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Unconventional pairing 
in few‑fermion systems at finite 
temperature
Daniel Pęcak1,2* & Tomasz Sowiński1,3

Attractively interacting two‑component mixtures of fermionic particles confined in a one‑dimensional 
harmonic trap are investigated. Properties of balanced and imbalanced systems are systematically 
explored with the exact diagonalization approach, focusing on the finite‑temperature effects. Using 
single‑ and two‑particle density distributions, specific non‑classical pairing correlations are analyzed 
in terms of the noise correlations—quantity directly accessible in state‑of‑the‑art experiments with 
ultra‑cold atoms. It is shown that along with increasing temperature, any imbalanced system hosting 
Fulde–Ferrel–Larkin–Ovchinnikov pairs crossovers to a standard Bardeen‑Cooper‑Schrieffer one 
characterized by zero net momentum of resulting pairs. By performing calculations for systems with 
different imbalances, the approximate boundary between the two phases on a phase diagram is 
determined.

The appearance of non-classical correlations collectively induced by attractive interactions between fermions is 
one of the most spectacular macroscopic manifestations of quantum mechanics. As justified by Bardeen, Cooper, 
and Schrieffer  in1 (BCS), it is directly responsible for the remarkable phenomenon of superconductivity—a 
flow of an electric current without any resistance—discovered by Onnes over a hundred years  ago2. In the case 
of homogeneous bulk systems, an existence of pairing induced by attractions is explained on fundamental 
grounds by showing that for any non-vanishing attractions the system is forced in a nonperturbative manner to 
rebrand its ground state and minimize energy by forming pairs (called Cooper pairs) composed by opposite-
spin fermions having exactly opposite  momenta3,4. Later it was argued that this argumentation is rigorously 
valid only for perfectly balanced systems, i.e., when both components have exactly the same Fermi spheres. In 
a more general scenario, when the system is no longer symmetric with respect to the exchange of components, 
pairing correlations are still favored but resulting pairs may have non-vanishing center-of-mass momentum, as 
explained independently by Fulde and  Ferrel5 and Larkin and  Ovchinnikov6 (FFLO). This observation triggered 
many investigations aimed to understand different properties of such systems (see for  example7–18 and citations 
within) and in consequence to unquestionably confirm that such pairs do exist. Unfortunately, indisputable 
experimental evidence is still lacking. In three-dimensional cases, one of the recognized obstacles is the fact that 
the final FFLO signal is much less noticeable since any non-zero value of finite net momentum has no unique 
direction in space. In consequence, the condensation of pairs is spread among different two-particle orbitals and 
the FFLO phase is stable in a quite small region of the phase  diagram19. It is argued that systems with reduced 
dimensionality (particularly one-dimensional systems) may serve as a promising bypassing platforms for FFLO 
 detection20–27. For recent reviews  see28,29. The universal nature of such correlations in different number of spa-
tial dimensions can be seen through the variety of physical systems that are studied. From nuclear matter and 
neutron  stars30–32, through organic  superconductors33–35 and heavy-fermion systems in solid state  physics36–38, 
up to ultracold  gases28.

Significant experimental progress on ultracold atomic systems has opened many interesting and non-obvious 
paths for exploration. One of them is related to the ability of very precise control of the number of particles in a 
system. Pioneering experiments of this  type39–41 have opened an alternative route to study quantum many-body 
systems from the side of mesoscopic  phenomena42,43. Amidst a flurry of different ideas related to such small quan-
tum systems, recently it has been theoretically spotted that small mixtures of attractively interacting fermions may 
host correlations very similar to pairing known for bulk  systems44–50. Depending on inter-component imbalance, 
they may serve as suitable platforms for observing unconventional pairing  mechanisms51. Very recently, these 
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theoretical considerations have taken on new importance since innovative methods for detecting and measur-
ing inter-particle correlations in such systems have been just  developed52–54. The majority of previous works 
have mainly focused on different ground-state properties or some specific dynamical scenarios of such systems 
with repulsive interactions. In this work, we aim to go beyond these schemes and to extend recent discussion 
on pairing (the conventional BCS as well as the unconventional FFLO) to the situation when the system is pre-
pared in a mixed state of a given temperature. In this way, we want to establish another theoretical link between 
few-body problems and finite-temperature results obtained recently for a large number of particles. Particularly, 
we want to make a correspondence with previously obtained Monte Carlo predictions and solutions based on 
the Bogoliubov-de Gennes method for harmonically trapped mixtures of  fermions55–57. It is worth noticing 
that on the repulsive branch of interactions some theoretical analyses of the impact of finite temperatures were 
presented  already58–61. Although finite-temperature effects for attractively interacting few-fermion systems were 
not deeply studied, they can be important from the experimental perspective, since BCS-like correlation has 
been already  measured62.

