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Data‑driven identification 
of heart failure disease states 
and progression pathways using 
electronic health records
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Heart failure (HF) is a leading cause of morbidity, healthcare costs, and mortality. Guideline based 
segmentation of HF into distinct subtypes is coarse and unlikely to reflect the heterogeneity of 
etiologies and disease trajectories of patients. While analyses of electronic health records show 
promise in expanding our understanding of complex syndromes like HF in an evidence-driven way, 
limitations in data quality have presented challenges for large-scale EHR-based insight generation 
and decision-making. We present a hypothesis-free approach to generating real-world characteristics 
and progression patterns of HF. Patient disease state snapshots are extracted from the complaints 
mentioned in unstructured clinical notes. Typical disease states are generated by clustering and 
characterized in terms of their distinguishing features, temporal relationships, and risk of important 
clinical events. Our analysis generates a comprehensive “disease phenome” of real-world patients 
computed from large, noisy, secondary-use EHR datasets created in a routine clinical setting.

Heart failure (HF) is a major contributor to global disease burden, having a worldwide estimated prevalence of 
64 million patients and staggering associated health and financial costs of 10 million years lost due to disability 
(YLDs) and $350 billion US in expenditure1. Despite recent innovations in pharmaceutical interventions and 
clinical management strategies, HF continues to be difficult to treat, as HF patients are often medically complex 
and present with diverse phenotypes characterized by a variety of pathophysiological mechanisms, clinical 
measurements, biomarkers, lifestyle factors, comorbidities, and treatment responses2,3. This complexity poses a 
challenge for defining precise HF classifications that can serve as the basis for HF research and treatment stand-
ards. Current guidelines for the diagnosis and treatment of HF have highlighted the fact that there is no single 
agreed upon classification system for causes of HF, with significant overlap across diverse etiologies4. Moreover, 
the myriad ways in which HF evolves are poorly understood, with many patients showing only mild or no clinical 
symptoms as underlying disease worsens5, and so it can be particularly challenging to identify which HF patients 
are at high risk for progression and poor prognosis6,7.

Unfortunately, the constellation of current top-down HF classification and risk stratification systems based 
on biomarkers such as lab values8,9 and left ventricular ejection fraction (LVEF)10 or functional assessments 
such as the New York Heart Association (NYHA) classification11 oversimplify the complexity of HF and do not 
adequately represent the diversity of disease states and how they progress over time10,11. These limitations have 
left the pharmaceutical community struggling to develop effective risk-enrichment strategies for clinical trials 
and to determine the appropriate timing for therapeutic interventions without limiting future drug labels to 
small sub-populations with limited relevance12. Currently it is standard practice to retrospectively analyze failed 
or successful phase III trials in order to identify patient groups that would benefit from specific treatments. The 
investigation of the atrial fibrillation (AF) patient subcohort in the failed TOPCAT trial for HF with preserved 
ejection fraction (HFpEF) is just one example. Patients with a history of AF or AF at enrollment showed increased 
risk of cardiovascular morbidity and mortality, but no modified response to treatment13. Even if successful, such 
retrospective analyses can only generate hypotheses for secondary pivotal trials following primary phase III trials, 
thus requiring massive additional investment in time, money, and patient lives. The gaps in understanding of 
HF subtypes have also made it difficult for healthcare providers to find optimal treatments for HF patients with 
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comorbid conditions that complicate management. For example, chronic kidney disease (CKD) affects 40–60% 
of HF patients and is a significant predictor of poor outcomes14,15 yet is underrepresented in general HF studies, 
leading to insufficient evidence regarding benefits and harms of HF drugs for patients with advanced CKD16. 
An improved understanding of clinically meaningful HF phenotypic differences and the patterns of HF disease 
state progression could lead to more targeted and subpopulation-specific therapeutic strategies, as well as earlier 
identification of patients at high risk for worsening HF, enabling the initiation of preemptive treatments to avoid 
or slow progression to irreversible end-stage disease HF17–19.

