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An energy and leakage current 
monitoring system for abnormality 
detection in electrical appliances
Md. Morshed Alam1, Md. Shahjalal1,2, Md. Habibur Rahman1, Himawan Nurcahyanto1, 
Aji Teguh Prihatno1,3, Youngjin Kim4 & Yeong Min Jang1*

Unsafe electrical appliances can be hazardous to humans and can cause electrical fires if not 
monitored, analyzed, and controlled. The purpose of this study is to monitor the system’s condition, 
including the electrical properties of the appliances, and to diagnose fault conditions without 
deploying sensors on individual appliances and analyzing individual sensor data. Using historical 
data and an acceptable range of normal and leakage currents, we proposed a hybrid model based 
on multiclass support vector machines (MSVM) integrated with a rule-based classifier (RBC) to 
determine the changes in leakage currents caused by installed devices at a certain moment. For this, 
we developed a sensor-based monitoring device with long-range communication to store real-time 
data in a cloud database. In the modeling process, RBC algorithm is used to diagnose the constructed 
device fault and overcurrent fault where MSVM is applied for detecting leakage current fault. To 
conduct an operational field test, the developed device was integrated into some houses. The results 
demonstrate the effectiveness of the proposed system in terms of electrical safety monitoring and 
detection. All the collected data were stored in a structured database that could be remotely accessed 
through the Internet.

List of symbols

Functions
f (·)  Decision function
k(·)  Kernel function

Parameters
δI  Angle between terminal voltage and current
δL  Angle between terminal voltage and leakage current
N  Number of appliances
θ  Weight vector
b  Biasing unit
Ck  kth cluster
dtVIL  XOR output ON-time for leakage current
dtVI  XOR output ON-time for total entering current
f   Frequency
Fk  Scaled feature
Icl  Capacitive leakage current
IL,T  Total returning current
IL  Total leakage current
Irl  Resistive leakage current
IT  Total enterning current
IXc  Capacitive current
IXlc  Sum inductive and capacitive current
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IXl  Inductive current
IZr  Resistive current
n  Number of features
p.f .  Power factor
P  Total active power
Q  Total reactive power
r  Pearson correlation coefficient
ST  Total apparent power
VLV  Terminal voltage
x  Input vector
ZL  Insulation impedence

Sets, index and subscripts
ap  Index of appliances
e  Index of end
i  Index of data sample
in  Entering moment
j  Complex number
k  Index of cluster
ot  Returning moment
s  Index of start
SoS  Set of state of system
t   Index of time
ThC  Set of threshold for critical condition
ThN  Set of threshold for normal condition
ThW  Set of threshold for warning condition

In the recent years, incidents of electrical fires have significantly enhanced because of an increasing number 
of electrical appliances penetrating into electrical distribution systems. In the United States, the third leading 
cause of fires in homes is cooking and heating equipment, accounting for 10% of the total fire  incidents1. Over 
the last few years, electrical fire incidents caused by the failure, malfunction, or degradation of electrical equip-
ment have caused significant casualties and damages. As the insulation of old or damaged appliances wears off, 
a higher amount of residual current flows through the appliances which generate a massive amount of heat at 
a particular point that may result in the insulation getting burned. This causes a short-circuit, which is respon-
sible for most fire incidents involving electrical  appliances1. This hidden danger can be effectively eliminated 
by quickly detecting the causes of faults in appliances through continuous motoring and warning systems. A 
residual-current device (RCD) that activates depending on a specified threshold is a common and popular device 
for determining leakage current. Besides the circuit breaker (CB) function, there are no monitoring systems to 
detect the condition of malfunctioning appliances.

Load monitoring has entered a new era because of the rapid growth of the IoT and cloud computing 
 technologies2. Furthermore, it is a vital technology for assessing appliance usage and consumption, as well as 
for establishing efficient energy-aware operations and diagnosing any unusual electrical activity in  appliances3. 
Intelligent control, review, and alarm for individual appliances could acquire the appliances’ activities easily, thus 
offering a viable solution for advanced electrical safety monitoring. Therefore, equipment for monitoring and 
detecting electrical fires has been developed and used as the most effective tools for preventing and managing 
electrical  fires4. Moreover, as people have become more conscious of electrical safety issues, there has been a 
growing need for monitoring the health of particular electrical  appliances3,5. Hence, the continuous monitoring 
and analysis of corresponding parameters will be a possible solution to ensure that the equipment is in a safe 
and serviceable condition.

In6, the ZigBee-based energy monitoring system is deployed in renewable energy and smart home systems, 
where sensor nodes are developed to perform switching applications and measure power parameters. With the 
integration of WiFi technology, Martani et al.7 developed time-series energy consumption monitoring systems 
by considering human activity and occupancy, and ElShafee et al.8 focused on the smart home system.

Their studies did not consider the leakage current monitoring system that is the key parameter for diagnosing 
an electrical appliance’s health. Furthermore, the authors focused on long-range (LoRa) based data communica-
tion systems when considering the monitoring issue in  factories9, PV systems, and smart cities. However, in most 
cases, the behavior of electrical appliances is not monitored and diagnosed with leakage current and insulation 
resistance. For understanding the behaviors of the appliance, different types of load categorized approaches (such 
as semi-intrusive, intrusive, and non-intrusive approaches) have been applied by considering the corresponding 
 parameters10–12. Therefore, the appliance’s leakage current depends on different parameters, such as the applied 
voltage, insulation, and environmental conditions.  In13, the appliance’s leakage current properties are analyzed on 
the basis of the non-intrusive approach, where the device is deployed in the systems without considering com-
munication gateway protocols.  In14, the time-domain waveform of the leakage current of the different insulator 
strings depending on the weather condition has been monitored where they have not focused on any particular 
communication technology for data acquisition. In high-voltage insulators, an alternative approach (i.e., radio 
service technology) is used to send data using optoelectronic  sensors15.  In16, the leakage current monitoring 
for outdoor insulator and distribution surge arrester has been performed, where the LabVIEWTM platform 
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was used for continuous monitoring and data processing instead of a data server. However, the frequency and 
time-domain analysis of leakage flux and current are used to develop a non-intrusive approach for identifying 
and discriminating field winding and damper faults on motor starting  time17. Moreover, the event detection-
based non-intrusive load monitoring  methods3,13 are applied to identify the casualties of the appliances. In the 
literature, they used some appliances and corresponding active and reactive power profiles for identifying them. 
However, it is difficult to follow the same procedure for each type of appliance while the penetration of them 
is more frequent. Therefore, the scheme is no longer important without considering incoming loads (new) in 
the applied system. To mitigate the discriminative classifier problem of the leakage current, the proposed state 
detection algorithm is being used in the system.