The system studied
We consider an effectively one-dimensional mixture of two fermionic components σ ∈ {↑,↓} consisting of N↑ 
and N↓ particles of the same mass m, and trapped in an external harmonic oscillator potential of frequency ω . 
We assume that on a time scale of considered experiments there are no relevant physical channels causing spin 
flips, thus the numbers N↑ and N↓ are independently conserved quantities. In the case of experiments with ultra-
cold alkaline atoms, this assumption is well-justified. In the second-quantization formalism the Hamiltonian 
of the system reads:

where the fermionic field operator �̂σ (x) annihilates a particle from a component σ at position x. It obeys 
standard anti-commutation relations {�̂σ (x), �̂

†
σ ′(x′)} = δσσ ′δ(x − x′) and {�̂σ (x), �̂σ ′(x′)} = 0 . The dimen-

sionless parameter g is related to the one-dimensional interaction strength. In the effective one-dimensional 
model studied, it can be obtained from the three-dimensional counterpart, by assuming that transverse motion 
is completely frozen (for example by very strong confinement) and thus it can be integrated  out63. It means that 
the value of g depends on the transverse width of the system. This gives one of possible ways to tune its value. 
Another possibility is granted thank to internal electronic structures of particles, which, although completely 
irrelevant for spatial dynamics, give a tool for controlling inter-particle scattering via the Feshbach  resonances40,64. 
Since the Hamiltonian does commute with number operators N̂σ =

∫

dx �̂†(x)�̂(x) we analyze its properties in 
subspaces of fixed N↑ and N↓ . To get better correspondence with standard description in the large system limit, 
we introduce an intensive quantity characterizing imbalance between components, i.e., the global polarization

Note, that the Hamiltonian (1) is fully symmetric under exchange of components. It means that systems 
with opposite global polarisations ( P and −P ) have exactly the same properties provided that labels ↑ and ↓ are 
adequately exchanged. Therefore, without losing generality, we can limit ourselves to cases with P ≥ 0.

Many‑body spectrum
To get a better understanding of the properties of the system at finite temperature, let us first discuss spectral 
properties of the many-body Hamiltonian (1) on the attractive branch of interactions. In contrast to the repul-
sive  one58,65, this has not been extensively studied in the literature. It is quite natural that in the case studied the 
spectrum is not bounded from below when attractive g is increasing. In fact, the model (1) is not appropriate for 
sufficiently large attractions since it completely neglects the possible formation of molecules. However, for finite 
and reasonable g, the model appropriately captures the system’s  properties45,46 and is experimentally  relevant40.

To present fundamental features of the many-body spectrum of the system studied, we take as an example 
the system containing N = 8 particles with different imbalances �N and we perform numerically exact diago-
nalization of its many-body Hamiltonian (1) to obtain its eigenstates |i� and corresponding eigenenergies Ei 
(see Appendix  for numerical details). Then we plot the lowest energy gaps Ei − E0 as functions of interaction 
strength g (see Fig. 1a). It is clear that for any attraction the many-body ground state is rather isolated. Indeed, 
for any number of particles and attractive interactions, the gap to the first excited state is never smaller than 
the energy of a single excitation in the harmonic confinement. It means that any pairing correlations present 
in the ground-state of the system probably remain stable against small thermal excitations. It is also clear that 
along with increasing attractions the degeneracy of the first excited state (existing for vanishing interactions 
due to the fundamental independence of components) is lifted. Note, however, that only for perfectly balanced 
systems ( �N = 0 ) one of the first excited states rapidly gains energy and very quickly become unimportant for 
low-energy physics. That suggests that the thermal resistivity of the system could be strongly dependent on the 
imbalance, thus may be of fundamental importance for experimental discrimination between standard BCS and 
FFLO pairing hosted respectively by balanced and imbalanced systems.