Data-driven approaches using data generated outside of a randomized controlled trials (RCTs), known as 
real-world data (RWD), have the potential to transform practice-based observations into evidence that can aid 
in bridging the gap between clinical science and practice20. Importantly, electronic health records (EHRs) are 
becoming increasingly popular as the source for data-driven and machine learning approaches to address many 
problems in healthcare21, including models for predicting risk in HF22–26. At the same time, there is a growing 
acknowledgement that patient-centric, data-driven methods to uncover latent patterns within patient populations 
offer advantages over disease-centric, bottom-up, or simple predictive frameworks for disease understanding 
and care personalization at a higher level, particularly within complex and multimorbid patient populations27,28 
such as those found in HF. With this in mind, a growing body of work has utilized hypothesis-free, data-driven 
approaches identify groups of similar patients and disease trajectories using targeted clinical markers or data 
elements from curated registry or EHR data in a variety of disease areas29–33. However, most of these studies 
have relied on structured data elements; advancements in natural language processing have made it possible to 
increasingly utilize EHR clinical notes, which contain detailed information that reflects the clinician’s view of a 
patient’s disease state and severity beyond structured data and lead to additional insights or increased perfor-
mance in a variety of use cases21,34–38.

We have previously demonstrated that unsupervised clustering of HF patients’ disease and symptom-related 
concepts derived from natural language processing (NLP) of unstructured notes from the entirety of their longi-
tudinal EHR can reveal the etiology, defining characteristics, and hierarchical relationships of HF phenotypes39. 
Based on these results, we hypothesized that clustering of clinical concepts from discrete “snapshots” that rep-
resent the patients’ disease states over time would reveal a comprehensive picture of the variety of HF manifes-
tations and patterns of evolution dynamics across the population, leading to a data-driven picture of HF that 
captures the nuance of symptom expression and disease severity. In this study, we developed a hypothesis-free 
approach to elucidating the diversity of HF manifestation and progression patterns in a cohort of over 25 thou-
sand HF patients treated at a single health center. We used unsupervised clustering to group 30-day patient snap-
shots into similar HF disease states and identified mathematically stable HF disease state clusters that revealed 
the dominant patterns of HF clinical manifestations, etiologies, and healthcare consumption at discrete points 
in the HF disease timeline. To reveal the dynamics of disease progression, healthcare utilization, and clinically 
important events within the HF population, we statistically analyzed disease state transitions within patient 
timelines to reveal common temporal networks of HF progression. Significantly, we found that the present and 
future probability of important clinical events of interest (e.g., ischemic stroke, acute decompensation, and in-
hospital mortality) was enriched within certain disease states corresponding to atrial fibrillation, dilated cardio-
myopathy, and advanced heart failure, automatically identifying subpopulations in high-risk disease trajectories 
and providing a roadmap of disease state signatures as potential intervention points to mitigate progression.

In contrast to top-down HF classifications based on limited observations such as functional scores and lab 
values, such data-driven approaches have the potential to more accurately reflect the disease manifestation 
and progression patterns of HF patients in the real world. Together, these results demonstrate an approach to 
generate a hypothesis-free, “at a glance” understanding of large HF populations that captures the diversity of 
clinical presentations and progression and can be computed on large datasets at scale, which represents a step 
toward building a more comprehensive heart failure phenome for understanding the disease manifestation of 
real-world HF patients. This approach utilizes routinely collected EHR data that reflect the population and 
practices of a specific healthcare center. In particular, the utilization of NLP-based classification of disease and 
symptom-related concepts in unstructured clinical notes captures the 360-degree physician’s view of patient 
problems, providing a more complete and nuanced picture of disease severity and manifestation without the 
need for expensive, time-consuming data abstraction. Such an approach has the potential to deliver real-world 
insights tuned to the particular needs of clinicians and their patients at the point of care. Additionally, breaking 
down the HF disease landscape into clinically similar subgroups in time allows for the quantification of risk for 
various clinical events, which can be used to power alternative risk-enrichment strategies for RCTs that better 
reflect disease manifestation in the real-world.