After years of improvement, several artificial intelligence methods have been developed. Among these numer-
ous methods, support vector machine (SVM)18,19, neural  networks20 and K-nearest  neighbor21 have become 
prominent topics in fault detection. SVM could theoretically analyze with the help of learning theory concepts. 
The advantage of the SVM over other machine learning techniques is that it minimizes the structural classifica-
tion risk of the training classifier whereas other techniques perform empirical risk minimization. In addition, it 
has the potential to handle various large classification problems with large feature spaces and can reach feasible 
performance in practical problems. However, the proposed system could not deal with the unsupervised learning-
based method because of the dynamic electrical appliance characteristic.

The SVM is being applied for detecting the faulty condition of the circuit breakers (CB) based on historic 
vibration measurement  data22. Liu et al. proposed a hybrid defect diagnostic model for water quality monitoring 
devices based on multiclass support vector machines (MSVM)23. For diagnosing the faulty condition of three-
phase induction motor with an external rotor-bearing system, Gangsar et al. has applied the MSVM algorithm 
while the features are obtained from the time-domain current and vibration  signals24. By using features from 
interharmonic voltages, the MSVM identifies the fault positions within the defective  zone25. Therefore, Kazemi 
et al. developed the extended Kalman filter-based SVM model to classify the three-phase residual currents in 
the primary winding of a transformer, where three residual signals are defined as the discrepancies between the 
measured and estimated three-phase  currents26. ESlami et al. adopted SVM for identifying high impedance arcing 
failures in a distributed generation integrated microgrid where principal component analysis and the Pearson 
correlation coefficient technique were used to scale down and select features,  respectively27. The  Ref28 offers a 
k-means-based classification algorithm for finding abnormalities in the residual current of a solar system. To 
identify the residual current defect in low voltage distribution networks, a cooperative training classification 
model based on an upgraded squirrel search method for a semi-supervised SVM and the k-nearest neighbor is 
applied  in29. A protection strategy based on least squares-SVM is designed and developed for residual current and 
touch  current30. All aforementioned study deal with SVM based different strategies for fault detection in different 
systems where the proposed system developed rule-based classifiers for detecting sensor fault and load current 
fault and MSVM is applied for leakage current fault through proper classification in a household environment. 
All of the aforementioned studies focus on SVM-based fault detection algorithms for various systems. On the 
contrary, the proposed system developed rule-based classifiers (RBC) for detecting sensor failure and load current 
fault, while MSVM is used for leakage current fault in a household environment through proper classification.

In this study, we propose a fault detection and monitoring system for electrical appliances based on RBC 
and MSVM. We design and build a microcontroller-based LoRa-sensor-node for data acquisition because of 
the low power consumption and long-range features of LoRa-based communication networks. We also integrate 
an AC-DC buck converter to supply power to the sensor. Following that, the system’s real-time fault is detected 
by RBC-MSVM model. Moreover, this is the first attempt to integrate RBC and MSVM for electrical system 
fault detection, which contributes to the advancement of monitoring systems in electrical appliances. Unlike in 
previous studies, the monitoring systems are no longer limited, specifically, in many electrical appliances. Since 
electrical characteristics may be easily interpreted, this cloud and classification-based continuous monitoring 
approach is preferred in many electrical systems. Unlike other existing safety devices, such as RCDs, miniature 
circuit breaker, and molded case circuit breaker, this will ensure the electrical system’s hazard-free operation. 
In contrast, the proposed system detects leakage current faults by classifying and differentiating them based on 
correlation and permissible limits acquired from a large amount of historical data in the corresponding system. 
The permissible range differed according to the system’s conditions; hence, the proposed scheme recognizance 
this issue because of higher precision.

The following are the advantages of using the proposed framework: All the possible electrical parameters can 
be known using a single device. Long-range communication is possible because of the deployed LoRa module. 
Data server will provide essential storage space for handling massive data from a large number of users. Apply-
ing the proposed technique for classifying the normal current and the leakage current will help in identifying 
the causes of fire in the systems. The real-time detection strategy allows to know the system condition before 
severe damage occurs due to the implementation of multi-class classification. The user may monitor and recog-
nize the present state of the building owing to the accessibility of the web server. The main contributions of our 
paper are: an integrated safety monitoring device (SMD) based on LoRa is designed and developed by which 
the electrical parameters can be measured. A sensitivity-based algorithm is implemented for observing and 
defining the system’s conditions by providing warning specifications. Smooth coordination is enabled through 
cloud-based control and management architecture for visualization, monitoring, and storing of real-time data. 
An RBC-MSVM based classifier is used to examine the system’s conditions where the feature selection method 
has been applied to obtain higher accuracy.

This manuscript is organized as follows: “Methodology” section covers the proposed system’s modeling such 
as device construction, mathematical modeling, and detection mechanism. “Results and discussion” section 
contains the simulation findings as well as the explanation that goes along with them. The conclusion of the 
proposed system is provided in “Conclusion” section.
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Methodology
The proposed system focuses on reducing fires caused by electrical appliances in any location through prompt, 
dependable monitoring and the use of a control scheme. The proposed system’s framework is depicted in Fig. 1; 
the process involves collaboration among SMDs, gateway systems, cloud servers, databases, detection algorithms, 
and visualization. SMDs are used for data acquisition, as shown in Fig. 1, and other necessary features are cal-
culated from the data. Each consumer’s data is transmitted via multiple LoRa gateway channels and uploaded 
to a cloud server at irregular intervals. The proposed algorithm then categorizes the data based on the accept-
able range of leakage current and the number of active appliances. The data from different places are stored and 
analyzed on the cloud platform because of the increasing number of installed SMDs. Afterward, we applied the 
proposed RBC-MSVM algorithm to identify the system’s abnormalities.