In the following, we assume that the system studied is prepared in a stationary state of a given absolute tem-
perature T. We do not settle whether thermalization occurred as a result of interactions with an external ther-
mostat or as a consequence of self-thermalization. The latter may be challenging due to the intrinsic properties 
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of the system—its lowered dimensionality and mesoscopic character. Nevertheless, we anticipate that the state 
of the system can be well-described with a density matrix of the Boltzmann form:

where Pi = Z
−1e−Ei/kBT are the Boltzmann distribution probabilities and Z =

∑

i e
−Ei/kBT is the correspond-

ing partition function ( kB is the Boltzmann’s constant). Of course, in the limit of vanishing temperature, T → 0 , 
the state of the system is represented by its many-body ground state |0� . However, even for finite temperatures, 
due to the mentioned finite gaps to the excited states, the system is quite robust and may remain in the ground 
state. This property is clearly visible when partitions Pi are plotted as functions of temperature (Fig. 1b). Since it 
will be crucial for the discussion of experimental attainability of pairing phases for realistic systems let us relate 
this observation to the experiments in Selim Jochim’s group. From Fig. 1b it is clear that the lowest excited states 
start to contribute at a temperature around T ≈ 0.5ℏω/kB . Taking experimentally typical frequency of the trap 
ω = 2π × 1.488 kHz and lithium 6 Li atom mass m = 1.15× 10−26 kg it corresponds to temperature 35.7 nK. 
Thus, we see that the temperature effects definitely have to be taken into account in the modeling when predict-
ing the system properties.

Two‑body correlation and pairing
There are many ambiguities in translating concepts suitable for many-body description into the few-body regime. 
Mostly, they originate from the fact that in a large number of particles limit one does not care much about their 
precise counting and therefore performs analysis in the grand canonical ensemble approach. This gives a rise to 
define mean-field order parameters (pairing fields) as expectation values of appropriately defined annihilation 
 operators66. Unfortunately, for small systems we rather focus on properties of the system when the number of 
particles is well-defined, thus we work in the canonical ensemble framework. Therefore, in the case of meso-
scopic systems studied here, instead of considering order parameters, which in fact are not directly measurable, 
we focus on quantities straightly capturable in experiments that may quantify non-classical pairing correlations 
in the system. When two-component systems are considered, then the natural quantity describing two-particle 
correlations collectively induced between particles is the reduced two-particle density matrix. However, from 
the experimental point of view, measuring its off-diagonal elements (encoding two-body coherence) is not 
easy if possible at all. Therefore, we focus only on its diagonal part Tr

[

ρ̂T n̂↑(p1)n̂↓(p2)
]

 , i.e., the two-particle 
momentum distribution in the thermal state ρ̂T . The density operator in the momentum domain n̂σ (p) is defined 
straightforwardly as n̂σ (p) = �̂†

σ (p)�̂σ (p) , where �σ (p) =
∫

dx �̂σ (x)exp(−ipx/ℏ).

(3)ρ̂T =
∑

i

Pi|i��i|,

Figure 1.  (a) The energy gaps between the many-body ground state and excited states for systems with N = 8 
particles and different particle imbalances �N (polarization P = 0, 0.25, 0.5, 0.75 , respectively). Independently 
on the case, two of the lowest excited states are always degenerate at g = 0 and the degeneracy is lifted for finite 
attraction. Note, however, that the lift strongly depends on the polarization. (b) the Boltzmann probabilities 
Pi as functions of rescaled temperature for two extreme imbalances ( P = 0 and P = 0.75 , respectively) and 
interaction strength g = −3 . Note that for sufficiently low but finite temperatures (due to the finite gap in the 
spectrum) the system is robust and rather remains in its many-body ground state. All energies and temperatures 
are expressed in natural units of the problem, i.e., ℏω and ℏω/kB , respectively.
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It is clear that the two-particle momentum distribution defined above encodes not only non-classical cor-
relations forced by interactions but also accidental correlations originating in single-particle  distributions67. 
Therefore, to filter out the latter from the description, we go along previous  experience67–70 and we define the 
so-called noise correlation encoding pure two-body correlations between particles

where we use a short notation �•�T ≡ Tr
[

ρ̂T •
]

 for averaging over the many-body mixed state ρ̂T of the system of 
given temperature T. Let us point here, that in the case of ground-state properties, the noise correlation concept 
has been extremely useful to study two-body correlations in  general71, but the pairing in  particular27,48,50,72,73. It 
turned out that, at least for the ground-state properties, this measurable quantity can be quite easily adopted as 
a direct indicator of pairing correlations signaling not only standard Cooper pairs but also unconventional pairs 
with non-vanishing center-of-mass momentum (FFLO)48. In the following, we extend this analysis to thermal 
mixed states of the system.