Results
Clustering longitudinal EHRs into data‑driven HF disease states.  To build a patient-centric, data-
driven understanding of HF, we utilized a clustering approach to infer HF disease states based on complaints 
mentioned in a de-identified, longitudinal EHR dataset. Clinical notes were chosen as the data source for dis-
covering HF disease states, since these unstructured narratives contain detailed information about a patient’s 
complaints (diagnoses, comorbidities, disease severity, symptoms, findings, etc.) that are frequently missing from 
structured data elements that are used for administrative and financial purposes35,36. By grouping discrete time 
windows across many HF patient timelines based on the similarity of complaints, we can discover the dominant 
patterns of disease manifestation over time in a large, real-world HF population.

Analysis was carried out on an EHR dataset from Western Russia39. First, a cohort of HF patients was identi-
fied (Fig. 1b) and the HF patient trajectories (EHRs) were segmented into 30-day time windows representing 
the sequence of clinical periods in the longitudinal disease history across the HF cohort. We chose 30 days to 
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represent a clinically relevant time resolution, since a HF patient’s disease state can change significantly month-to-
month. The data snapshot for each clinical period consisted of free-text patient complaints, which were extracted 
using a Russian-language clinical named entity recognition (NER) system36,39 from the totality of the unstruc-
tured notes in patient EHRs. Complaints detected by the NLP system with negative polarity were removed from 
analysis (e.g., “No evidence of heart failure”). NLP-derived complaint mentions were aggregated within 30-day 
time bins to create monthlong snapshots of the problems experienced by each HF patient (Fig. 1a). The HF 
cohort included patients with an ICD-10 code for heart failure (I50, I11.0, I13.0, I13.2) or cardiomyopathy (I42). 
Patients that had less than 10 complaint mentions in any of their snapshots were excluded, resulting in a final 
study population of 25,861 patients (Fig. 1b). Descriptive statistics for the final study cohort is provided in Table 1.

The snapshots for each patient in the HF cohort were vectorized using term frequency-inverse document 
frequency (TF-IDF)40. We then defined HF disease states by grouping aggregated complaint snapshot vectors into 
clusters using K-means clustering41. The resultant clusters contain monthlong snapshots of HF patient timelines 
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Figure 1.   Workflow diagram for converting HF patient EHRs to disease state snapshot clusters. (a) Natural 
language processing was used to extract complaints from all the unstructured notes in each patient’s EHR. 
Complaints were aggregated within 30 day time bins (clinical state “snapshots”). The snapshots of the entire 
HF cohort were used as input to a clustering algorithm, which finds groups of similar patient snapshots and 
produces disease state clusters. (b) Inclusion/exclusion criteria and corpus statistics for the final HF cohort.
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grouped by similar patterns of complaints, symptoms, and comorbidities, which can then be interpreted as HF 
disease states. After clustering, each snapshot data point is labeled as belonging to a single disease state via cluster 
assignment. Clustering for K ∈ [2, 3, ..., 30] revealed stable clusters for K = [2, 3, 4, 5, 7, 11, 13, 23] via cluster 
bootstrapping42 (values of K marked with green corridors in Supplementary Fig. S1), which can be understood 
as the hierarchy of reproducible, data-driven HF disease states.

Characterizing complaints‑driven HF disease states.  In the following analyses, we focus on building 
a data-driven picture of HF using 23 disease states ( K = 23 ), the largest value of K investigated that resulted in 
stable clusters and thus providing the highest level of granularity into HF. To interpret each of the 23 disease 
states, a right-sided rank sum test was used to find significantly overrepresented input feature complaints (top 
ten by p-value in Table 2; full list in Supplementary Table S2). We further characterized each cluster by display-
ing the most common structured diagnosis codes and visit types occurring within the input snapshots (Table 2). 
Using this information, a clinically interpretable name was assigned to each disease state. We also visualized 
the HF dataset using t-Distributed Stochastic Neighbor Embedding (t-SNE)43 (Fig. 2a). Each point represents a 
single HF snapshot; the color indicates the cluster assignment for K = 23 . From this, we can visualize the relative 
distance between individual snapshots across the HF cohort.