Figure 2 illustrates an overview of the proposed methodology, demonstrating the flows of sensing data and 
information to the cloud database. The system is divided into three parts: the appliance, the database, and the 
analysis. The appliance section is in charge of acquiring data and transmitting it to the data server via the LoRa 
module. The database section aims to collect and store sensor data in the database. The relationship between 
different variables was evaluated in the analysis section to identify the high coloration. Envisaging the house-
holds’ appliance specifications, we ascertained the acceptable leakage current to classify the system’s abnormali-
ties. The proposed algorithm will determine the present circumstance regarding the system’s existing issue by 
investigating the historical data. Furthermore, the analysis section displays the real-time load profiles, leakage 
current profiles, and the system’s condition. In the following subsection, the detailed methodology is described 
with other relevant information.
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Figure 1.  Architecture of the proposed system.
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Device modeling and specification. The schematic diagram of the electrical safety monitoring device is 
shown in Fig. 3. The device is designed for a single-phase connection rated at 220–380 V (AC) and has the fol-
lowing dimensions: width: 37.5 mm, length: 64.6 mm, and height: 38.2 mm. The LoRa device includes several 
sensors that measure electrical parameters such as total current, terminal voltage, and leakage currents. From 
the measured data, we calculated the additional data required for each case, such as total power flow, energy 
consumption, power factor, resistive and capacitive leakage currents, and insulation resistance. Furthermore, we 
design in such a way that a multi-step warning signal about the permissible range of total current and residual 
current concerning the CB’s capacity is provided.

The STM32L microcontroller unit (MCU) handles the overall computation and data indexing. Low-Pass filter 
and Voltage-Divider are being used in the hardware for better analog data acquisition. Moreover, the STM32L 
MCU is integrated into the LoRa transceiver device in the proposed system to observe and make a difference 
in normal conditions. The LoRa system is consisted of end devices, gateways, and a network server that form a 
star topology with the network server at the root, gateways at level one, and end devices as leaves. The sensed 
and measured information are accumulated into each LoRa packet. One dedicated channel has been assigned 
for transmitting the LoRa packet in such an interval that the device remains idle for a certain period in normal 
operation to reduce power consumption. Furthermore, the device transmits data at very short intervals during 
the transition from normal to critical conditions. The used LoRa module (SX1276), which is connected to the 
MCU, sends these data packets to the LoRa gateway module via the 902–928 MHz omnidirectional antenna with 
a maximum gain of 2dBi. The LoRa network operates in the sub-GHz industrial, scientific, and medical band with 
maximum transmit powers of 21.7 dBm and 14 dBm in the USA and Europe,  respectively31. The LoRa modula-
tion (proprietary chirp spread spectrum modulation) uses different types of physical layer packets with different 
lengths in time, parameterized by the so-called spreading factor (SF), which can take values SF ∈ Z|7 ≤ SF ≤ 12. 
The LoRa gateway is used to detect the fault location over a thousand meters because of its proprietary large area 
 coverage32. The SF depends on the communication range’s requirement, where the low value of SF means low 
coverage and vice versa. To store the transmitted data, the interface between the LoRa gateway and the network 
server is provided by cellular Internet protocol that uses the standard transmission control protocol (TCP).

Mathematical formulation. Figure 4 shows each possible approach of excessive leakage current flow. We 
demonstrated three scenarios: an insulation fault between the line and the ground, an insulation fault between 
the line and the neutral, and an appliance fault with the ground. However, Fig. 5 depicts the connection diagram 
and workflow of the proposed constructed device, which is deployed at the entry point of a low voltage power 
(i.e., 220–380 V) line in an electrical system (i.e., building, factory, and market). We consider the dynamic char-
acteristic of loads in the proposed systems because electrical appliances are either turned on or off based on the 
consumer’s demand. The total apparent power of the systems can be defined as follows for N loads:

(1)ST (t) =

N
∑

ap=1

{

Pap(t)+ jQap(t)
}

,

Figure 3.  Schematic structure of the safety monitoring device.
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where Pi and Qi present the active and reactive power of the individual appliance. Therefore, the total currents 
entering into the loads ( IT (t) = I1(t)+ I2(t)+ · · · ) is as follows:

where IXl,in(t) and IXc,in(t) are the inductive and capacitive currents of the practical load, respectively and 
IZr,in(t) = IT (t) cos δI ,i and IXlc,in(t) = IT (t) sin δI ,in are the resistive and inductive current flowing to the cir-
cuit, respectively. The δI ,in is also known as the power angle at normal conditions. Similarly, the total amount of 
returning current IL,T of the system can be defined as follows:

where IL,T (t) is defined as the total system current returning to the current sensor. IZr,ot(t) = IL,T (t) cos δI ,ot and 
IXlc,o(t) = IL,T (t) sin δI ,ot are the resistive and inductive current flowing to the circuit, respectively. Let’s consider 
a scenario of the system which is explained in Fig. 5.

The total leakage current ( IL ) flowing out of the connected appliance after considering residual current can be 
formulated as follows:

where the resistive and capacitive leakage currents are defined as Irl = IL(t) cos δL and Icl(t) = IL(t) sin δL , respec-
tively and δL is the angle between Irl and IL(t) . Therefore, insulation impedance ( ZL ) is equal to the LV bus (VLV ) 
voltage divided by the leakage current that flows through the insulation.

The quantity of leakage current is quite minimal when compared to the total load current because it only 
passes via the large insulating impedance of the faulty appliances during the breakdown of insulation. Figure 6 
depicts the vector diagram for measuring leakage current wherein the amount of leakage current has considered 
as large for better visualization. Since the load current is so high in comparison to the IL(t) , the total consumed 
energy does not differ considerably in normal conditions.

Data acquisition and classification. Figure 7 shows the SMD device layout. There are two current sen-
sors and one voltage sensor. One current sensor measures the total current of the system and the other sensor 
measures the leakage current of the system. For measuring the voltage, the terminal of the two wires should be 
placed as shown in Fig. 5. For measuring the current, the current sensor is only placed on the single wire while 
both of the wires will be entered inside the leakage current sensor. The leakage current sensor actually measures 
the difference between the two currents which is described in the Mathematical formulation section. For meas-
uring the phase shift between voltage and current, two operational amplifiers are used for zero-cross detection. 
Thereafter, both outputs are used as input of an XOR gate. The ON-time of XOR output ( i.e. time difference 
between two phases) is used to determine the phase shift between voltage and current. Finally, the power factor 
(p.f.) of the system is measured which is used to determine active and reactive components of the current.

(2)IT (t) = IZr,in(t)+ jIXlc,in(t)

(3)IXlc,in(t) = IXl,in(t)− IXc,in(t),

(4)IL,T (t) = IZr,ot(t)+ jIXlc,ot(t),

IT (t) = IL,T (t); at normal condition,
IT (t) �= IL,T (t); at leakage current condition.

(5)IL(t) = IT (t)− IL,T (t)

(6)IL(t) = Irl(t)+ jIcl(t),

(7)ZL = VLV (t)/IL(t).