Balanced systems
Let us start the analysis from the simplest case of balanced system (polarization P = 0 ) containing in total N par-
ticles. In Fig. 2 we show the dependence of the noise correlation (4) on the interaction strength and temperature 
for N = 8 particles. When the system is purely in its many-body ground-state ( T = 0 ), strong anti-correlations 
between opposite spin momenta are enhanced with increasing interactions. This signals a strong BCS pairing 
mechanism studied  recently45. It is also clear that this enhancement is reduced by increasing temperature. One 
can quantify these competing behaviors by integrating the nose correlation close to its anti-diagonal part. For 
example, it can be done by calculating the pairing intensity QT expressed as integration with appropriately local-
ized filtering function

(4)GT (p1, p2) = �n̂↑(p1)n̂↓(p2)�T − �n̂↑(p1)�T �n̂↓(p2)�T ,

(5)QT =
∫

dp1dp2 GT (p1, p2)F (p1 + p2),

Figure 2.  The noise correlation GT (p1, p2) calculated for the balanced system of N = 8 particles. Consecutive 
rows correspond to different attractions g, while columns to different temperatures T. Note that along with 
increasing interactions anti-diagonal correlations are enhanced. Contrary, increasing temperature blurs the 
noise correlation meaning that the pairing is diminished. All momenta and temperatures are expressed in 
natural units of the problem, i.e., 

√
ℏmω and ℏω/kB , respectively.
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where the function F (p) has a gaussian form

We checked that the final results do not depend on the particular shape of the filter function F , nor on its 
width κ that should be of reasonable value compared to the resolution of the noise correlation and size of the 
system. In our calculations we set κ = 0.04

√
ℏmω . In Fig. 3 we display the intensity QT as a function of tempera-

ture for different interaction strengths and as a function of attractions for different temperatures. These results 
confirm that increasing attractions in the system enhances pairing correlations between opposite spin fermions. 
At the same time, by increasing temperature, these correlations are suppressed. Note, however, that for some 
small but finite range of temperatures pairing correlations are almost insensitive to the temperature. This fact is 
a direct consequence of the finite gap to the excited many-body states mentioned previously.

Polarized systems
The situation is more interesting when imbalanced mixtures are considered. In these cases, although inter-
component attractions force the system to form correlated pairs, their center-of-mass momentum is not van-
ishing. In the limit of vanishing temperature ( T → 0 ) the situation was studied already with all details  in48. It 
was argued that the effect is a direct manifestation of the FFLO mechanism originating in a mismatch of Fermi 
momenta of interacting components. It was shown that in the case of harmonically trapped particles center-
of-mass momentum of the FFLO pair q0 is related to the difference of quasi-Fermi momenta pF↑ − pF↓ , being 
defined through the Fermi energies εFσ as

In the following, we aim to generalize these findings for finite temperatures.
The analysis starts by displaying noise correlations for different imbalances and temperatures. In Fig. 4 we 

show examples for the system containing N = 8 and for quite strong attraction g = −3 . The first row (results 
for the balanced system) corresponds directly to the middle row in Fig. 2 (note the different range of the scale). 
The first column, on the other hand, corresponds to the zero-temperature results obtained earlier  in48. Indeed, 
we see, that particle imbalance between components leads directly to a specific splitting of the anti-correlation of 
opposite-spin momenta and force correlated pairs to have finite center-of-mass-momentum. Along with increas-
ing imbalance, we notice that areas of enhanced pairing keep moving away from the anti-diagonal p1 + p2 = 0 . 
When the temperature is increased they are not only substantially diminished but also some tiny reversal shift 
towards the ani-diagonal is visible. To quantify this quite complicated behavior we generalize the pairing intensity 
(5) to make it center-of-mass dependent

The quantity QT (q) can be understood as a distribution of the net momentum of correlated pairs. For vanish-
ing temperature, the definition (8) is identical with the corresponding quantity introduced  in48. Such a construc-
tion of QT (q) gives an insight into the most probable center-of-mass momenta of correlated pairs since they are 

(6)F (p) = 1√
πκ

exp

(

− p2

2κ2

)

.