Examining Table 2 and Fig. 2a, it is apparent that the snapshots of HF patients are grouped into clusters with 
shared clinical characteristics. Qualitatively, we observe that some clusters appear more similar to each other 
than others. For example, clusters for Ischemic heart disease, Acute coronary syndrome, and CAD & HTN, male 
are grouped closely together. To quantify and visualize the natural hierarchy of heart failure disease states within 
the cohort, we constructed a dendrogram for K = 23 using hierarchical clustering (Fig. 2b, right). The stable 
clusters used in constructing the dendrogram were K = [2, 3, 4, 5, 7, 11, 13, 23] (marked with green corridors in 
Supplementary Fig. S1). All snapshots are aggregated at the right side of the dendrogram; each successive branch 
point shows the value of K at which a cluster splits into two smaller clusters. Branch points further to the left on 
the dendrogram represent clusters that are more similar to each other as quantified by their Jaccard index (see 
Supplementary Methods). The feature values of fifty common complaint features are shown for K = 23 , sorted 
by the order in the dendrogram (Fig. 2b, left).

Finally, to further characterize HF disease states, we aggregated input feature complaints into grouped com-
plaint phenotypes. For example, the phenotype Myocardial infarction aggregates the more specific complaints 
“Myocardial infarction,” “Acute myocardial infarction”, “Subendocardial myocardial infarction”, “History of myo-
cardial infarction”, “Post-myocardial infarction syndrome”, and “Recent myocardial infarction” (Supplementary 
Table S3). Doing so allows us to visualize the prevalence and specificity of meaningful clinical phenotypes for 

Table 1.   Baseline characteristics of the heart failure cohort.

Database characteristics

Patients in cohort 25,861 (100%)

Unique patients with Hypertensive heart disease with heart failure ICD-10 (I11.0, I13.0, I13.2) 3,493 (13.51%)

Unique patients with Cardiomyopathy ICD-10 (I42) 6,754 (26.12%)

Unique patients with Heart failure ICD-10 (I50) 20,500 (79.27%)

Patient co-morbidities

Congestive heart failure 25,793 (99.74%)

Hypertension 21,885 (84.63%)

Ischemic heart disease 21,323 (82.45%)

Cardiac valve disease 19,934 (77.08%)

Angina pectoris 15,307 (59.19%)

Cerebral ischemia 14,626 (56.56%)

Hyperlipidemia 14,123 (54.61%)

Myocardial infarction 13,055 (50.48%)

Obesity 9,337 (36.10%)

Cardiomyopathy 8,984 (34.74%)

Atrial fibrillation and flutter 8,861 (34.26%)

Chronic obstructive pulmonary disease 5,853 (22.63%)

Type 2 diabetes 5,740 (22.20%)

Chronic kidney disease 3,249 (12.56%)

Patient characteristics

N females 11,258 (43.53%)

Age of males (years), median (25, 75 quartile) 59 (48, 67)

Age of females (years), median (25, 75 quartile) 63 (48, 72)

Timeline length (months), median (25, 75 quartile) 4 (1, 28)

BMI, median (25, 75 quartile) 27.34 (23.46, 31.23)
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Cluster name ICD-10 codes Encounter type Significant concepts

Diabetic complications

E08–E13: Diabetes mellitus (66.22%)
I20: Angina pectoris (27.56%)
I25: Chronic ischemic heart disease (23.26%) I50: 
Heart failure (21.30%)
I10–I16: Hypertensive diseases (16.71%)

Ambulatory (69.95%)
Inpatient (50.75%)
Surgery/diagnostics (32.36%)
Other (15.58%)

Non-Insulin-Dependent Diabetes Mellitus (90.7%); 
Diabetes Mellitus (77.9%); Diabetic Polyneuropathies 
(66.1%); Diabetic Nephropathy (48.4%); Insulin-
Dependent Diabetes Mellitus (45.2%); Retinal 
Diseases (30.1%); Kidney Diseases (24.4%); Cataract 
(24.1%); Hyperglycemia (22.7%); Vascular Diseases 
(20.9%); Complications of Diabetes Mellitus (20.6%); 
Endocarditis (20.4%); Chronic Kidney Diseases 
(20.3%); Glucose level (19.9%); Diabetic Retinopathy 
(17.1%)