(8)δI = f × dtVI × 360,

(9)p.f . = CosδI ,

Phase
Neutral

Load Load

Insulation Fault of Line
Appliance Leakage 

Current

Insulation Fault of Line

Ground

Figure 4.  Situation for excessive leakage current.
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where f and dtVI are defined as frequency and XOR output ON-time, respectively. For measuring the leakage 
current, we have used a leakage current sensor which is shown in Fig. 7. By using the leakage current and voltage 
sensor data, the phase angle ( δL ) between leakage current and terminal voltage is calculated, similarly. Thereafter, 
the resistive and capacitive leakage current are measured for the system, accordingly.

where f and dtVIL are defined as frequency and XOR output ON-time, respectively.
However, to ensure greater system security, three warning types are provided. In this case, the over-current 

protection warning is designed based on the capacity of the deployed CB, whereas a multi-step warning is 
designed for leakage current protection by differentiating between resistive and capacitive residual currents. 
The consecutive state of the system SoS(t) for any consumer is classified by considering the system’s condition.

In the proposed scheme, we account for the two factors for classifying state and the other two factors for deter-
mining the type of appliance. Depending on the different threshold value ranges, the status is defined as 
SoS ∈

{

SoSIT , SoSIL , SoSIrl , SoSIcl
}

 . The dynamic states of the appliances in terms of total current and leakage 
currents are defined as SoSIT ∈

{

SoSNIT , SoS
W
IT
, SoSCIT

}

 , SoSIL ∈
{

SoSNIL , SoS
W
IL
, SoSCIL

}

 because of the envisaging 

three-level warning. For tracing the type of devices, the vulnerability of resistive SoSIrl ∈
{

SoSNIrl , SoS
W
Irl
, SoSCIrl

}

 

and capacitive leakage currents SoSIcl ∈
{

SoSNIcl , SoS
W
Icl
, SoSCIcl

}

 will be taken into consideration. Since the amount 

(10)δL = f × dtVIL × 360,

(11)SoS(t) =







SoSN ; System runs at normal condition
SoSW ; System runs at warning condition
SoSC; System runs at abnormal condition.

IL(t) Measurement

VLV(t) Measurement

IT(t) Measurement

I1(t)

I2(t)

IN(t)

IL,T(t)

IT(t)=I1(t)+I2(t)+
IL,T(t)=IL,1(t)+IL,2(t)

+
Normal Condi�on
IT(t)=IL,T(t)

Abnormal Condi�on
IT(t) IL,T(t)

Single Phas e Line
SMD Phas e Neutral

Figure 5.  Workflow of the proposed safety monitoring device.

Figure 6.  Vector diagram for measuring leakage current.
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of current flow is controlled by the number of contracted appliances and their power rating, the threshold range 
will be determined accordingly. For additional convenience, we have recommended the opportunity of providing 
different threshold values. The cut off value of the uninterruptible and healthy system can be defined as 
ThN ∈

{

ThNIT ,Th
N
IL
,ThNIrl ,Th

N
Icl

}

 . In the proposed system, we have considered the intermediate state between the 
secured and interrupting conditions. The set of range of the interim circumstance of the system is expressed as 
ThW ∈

{

ThWIT ,Th
W
IL
,ThWIrl ,Th

W
Icl

}

 . The excessive current flow causes vulnerable state in the system that is known 

as critical condition ThC ∈

{

ThCIT ,Th
C
IL
,ThCIrl ,Th

C
Icl

}

 . Therefore, the sanctioned constraints of distinguishable 
apprehension for the IT is as follows:

where ∀INT ,s ≈ 0 , ∀INT ,e ≈ ∀IWT ,s and IWT ,e ≈ ∀ICT ,s.

(12)INT ,s ≤ IT (t) ≤ INT ,e ,
{

INT ,s , I
N
T ,e

}

∈ ThNIT ,

(13)IWT ,s < IT (t) ≤ IWT ,e ,
{

IWT ,s , I
W
T ,e

}

∈ ThWIT ,

(14)ICT ,s < IT (t) ≤ ICT ,e ,
{

ICT ,s , I
C
T ,e

}

∈ ThCIT ,

Figure 7.  Hardware architecture of the safety monitoring device.
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However, the problem associated with leakage current may not remain in the overcurrent flowing system. 
Consequently, it is mandatory to comprise the leakage current detection to describe whether the system is secured 
or not. Similarly, the apprehensive state for leakage current will be ascertained based on the following constraints:

where ∀INL,s ≈ 0 , ∀INL,e ≈ ∀IWL,s and IWL,e ≈ ∀ICL,s . The probability of having a leakage issue in multiple devices at 
the same time is relatively high because of a complete electrical environment inspection. Hence, differentiating 
resistive and capacitive leakage currents accelerates the process of finding the corresponding appliances. For this 
reason, we introduced the acceptable range of leakage current using the conditional statement for investigating 
hazardous circumstances. Furthermore, the permissible limit of the leakage current varies with appliance type, 
application, and condition. Therefore, the constraints for a reliable and healthy system are defined as follows:

(15)INL,s ≤ IL(t) ≤ INL,e ,
{

INL,s , I
N
L,e

}

∈ ThNIL ,

(16)IWL,s < IL(t) ≤ IWL,e ,
{

IWL,s , I
W
L,e

}

∈ ThWIL ,

(17)ICL,s < IL(t) ≤ ICL,e ,
{

ICL,s , I
C
L,e

}

∈ ThCIL ,

(18)INrl,s ≤ Irl(t) ≤ INrl,e ,
{

INrl,s , I
N
rl,e

}

∈ ThNIrl ,

(19)INcl,s ≤ Icl(t) ≤ INcl,e ,
{

INcl,s , I
N
cl,e

}

∈ ThNIcl ,

(20)IWrl,s < Irl(t) ≤ IWrl,e ,
{

IWrl,s , I
W
rl,e

}

∈ ThWIrl ,

(21)IWcl,s ≤ Icl(t) < IWcl,e ,
{

IWcl,s , I
W
cl,e

}

∈ ThWIcl ,

(22)ICrl,s < Irl(t) ≤ ICrl,e ,
{

ICrl,s , I
C
rl,e

}

∈ ThCIrl ,

(23)ICcl,s ≤ Icl < ICcl,e ,
{

ICcl,s , I
C
cl,e

}

∈ ThCIcl ,
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where 
{

∀INrl,s , ∀I
N
cl,s

}

∈ [0] , ∀INrl,e ≈ ∀IWrl,s , ∀I
N
cl,e ≈ I∀Wcl,s ∀I

W
rl,e ≈ ∀ICrl,s , and ∀IWcl,e ≈ ∀ICcl,s . By applying the given 

condition in Algorithm 1, we have determined the state of total and leakage currents. Therefore, we have applied 
Algorithm 2 to identify the current status of resistive leakage in the system. The procedure of finding the capaci-
tive leakage current state is identical to that of determining the resistive leakage current condition; we only 
provide Algorithm 2 here. Since the boundary of the clusters is very close to each other, the classification algo-
rithm may provide less accuracy. By considering this, we have scaled and re-scaled the features based on the 
following equations.

where Ck , xi , Fk are presented as kth cluster, ith data of the raw feature, and scaled feature which are selected to 
make up the cluster’s boundary.