(7)pFσ =
√
2mǫFσ =

√

2mℏω(Nσ − 1/2).

(8)QT (q) =
∫

dp1dp2 GT (p1, p2)F (p1 + p2 + q).

Figure 3.  The pairing intensity QT for the balanced system of N = 8 particles as a function of temperature 
T (left) and interaction strength g (right). It is clear that decreasing attractions and/or increasing temperature 
reduce the intensity of pairing. Temperature is expressed in its natural units, ℏω/kB.
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encoded in its maxima. Note that due to the general symmetry of the problem studied, QT (q) ≡ QT (−q) . Thus 
in the following, without losing generality, we display results only for non-negative momenta, q ≥ 0.

As a working example, in Fig. 5a we show the pairing intensity distribution QT (q) for the system of N = 8 
particles and the highest imbalance �N = 6 , obtained for different temperatures T. For zero temperature a 
clear maximum at q0 ≈ 2.9

√
mℏω corresponds directly to the difference of quasi-Fermi momenta predicted 

by (7) and signals strong FFLO pairing with appropriate center-of-mass momentum. When the temperature is 
increased, the amplitude of the maximum at q0 is reduced and its position is shifted toward the second maximum 
at q = 0 representing standard BCS pairs which are also present in the system. Since, the maxima for zero and 
finite momentum coexist for any temperature, it is hard, if possible at all, to witness correlation of a given type 
in the system independently. As a consequence, for sufficiently large temperature, the distinction between FFLO 
and BCS pairs is no longer possible. Especially since both pair formation mechanisms are already very weak 
at this point and it is difficult to refer to any significant existence of correlated pairs. More importantly, as the 
temperature increases, there is an initial increase in the amplitude of BCS pairs and a simultaneous decrease for 
FFLO pairs. Finally, for sufficiently large temperatures both maxima melt to a single, very wide plateau meaning 
that any pairing correlations in the system are not detectable by the noise correlation means. Between these two 
extreme cases, i.e. strong FFLO signaled at T = 0 and lack of any pairing at high T limit, we observe that maxi-
mum at q0 drops much faster than the one in the center at q = 0 . In consequence, for some range of temperatures, 
their amplitudes are comparable and the system undergoes crossover from unconventional FFLO-like pairing 
to the standard BCS-like mechanism. A very similar effect has been shown in terms of Bogoliubov-de Gennes 
 formalism57, and with Monte Carlo calculations for one-dimensional systems of many fermions confined in 
optical  lattice56. Our result can be viewed as a few-body precursor of this many-body behavior.

To quantify the mutual relation between the FFLO pairing and the BCS pairing in the system at a given 
temperature, we introduce the simplest possible measure related to the difference of corresponding maxima

We checked that this simple definition gives qualitatively the same predictions as some more sophisticated 
ones introduced  recently50. Since a concrete value of ξ(T) has no direct interpretation, in the following we 
always normalize it to its zero-temperature value, ξ(T)/ξ(0) . With this normalization, value 1 means that FFLO 

(9)ξ(T) = QT (q0)− QT (0).

Figure 4.  The noise correlation GT (p1, p2) calculated for the system of N = 8 particles at strong attraction 
g = −3 . The consecutive rows (columns) correspond to increasing imbalances �N (temperatures T). All 
momenta and temperatures are expressed in natural units of the problem, i.e., 

√
ℏmω and ℏω/kB , respectively.
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correlations carried by the finite-momentum pairs are the same as at T = 0 . The temperature at which the quan-
tity starts to drop quickly indicates the moment at which the FFLO phase looses its stability.