CAD w/ arteriosclerosis I25: Chronic ischemic heart disease (83.28%) Ambulatory (95.84%)
Surgery/diagnostics (11.38%)

Coronary Arteriosclerosis (81.3%); Chronic heart 
failure (81.2%); Hernia (47.4%); Esophageal Diseases 
(44.3%); Interventricular dyssynchrony (14.2%); Sple-
nomegaly (15.4%); Hyperuricemia (6.8%); Cardiac 
dilatation (3.2%); Coronary heart disease (66.1%); 
Cardiomegaly (11.4%); Atherosclerosis (43.7%); 
Nephrosclerosis (4.5%); Chronic Kidney Diseases 
(6.6%); Dyslipidemias (31.5%); Hypertensive disease 
(75.2%)

Lipid disorders
I25: Chronic ischemic heart disease (27.78%)
I10–I16: Hypertensive diseases (27.55%)
I20: Angina pectoris (24.93%)
I42: Cardiomyopathy (17.76%)

Ambulatory (99.41%)

Lipid Metabolism Disorders (100.0%); Overweight 
(45.8%); erythrocyte sedimentation rate result 
(26.9%); Cardiovascular finding (56.9%); Hiatal 
Hernia (17.1%); Menopause (14.9%); Hypertensive 
disease (66.7%); Increase in blood pressure (15.2%); 
Edema (36.2%); Heart Diseases (13.1%); Pain (37.9%); 
Dizziness (15.7%); Kidney Diseases (8.2%); Obesity 
(32.0%); Scheuermann’s Disease (5.9%)

Aortic stenosis

I35: Nonrheumatic aortic valve disorders (59.81%)
I50: Heart failure (31.48%)
I20: Angina pectoris (18.84%)
Z00–Z13: Persons encountering health services for 
examinations (15.86%)
I60–I69: Cerebrovascular diseases (13.86%)
I05–I09: Chronic rheumatic heart diseases (12.77%)
I25: Chronic ischemic heart disease (10.49%)

Ambulatory (72.78%)
Surgery/diagnostics (45.52%)
Inpatient (45.01%)

Aortic Valve Stenosis (94.8%); Stenosis (75.5%); Aortic 
Valve Insufficiency (61.2%); Calcinosis (57.2%); Heart 
Diseases (32.2%); Heart valve disease (26.7%); Heart 
Neoplasm (26.5%); Aortic valve disorder (22.7%); 
Bicuspid aortic valve (18.6%); Atherosclerosis of aorta 
(15.1%); Chronic rheumatic heart disease (14.0%); 
Mitral Valve Stenosis (12.7%); Aortic valve area 
(6.1%); Aortic valve calcification (5.1%); Fibrous ring 
(12.1%)

Cerebrovascular disease

I60–I69: Cerebrovascular diseases (81.39%)
10-I16: Hypertensive diseases (20.79%)
I20: Angina pectoris (17.49%)
I25: Chronic ischemic heart disease (16.12%)
M40–M43: Deforming dorsopathies (10.20%)

Ambulatory (66.21%)
Inpatient (54.05%)
Other (19.35%)
Surgery/diagnostics (18.68%)

Dysarthria (93.9%); Gagging (84.7%); Encephalopa-
thies (82.0%); Corneal Reflexes (64.7%); Nystagmus 
(55.2%); Pupil reaction to light (49.2%); Dysphonia 
(47.9%); Deglutition Disorders (46.6%); Dizziness 
(43.7%); Cerebral Atherosclerosis (42.5%); Muscle 
Tension (41.8%); Ataxia (32.5%); Headache (32.3%); 
Diadochokinesia (20.6%); Ischemic stroke (19.8%)

General vascular disease

Z00–Z13: Persons encountering health services for 
examinations (40.97%)
I20: Angina pectoris (38.51%)
I25: Chronic ischemic heart disease (32.00%)
I60–I69: Cerebrovascular diseases (22.22%)
I70–I79: Diseases of arteries, arterioles and capillaries 
(16.61%)
I50: Heart failure (15.56%)
I10–I16: Hypertensive diseases (11.15%)