(24)Ek(Ck , xi) = (1+ C2
k) ∗ xi ,

(25)Fk(Ck , xi) =
Ek(Ck , xi) ∗max(xi)

max(Ek(Ck , xi))
,
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Figure 8.  Flow chart of fault diagnosis system.
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Database and monitoring. The real-time data storing and monitoring added more value to the electrical 
safety analysis for understanding the system’s circumstances. Since the leakage current problem and the deterio-
ration of the appliance’s insulation occurred over time, a large amount of data is required to accurately determine 
the condition of the installed equipment as well as the entire system. As a consequence, the cloud  database33 is 
the best option for storing large amounts of data. Cloud computing is a model for providing convenient, on-
demand network access to a shared pool of configurable computing resources that can be rapidly provisioned 
and released with minimal management effort and interaction from service providers. Cloud computing can 
also help to reduce the administrative burden of program management. The cloud environment enables very 
diverse data sources to gather information, store it in the cloud database, and feed distinct applications.

In the proposed system, the real-time data packets from the LoRa gateway are sent to the cloud database. 
On a Windows 10 PC, MySQL version 8.0.19 (Oracle, Co., Austin, TX, USA)34 was used as a database manage-
ment system in the cloud (Microsoft, Redmond, WA, USA). MySQL is a multi-threaded, robust, and scalable 
open-source service, the platform used under either Oracle’s GNU General Public License or a standard business 
permit. However, the sensor data collected by the gateway is not uniform and contains noise. Following that, the 
database server begins intensive computational processing (such as summation, statistics, and data conversion). 
Finally, the data from several users are stored in the database, which will be used for further processing (such as 
feature extraction, training, and prediction).

Fault classification and detection. In the proposed system, RBC has been applied to determine the 
device and over-current fault. And MSVM has been used as a discriminative classifier of the system conditions. 
The flow chart of detecting faults is shown in Fig. 8. In our cases, four rules are generated to diagnose the faults 
describes as follows:

• Rule1: IF (Sensing data = yes) AND (Current level = normal) THEN the system goes normal
• Rule2: IF (Sensing data = yes) AND (Current level = abnormal) THEN the system goes over-current fault
• Rule3: IF (Sensing data = no) AND (Current level = normal) THEN the system goes device fault
• Rule4: IF (Sensing data = no) AND (Current level = abnormal) THEN the system goes both device and over-

current faults

For better classification accuracy, data cleaning, including duplicate and missing data, is conducted prior to 
categorizing the faulty condition. We have used Pearson’s correlation coefficient-based  technique35 to remove 
unnecessary and redundant information and minimize complexity and dimensionality in the proposed system. 
The density of correlation depends on the Pearson correlation coefficient known as Pearson’s r. Let’s consider two 
variable matrix ST = [ST1 , ST2 , · · · , STq ] and IL = [IL1 , IL2 , · · · , ILq ] , where q and q are represented as samples: 
¯γST = 1

q

∑q
a STa and ¯γIL = 1

q

∑q
b ILb . The Pearson correlation co-efficient can be defined as follows:

Similarly, the value of r is calculated by taking into account the other variables, with the feature being selected 
depending on the greater value of r.

To classify datasets, it tries to create an optimal hyperplane between two classes of the data  set19. The 
hyperplane acts as a decision boundary to categorize the data into different classes. The points nearer to the 
hyperplane called support vector, are used to determine the optimized hyperplane. For a given training sample 
{

(xi , yi)
}

, ∀i ∈ {1, 2, 3, ...., n} , where yi ∈ {+1,−1} represents class labels, optimal hyperplane is determined by 
the following mathematical expression:

where θ = [θ1, ...., θn] is n-dimensional vector of weights and xi = [x1, x2, ...., xn] is an n-dimensional input vector, 
and b is termed as the biasing unit. Here, n represents number of features. The optimization problem associated 
with finding the hyperplane can be expressed as follows:

(26)rST ,IL =

∑q,q
a=1,b=1(STa − γ̄ST )(ILb − γ̄IL )

√

∑q
a=1(STa − γ̄ST )

2
√

∑q
b=1(ILb − γ̄IL )

2
.

(27)θTxi + b = 0,

Table 1.  Kernel function for the proposed system.

Type of Kernel function Kernel function

Linear xTxi + c

RBF exp
(∣

∣

∣
−

�x−xi�
2

2σ 2

∣

∣

∣

)

Poly
(

xTxi + c
)p

Sigmoid tanh
(

xTxi + c
)
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Figure 9.  Installation of the SMD with CB.

Figure 10.  (a) Map with nodes’ positions and (b) Safety monitoring device.
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Figure 11.  RSSI status of the several LoRa sensor nodes.
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which is subjected to,

The final nonlinear decision function can be obtained as follows:

To come up with a set of complex features, SVM uses a technique called Kernel k(xi , x) . The value k(xi , x) corre-
sponds to ϕ(xi).ϕ(x) which maps linearly non-separable patterns into a higher dimension feature space. Finally, 
the decision function can be modified as follows:

In this study, we have performed the classification experiment taking account into four kernel functions 
(linear, polynomial, radial basis function (RBF), sigmoid) described in Table 1. Moreover, we have used one 
versus rest manner multiclass approach. According to this approach, for a mth class classification problem mth 
class are trained as positive samples while the rest are treated as negative  samples21,36.