In Fig. 5b we show how this dependence looks for systems with N = 8 particles and different imbalances �N . 
It is clear that for higher imbalances larger temperature is needed to destroy finite-momentum pair correlations. 
Dependence of ξ(T)/ξ(0) on temperature supports our previous findings that the transition from FFLO to BCS 
pairing induced by temperature has clear features of a crossover rather than a sharp transition as predicted for 
one-dimensional systems of many  particles56. Alike for QT in balanced systems, ξ(T)/ξ(0) does not change 
much for very small temperatures. We define the characteristic temperature TC of the crossover as a point when 
ξ(T)/ξ(0) drops below 90% (dashed line in Fig. 5b). Such definition captures adequately the moment at which 
the FFLO-type correlations start decaying and the system is quickly driven towards the BCS regime. We want to 
emphasize that the chosen threshold 90% is to some extent arbitrary. Therefore the exact value of TC will depend 
on our criterium. However, we checked that the particular definition does not affect the general connection 
between polarization and temperature which seems to be universal.

From our numerical results, it follows that the characteristic temperature TC slightly increases with attractions 
g. What is more, for a fixed interaction strength g we found that increasing the imbalance �N makes the tail of 
ξ(T)/ξ(0) thicker. The reason is simply that the correlations in the system are much more complex than just one 
of the two types BCS or FFLO, and thus they are beyond noise correlation analysis. Therefore, for sufficiently 
large imbalances the function ξ(T)/ξ(0) does not drop exactly to zero anymore and after reaching its minimal 
value starts to grow. However, since the ground state of any imbalanced system is always FFLO-like correlated at 
T = 0 , our definition of characteristic temperature TC captures appropriately the physics of the crossover even if 
pure BCS-like correlation at large temperatures cannot be reached for a given interaction g.

Few‑body phase diagram
Having all previous results and observations in hand we can repeat all the reasoning for different numbers of 
particles and different imbalances. In this way, we are able to form a provisional bridge between few-body systems 
and the many-body counterparts. We assume that in the limit of large systems appropriate description of the 
system is served by intensive properties which are independent of the size of the system. In the system studied 
the polarization (2) plays such a role. Therefore, we suspect that for large enough systems we should approach 
the many-body limit if properties of the system are presented as functions of polarization P and temperature T. 
It is worth noting that sometimes different many-body properties might saturate unexpectedly quickly (see for 
example experiments reported  in74).

To make the first view on this problem, in Fig. 6 we display characteristic temperatures of the transition TC 
for systems having different polarizations P. To make it systematic, we performed calculations for all possible 
distributions of particles among components with up to N = 12 particles in total. Different points correspond 
to systems with different numbers of particles shown in parenthesis. Note, that there are families of points giving 
the same polarization P. We find that points having the largest number of particles align on a quite regular and 
characteristic curve forming a border between FFLO and BCS pairing. We see that the characteristic temperature 
TC grows with the polarization up to P ≈ 0.5 and then starts to decrease. Due to a numerical limitation of our 
approach based on the exact diagonalization, we are not able to study systems with P > 0.84 (separated by a 
horizontal dashed line). At this point, it should be noted also that some points evidently stand out from the border 
predicted. These points correspond mainly to polaronic systems containing only one particle in a selected com-
ponent. Of course, these systems, independently on the polarization P and the total number of particles N cannot 

Figure 5.  Thermal properties of the system with N = 8 particles and interaction g = −3 . (a) Distribution of 
the net momentum of correlated pairs QT (q) for system with a very large particle imbalance �N = 6 calculated 
for different temperatures T. Note that increasing temperature reduces the intensity of the maximum and 
shifts its position towards zero momentum q = 0 . (b) The measure ξ(T)/ξ(0) as a function of temperature for 
different particle imbalances �N = 2, 4, 6 . All momenta and temperatures are expressed in natural units of the 
problem, i.e., 

√
ℏmω and ℏω/kB , respectively.
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be viewed as limiting in the sense that both components have many particles. Due to their polaronic nature, one 
should not suspect that they may display all typical properties of systems hosting the FFLO-like correlations.

The phase diagram obtained is surprisingly very similar to the phase diagram obtained earlier with Monte 
Carlo calculations for many fermions in a one-dimensional optical  lattice56. Although some quantitative differ-
ences are visible, qualitatively the results obtained for these two substantially different systems are compatible.

