the trees (1, 11, or 21) and the number of variables to possibly split into each node 
(1, 4, 7, 10, 13, 16, or 19). To decide whether a basic model improves the ensemble or not, we relied on Cohen’s 
Kappa  metric49. That is, if adding a basic model to the set of basic models trained for a specific perfectly balanced 
subset improved the Kappa in the evaluation on the available test set of the new set of basic models concerning 
the previous Kappa values on the same evaluation set, we added that basic model to that set of basic models, 
otherwise it was discarded. We also obtained the following metrics: balanced accuracy, negative predictive 
value (NPV), positive predictive value (PPV), sensitivity, and specificity. In addition, we computed the Receiver 
Operating Characteristics Area Under the Curve (ROC-AUC) for the final ensemble model.

Statistical analysis. Continuous data are reported as median with interquartile range (IQR), and categori-
cal data are expressed as percentages (%). We also used odds ratio (OR) and 95% CIs. We adjusted OR by gender 
and age. Differences between groups were tested using the Mann–Whitney U for numerical variables, and χ2 
test or Fisher’s exact test was used to test significance for categorical data. Statistical analysis was performed by 
using R (version 3.6.3) with P-values significance threshold of 0.05.

Data availability
All the data used in this study were retrieved from the Servicio Murciano de Salud (SMS). All data produced in 
the present study are available upon reasonable request to the authors and the approval by Servicio Murciano de 
Salud (SMS). We developed a shiny app to share our model and to predict patient hospitalization https:// aleja 
ndroc ister na. shiny apps. io/ PROVIA.

https://alejandrocisterna.shinyapps.io/PROVIA
https://alejandrocisterna.shinyapps.io/PROVIA
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Code availability
The code required to reproduce the models and results are available at: https:// github. com/ anton iogt/ ipip.
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