Results and discussion
The proposed SMD is implemented in a real-world system to ensure its accountability and efficacy. Therefore, 
we integrated the system in a residential building to evaluate the proposed detection technique, in which the 
device is placed at the building’s power line entrance point. The installation of SMD is depicted in Fig. 9, with 
various points noted for interpretation. Two independent current sensors have been installed next to the main 
CB to detect total and leakage currents. Therefore, single voltage sensor has measured the terminal voltage. Dur-
ing the experiment, we have deployed more than 30 units in Daejon, South Korea. From this, we have selected 
five buildings that have excessive leakage current. In this experimental study, we have measured the total active 
power, voltage, current, leakage current (resistive, capacitive, and total), frequency, p.f., and insulation resistance 
to extract some exigent features for performing classification in turn. The system’s condition is also determined 

(28)min(θ)
1

2

n
∑

i=1

(θ)2 =
1

2
�θ�2 =

1

2
θTθ ,

(29)θTxi + b ≥ +1 if yi = +1,

(30)θTxi + b ≤ +1 if yi = −1.

(31)f (x) = sign

(

n
∑

i=1

αi

(

θTxi

)

+ b

)

.

(32)f (x) = sign

(

n
∑

i=1

αik(xi , x)+ b

)

= sign

(

n
∑

i=1

αi(ϕ(xi).ϕ(x))+ b

)

.
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Figure 12.  Average RSSI with different distance.

Figure 13.  Total power monitoring result in B1.
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on the basis of the proposed algorithm. The real-time measured data are accumulated into each LoRa packet. 
The LoRa gateway receives the data and sends it to the server through the Internet by the TCP/Internet proto-
col. The cloud database enables us to perform real-world verification: monitoring a large number of electrical 
systems and storing a large amount of data. The study with the proposed system lasted for a few months due to 
the necessity of a large amount of data.

Moreover, the LoRa transmitting node’s position concerning the GW has been represented in the MAP as 
shown in Fig. 10a. And Fig. 10b shows the proposed manufactured electrical safety monitoring device. The 
LoRa received signal strength indicators (RSSIs) for the five different buildings are represented in Fig. 11. The 
farthest building ( B1 ) from the LoRa gateway is located at 117 m distance and experiences RSSI of − 110.18 
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Figure 14.  Data sample of (a) Total leakage current, (b) Resistive leakage current and (c) Capacitive leakage 
current for B1.

Figure 15.  Clustering result of total leakage current for B1.
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Figure 16.  Clustering result of resistive leakage current for B1.

Figure 17.  Clustering result of capacitive leakage current for B1.

(a) (b)

(c) (d)

Figure 18.  Probability distribution graph of (a) Leakage currents (before clustering), (b) Total leakage current, 
(c) Resistive leakage current, and (d) Capacitive leakage current (after clustering) for B1.
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dBm on average. However, B5 has the lowest RSSI value (− 111.4 dBm on average) as it faces a higher amount 
of attenuation due to the building blockage than B1 . Among the five buildings B2 is the nearest and located 20 
m farther from the gateway. It receives LoRa packets with an RSSI value of − 87.17 dBm on average and has 
the lowest deviation in RSSI values due to almost uniform path loss gain. Figure 12 shows the distribution of 
average packet RSSI variation with the distance. The sensor nodes located at 73 m and 100 m distances have 
the highest and lowest variation in RSSI, respectively. Moreover, we have tested the LoRa packet loss rate (PLR) 
while receiving transmitted packets at the LoRa gateway node. We observed a PLR of 0.5% at the communica-
tion distance of 20 m. When we considered a non-line of sight communication at about 120 m the successful 
packet reception rate was decreased slightly. At 120 m communication distance which is the maximum value in 
our case, we evaluate a PLR of 2%.

One monitoring sample result of building 1 ( B1 ) is shown in Figs. 13 and 14. The total power, total leakage, 
resistive leakage, and capacitive leakage currents profile are depicted for a few days when the connected load 
alteration is perceptible. Hence, we showed the data from 0:00 (8/12/2020) to 23:58 (8/18/2020) at an irregular 
interval from the approximately six-month data. As shown in the figure, the leakage current increases to about 
6.5 mA at the moment of the raising of the connected load and restores to normal at the moment of removing 
the load. However, the proposed algorithm is applied to obtain the optimal decision boundary referred to as the 
target value. By applying the algorithm, the clustered result of leakage current is illustrated in Figs. 15, 16 and 
17, where the three clustered regions are traced with several colors. Hence, we have presented the normal data 
sample to a trained data sample of leakage currents after cleaning and profiling them. As shown in the figures, 
the leakage current increases by approximately 8 mA, where the resistive and capacitive leakage currents reach 
6.5 and 6.51 mA, respectively. Within the data acquisition time, the event rate of undergoing critical and warning 
conditions is much lower than that in normal conditions, where the critical moment frequency of the resistive 
leakage current is higher than that of the capacitive leakage current. We analyzed the relationship between the 
features by using the features selection technique to select five out of eight.

Figure 18 presents the continuous probability density of the leakage currents. We aimed to show the data 
distribution of each clustering range in this figure. In Fig. 18a, the distribution density of total and leakage cur-
rents in different observations is presented without considering clustering. From the figure, the flow of leakage 
current in the middle zone’s range is higher than the other two in this building. Similarly, the clustering range of 
each class is determined by the permissible limits for total, resistive, and capacitive leakage currents, as illustrated 
in Fig. 18b–d. Since leakage current warnings can be caused by either the system’s resistive or capacitive load, it 
can occasionally offer imbalanced data distribution of resistive and capacitive leakage currents.

(a) (b)

(c) (d)

Figure 19.  ROC curve of MSVM classifier for total leakage current with (a) linear kernel; (b) RBF kernel; (c) 
polynomial kernel; and (d) sigmoid kernel for B1.
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For example, the system runs with the critical condition because of the leakage current, but the resistive leak-
age current is quite higher than the capacitive leakage current. In these cases, the possibility of resistive leakage 
current for the critical condition will be higher, whereas the capacitive leakage current will be responsible for 
normal or warning conditions. The probability density distribution of resistive and capacitive leakage currents 
will not be the same in this condition.

To execute the MSVM model, we have used an HP Z8 G4 Workstation with 256 Gb of Memory and Intel(R) 
Xeon(R) Gold 5222 CPU @ 3.80GHz 3.79 GHz processors. For calculating the computational time of a single 
MSVM model, a sample size of 2000 samples are used and 5.8786 seconds is spent on the whole execution. As a 
result, a single detection takes an average of 2.8816 milliseconds to compute. Since we have implemented three 
different models to detect abnormalities, the aggregated MSVM model takes 13.2159 seconds to complete the 
execution. Consequently, a single detection for the combined model takes an average of 6.6079 milliseconds to 
compute.