Conclusions
In this work, using the exact diagonalization approach, we have examined how finite-temperature effects impact 
two-body correlations in two-component fermionic systems containing few particles with attractive interac-
tions. We focused on correlations encoded in the so-called noise correlation—the quantity which in principle is 
directly accessible in experiments. We have shown that as the temperature increases, the correlations are initially 
insensitive (due to the energy gap) and from a certain moment they vanish very quickly.

Importantly, for imbalanced systems hosting the FFLO pairing in their many-body ground state, before 
pairing correlations are lost, we have observed the transition from the FFLO-like to the BCS-like phase. This 
transition has features of a crossover rather than a rapid phase transition and can be well characterized by the 
characteristic temperature TC interpreted as a temperature when the FFLO-like phase loses its stability.

By systematic studies of systems having different numbers of particles, we determine the approximate bor-
der in the phase diagram between the two phases. Our predictions qualitatively agree with previous results 
obtained for larger systems confined in periodic potentials and in harmonic traps. As a side result, we showed 
that polaronic systems containing a single particle in one of the components have typically substantially different 
properties and should be studied separately.

Data availability
All data generated or analysed during this study are available from the corresponding author on reasonable 
request.

Appendix: The numerical method used
Our numerical method is based on a numerically exact diagonalization of the many-body Hamiltonian (1) with 
applied energetic cut-off of the many-body  basis75–78. First we consider a corresponding single-particle problem 
of a one-dimensional harmonic oscillator whose eigenstates are well-known and represented by wavefunctions

where Hk(x) is k-th Hermite polynomial and Nk =
(

2kk!
√
πℏ/mω

)−1/2 is a normalization constant. Correspond-
ing eigenergies are equal Ek = ℏω(k + 1/2) . Having these solutions in hand, for a fixed number of particles N↑ 
and N↓ we consider all possible Fock states of the form

(10)φk(x) = Nk Hk

(
√

mω

ℏ
x

)

exp
(

−mω

2ℏ
x2
)

,

Figure 6.  Phase diagram of the attractively interacting few-fermion system at g = −3 . Different points 
correspond to different systems with the number of particles (N↑,N↓) indicated in parenthesis. Apart from the 
points (1, N − 1 ) corresponding to the polaronic-like systems, the other points are clearly arranged along the 
boundary between the two phases. Critical temperature TC is expressed in its natural unit, ℏω/kB.
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where α = (i1, . . . , iN↑ ; j1, . . . , jN↑) is a set of (sorted in descending order) indices of occupied single-particle 
orbitals (10) while fermionic operators âi ( ̂bi ) annihilate ↑-particle ( ↓-particle) in corresponding states φi(x) . 
A non-interacting energy of a Fock state |Fα� is simply a sum of single-particle energies of occupied orbitals

By decomposing field operators in the basis of these annihilation operators

one can easily represent the many-body Hamiltonian (1) as a matrix in the basis of Fock states {|Fα�} . Corre-
sponding matrix elements can be calculated straightforwardly as

where interaction integrals are expressed as

These integrals can be calculated numerically on a dense spatial grid or analytically by using specific proper-
ties of Hermite  polynomials78,79.

Naturally, in practice, we are not able to consider all possible Fock states since their number grows exponen-
tially with the number of particles and number of single-particle orbitals. Thus some limitation of the Fock basis 
is required. Since we are interested in the low-lying spectrum of the Hamiltonian (1) and not too far from the 
non-interacting case ( g = 0 ) we select from a whole basis the states with the lowest non-interacting energy, i.e., 
only these Fock states whose energies εα are not larger than some energetic cut-off EC . Since in the case studied 
single-particle energies are equally distributed and proportional to their occupation indices, this requirement 
technically means that we pick to the basis only these Fock states |Fα� for which

A detailed numerical algorithm for quick generation of the Fock basis in this form (also for other confine-
ments) was presented  recently77. In our calculations, we select the cut-off EC to provide well-converged final 
results. In practice EC/ℏω − (N↑ + N↓)/2 is never less than 20.

After all these preparations the resulting matrix Hαβ is numerically diagonalized using the Arnoldi 
 alghoritm80. As a result one obtain the lowest eigenenergies Ei and corresponding decomposition coefficients 
{f (i)α } representing many-body eigenstates |i� in the cropped Fock basis:

With this decomposition, one can easily calculate the expectation value of any many-body operator expressed 
in terms of the field operators �̂σ (x) by decomposing them according to (13).
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