Therefore, for evaluating the performance of the proposed model, the receiver operating characteristic (ROC) 
curve for multi-class classification in three different cases is considered. Moreover, the area under the curve 
(AUC) summarizes the ROC curve that measures a model’s ability to differentiate among classes. The ROC curve 
consisted of true positive rate (TPR) and false positive rate (FPR) presenting the performance of the MSVM 
classification model at all classification thresholds. The TPR and FPR can be defined as follows:

where TP = number of true positives, TN = number of true negatives, FP = number of false positives, and FN = 
number of false negatives. Furthermore, accuracy and F1-score (i.e. calculated from recall and precision) are two 
performance indices that are considered to evaluate the performance of the proposed MSVM. The mathematical 
formulation of accuracy and F1-score for the MSVM are expressed as follows:

TPR =
TP

(TP + FN)
,

FPR =
FP

(FP + TN)
,

(a) (b)

(c) (d)

Figure 20.  ROC curve of MSVM classifier for resistive leakage current with (a) linear kernel; (b) RBF kernel; 
(c) polynomial kernel; and (d) sigmoid kernel for B1.
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To distinguish the performance of the RBC-MSVM classifier, we performed classification on varying kernel 
functions. Figure 19 illustrates the ROC curve and AUC of the MSVM model with different kernel functions in 
the case of total leakage current fault classification. The MSVM-RBF model has higher AUC, indicating that it is 
better at distinguishing between negative and positive classes, as seen in the figures. Furthermore, Table 2 shows 
the accuracy and F1-score of the implemented RBC-MSVM model. The results show that the MSVM-Linear, 
the MSVM-RBF, and the MSVM-Poly achieve higher accuracy and F1-score among the four MSVM models. 
Moreover, it also shows that the MSVM-Linear and MSVM-RBF achieve Accuracy = 98.77% and F1-score = 
98.12% where MSVM-RBF has Accuracy = 97.74% and F1-score = 97.69%. The results demonstrate that the 
MSVM-Linear predicts all classified classes with less probability while MSVM-RBF has a greater probability. 
Despite the higher accuracy and F1-score of MSVM-Linear, the MSVM-RBF is highly convinced in its prediction. 

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
,

F1− Score =
TP

TP + .5(FP + FN)
.

(a) (b)

(c) (d)

Figure 21.  ROC curve of MSVM classifier for capacitive leakage current with (a) linear kernel; (b) RBF kernel; 
(c) polynomial kernel; and (d) sigmoid kernel for B1.

Table 2.  Accuracy and F1-score of RBC-MSVM algorithm for detecting the fault.

Cases KPI MSVM-linear (%) MSVM-RBF (%) MSVM-poly (%) MSVM-sigmoid (%)

Total
Accuracy 98.77 97.74 95.25 58.82

F1-score 98.12 97.69 95.14 32.88

Resistive
Accuracy 92.89 89.88 82.3 47.03

F1-score 90.11 87.98 81.41 31.52

Capacitive
Accuracy 94.56 93.38 87.65 37.89

F1-score 95.75 93.57 88.52 32.42
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In addition, the MSVM-RBF and the MSVM-Poly also provide comparable results, with MSVM-RBF having a 
substantially better ROC curve than MSVM-Poly.

In the case of resistive leakage current fault classification, the ROC curve and the AUC results are presented 
in Fig. 20. According to the figures, the MSVM-Linear and the MSVM-RBF predict all classification classes with 
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Figure 22.  The monitoring samples results of (a) B2 , (b) B3 , (c) B4 , and (d) B5.

Table 3.  Accuracy and F1-score of RBC-MSVM algorithm for detecting the total leakage current fault.

Buil. No. KPI MSVM-linear (%) MSVM-RBF (%) MSVM-poly (%) MSVM-sigmoid (%)

B2
Accuracy 98.23 95.56 97.79 64.62

F1-score 97.64 89.86 95.36 26.19

B3
Accuracy 98.25 95.42 96.39 51.42

F1-score 98.29 95.6 96.51 36.96

B4
Accuracy 97.38 94.71 92.1 39.48

F1-score 97.35 94.65 92.75 31.09

B5
Accuracy 91.17 91.67 90.53 49.25

F1-score 88.58 88.67 88.43 22.09

Table 4.  AUC values of RBC-MSVM algorithm for detecting the total leakage current fault.

Buil. No. Conditions MSVM-linear MSVM-RBF MSVM-poly MSVM-sigmoid

B2

Normal 1.00 1.00 1.00 0.88

Warning 0.94 1.00 0.86 0.27

Critical 1.00 1.00 1.00 0.09

B3

Normal 1.00 1.00 1.00 1.00

Warning 0.81 0.95 0.96 0.59

Critical 1.00 1.00 1.00 1.00

B4

Normal 0.99 0.96 0.97 0.66

Warning 0.84 0.64 0.59 0.58

Critical 1.00 1.00 1.00 1.00

B5

Normal 0.99 0.97 0.97 0.83

Warning 0.88 0.88 0.88 0.64

Critical 1.00 1.00 1.00 0.86
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a comparable probability. And Table 2 shows both models possess 92.89% and 89.88 % accuracy, respectively, 
whereas F1-scores are 90.11% and 87.98 %. Consequently, the MSVM-RBF is more accurate in its prediction. 
Figure 21 presents the ROC curve and the AUC results for capacitive leakage current fault classification. The 
Table 2 shows that the MSVM-Linear outperforms the others in terms of accuracy and F1-score metrics. How-
ever, the value of AUC for MSVM-Linear in three classes are 0.99, 0.70, and, 1.00 while the MSVM-RBF has 0.95, 
0.81, and 0.97. In the case of warning data classification, the MSVM-linear acquires a very poor AUC value than 
the MSVM-RBF. Consequently, the MSVM-linear show poor classification performance with low probability 
than the MSVM-RBF.

Following Fig. 22a–d depicts the variation of power and leakage current for the different periods received 
from the devices installed in separated buildings. We have also observed decomposed resistive and capacitive 
leakage current components to evaluate the effectiveness of the proposed MSVM classifier. Tables 3, 5, and 7 
exhibit overall accuracy and F1 scores, while Tables 4, 6, and 8 provide AUC scores of RBC-MSVM based clas-
sifiers on household data.

Overall, the accuracy of the MSVM-Linear models appear to be sufficient for most of the building, although 
the MSVM-RBF models have higher AUC values. In the scenario of leakage current fault classification, the 

Table 5.  Accuracy and F1-score of RBC-MSVM algorithm for detecting the resistive leakage current fault.

Buil. No. KPI MSVM-linear (%) MSVM-RBF (%) MSVM-poly (%) MSVM-sigmoid (%)

B2
Accuracy 96.15 95.92 94.15 67.62

F1-score 93.00 92.24 90.10 26.89

B3
Accuracy 94.12 92.38 82.27 65.86

F1-score 92.18 90.25 74.91 48.77

B4
Accuracy 92.94 91.31 86.50 30.11

F1-score 92.06 90.53 86.16 30.76

B5
Accuracy 91.85 91.45 90.30 49.00

F1-score 89.75 89.31 88.36 21.92

Table 6.  AUC values of RBC-MSVM algorithm for detecting the resistive leakage current fault.

Buil. No. Conditions MSVM-linear MSVM-RBF MSVM-poly MSVM-sigmoid

B2

Normal 1.00 1.00 0.99 0.92

Warning 0.93 0.92 0.94 0.66

Critical 1.00 1.00 1.00 0.95

B3

Normal 1.00 0.99 1.00 1.00

Warning 0.79 0.91 0.94 0.46

Critical 1.00 1.00 1.00 1.00

B4

Normal 0.98 0.97 0.96 0.63

Warning 0.71 0.70 0.72 0.60

Critical 0.99 0.99 0.98 0.97

B5

Normal 1.00 0.96 0.95 0.85

Warning 0.89 0.88 0.86 0.75

Critical 1.00 1.00 1.00 0.87

Table 7.  Accuracy and F1-score of RBC-MSVM algorithm for detecting the capacitive leakage current fault.

Buil. No. KPI MSVM-linear (%) MSVM-RBF (%) MSVM-poly (%)
MSVM-
sigmoid (%)

B2
Accuracy 86.08 88.17 84.92 54.00

F1-score 79.67 86.11 76.08 52.3

B3
Accuracy 89.75 91.94 86.71 49.79

F1-score 73.29 89.98 84.95 49.95

B4
Accuracy 93.94 95.5 84.94 48.06

F1-score 86.64 88.4 84.53 41.24

B5
Accuracy 86.6 92.15 85.6 38.38

F1-score 85.26 88.84 83.13 35.28
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highest accuracy and F1 score for B3 are 98.25% and 98.29% , respectively, with AUC scores of 1.00, 0.81,  and 
1.00. Contrariwise, the MSVM-RBF models achieve comparable accuracy and F1 score with higher AUC values. 
Tables 3 and 4 show that the MSVM-Linear models outperform the others in terms of accuracy and F1 score, 
although the MSVM-RBF models detect all categorized classes more consistently. However, feature selection 
has evolved into a unique criterion for achieving acceptable accuracy. When the nature of the current changes, 
the accuracy of different kernel functions changes dramatically. During resistive leakage current fault classifica-
tion, the MSVM-Linear classifier attained a maximum accuracy and F1 score of 96.15% and 93.00% for B2 with 
AUC scores of 1.00, 0.94,  and 1.00, whereas MSVM-RBF and MSVM-Poly demonstrated poorer performance 
metrics. By analyzing and comparing the results from Tables 5 and 6, the MSVM-Linear models perform better 
than others in terms of accuracy and F1 score, as well as the higher probability of detecting all categorized classes.

Furthermore, Tables 7 and 8 show the results for capacitive leakage current fault classification. The maximum 
accuracy and F1-scores for B4 , which belongs to the MSVM-RBF model, are 95.15% and 88.40%, respectively. 
The MSVM-RBF models had greater accuracy, F1 Score, and AUC values in most of the households, indicating 
that they are better at properly detecting and distinguishing between negative and positive classes, as shown in 
the Tables 7 and 8.

However, due to the nearly equal distribution of data into three clusters, the performance of the classifier for 
leakage current fault detection is significantly greater than other fault classification approaches. From the Tables, 
it can be observed that the performance of the Linear kernel outperforms other kernel functions in most cases of 
total leakage and resistive leakage current. The main underlying reason of Linear kernel outperforms is that the 
data nature is becoming more linear after the feature’s scaling. The total leakage and resistive leakage current data 
are more linear than capacitive leakage current in the case of some houses. As a consequence, the MSVM-RBF 
has been outperformed for capacitive current. Moreover, the volume of data sample of each category is also an 
important factor for achieving higher accuracy, F1-score, and AUC scores.

Conclusion
This paper has presented a cloud-based electrical appliance’s health status monitoring system using LoRa con-
nectivity. In this study, starting from designing the sensor until detecting the leakage current fault is elucidated. 
The scheme aims at developing a data-driven method to learn the permissible range of leakage current in finding 
the possible features by analyzing the relationship among different variables and detecting the fault by classifying 
the real-time data. The real-time data is successfully collected and stored in the cloud server through SMD and 
LoRa gateway. To assess the feasibility and performance of the proposed system, the RBC-MSVM based classifica-
tion method is implemented on five buildings, yielding the highest accuracy ( 98.23% ) and the F1 score ( 97.64% ) 
when the system’s circumstances are appropriately distinguished. Furthermore, its fault detection capabilities 
and rapid detection time (on average 6.67 ms) suggest that it is commercially feasible. The MSVM classifier 
combined with the Linear/RBF kernel functions and RBC is a promising option for fault diagnosis of electrical 
safety monitoring equipment, based on the preceding results. In the future, the implementation of fault detection 
scheme on edge server will enable more accurate analysis of electrical appliance conditions and eliminates the 
sudden destructive incidents in the electrical system.

Data availability
The data that support the findings of this study are available from Information Technology Research Center 
(ITRC) but restrictions apply to the availability of these data, which were used under license for the current study, 
and so are not publicly available. Data are however available from the authors (Yeong Min Jang, email: yjang@
kookmin.ac.kr ) upon reasonable request and with permission of ITRC.
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Table 8.  AUC values of RBC-MSVM algorithm for detecting the capacitive leakage current fault.

Buil. No. Conditions MSVM-linear MSVM-RBF MSVM-poly MSVM-sigmoid

B2

Normal 0.98 0.98 0.98 0.50

Warning 0.98 0.97 0.97 0.50

Critical 1.00 1.00 0.98 0.79

B3

Normal 0.89 1.00 1.00 0.93

Warning 0.92 0.94 0.86 0.84

Critical 1.00 1.00 1.00 0.98

B4

Normal 0.99 0.99 0.99 0.72

Warning 0.99 1.00 0.99 0.76

Critical 0.99 0.96 0.99 0.21

B5

Normal 0.95 0.95 0.94 0.41

Warning 0.94 0.94 0.93 0.41

Critical 0.98 0.92 0.98 0.47
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