Ambulatory (82.95%)
Surgery/diagnostics (46.02%)
Inpatient (31.31%)

Stenosis (92.2%); Blood flow (79.9%); Cerebrovascu-
lar accident (76.4%); Senile Plaques (69.2%); Plaque 
(lesion) (65.2%); Decompression Sickness (38.2%); 
Atrophic (24.0%); Lung consolidation (18.1%); 
Peak systolic (12.2%); Systemic Scleroderma (4.0%); 
Atherosclerosis (59.7%); Atrophic Vaginitis (4.2%); 
Stomach Diseases (38.9%); Carotid Stenosis (4.8%); 
Superficial ulcer (11.8%)

Aneurysm

I25: Chronic ischemic heart disease (45.60%)
I20: Angina pectoris (36.34%)
I50: Heart failure (34.73%)
I70–I79: Diseases of arteries, arterioles and capillaries 
(27.89%)
Z00-Z13: Persons encountering health services for 
examinations (11.26%)

Ambulatory (66.80%)
Inpatient (54.61%)
Surgery/diagnostics (42.43%)
Other (11.02%)

Aneurysm (99.7%); Myocardial Infarction (71.4%); 
Thrombus (31.6%); Left ventricular aneurysm 
(18.2%); Dissection of aorta (13.1%); Aortic Aneu-
rysm (12.7%); Abdominal Aortic Aneurysm (11.1%); 
Cardiac dyskinesia (16.3%); Akinesia (38.0%); 
Atherosclerosis of aorta (13.9%); Aneurysm of ascend-
ing aorta (2.0%); Old thrombus (2.3%); Myocardial 
Ischemia (58.8%); Coronary heart disease (75.1%); 
Atherosclerosis (51.9%)

CAD w/ myocardial ischemia
I20: Angina pectoris (56.59%)
I25: Chronic ischemic heart disease (40.08%)
I50: Heart failure (19.05%)
I10-I16: Hypertensive diseases (16.50%)

Ambulatory (81.25%)
Surgery/diagnostics (30.96%)
Inpatient (30.09%)

Hypertensive disease (89.3%); Coronary heart disease 
(84.0%); Chronic heart failure (83.7%); Angina 
Pectoris (81.5%); Myocardial Infarction (58.6%); Ath-
erosclerosis (56.7%); Myocardial Ischemia (53.0%); 
Dyslipidemias (32.0%); Cerebrovascular Disorders 
(30.4%); Non-Insulin-Dependent Diabetes Mellitus 
(30.0%); Hyperlipidemia (25.1%); Duodenal Ulcer 
(13.7%); Encephalopathies (24.2%); Obesity (32.7%); 
Prostatic Hyperplasia (12.0%)

CAD w/ cerebral involvement

I20: Angina pectoris (31.32%)
I25: Chronic ischemic heart disease (30.95%)
I10–I16: Hypertensive diseases (29.96%)
I42: Cardiomyopathy (16.76%)
I50: Heart failure (13.89%)

Ambulatory (93.79%)
Surgery/diagnostics (21.93%)
Inpatient (19.75%)

Pain (98.5%); Lesion (96.4%); Vertebrobasilar Insuf-
ficiency (91.6%); Hypertensive disease (88.7%); 
Hyperlipidemia (44.6%); Cerebrovascular Disorders 
(40.3%); Varicosity (39.2%); Cerebral Atheroscle-
rosis (24.5%); Pyelonephritis (22.3%); Cholecystitis 
(17.8%); Cerebral Arteriosclerosis (3.5%); Coronary 
heart disease (73.3%); Gastritis (25.3%); Coronary 
Arteriosclerosis (18.6%); Fever (63.8%)

Continued
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Cluster name ICD-10 codes Encounter type Significant concepts

Cardiac surgery

I50: Heart failure (79.59%)
I20: Angina pectoris (70.65%)
I60–I69: Cerebrovascular diseases (37.60%)
I25: Chronic ischemic heart disease (30.59%)
I70–I79: Diseases of arteries, arterioles and capillaries 
(18.47%)
K20–K31: Diseases of esophagus, stomach and duode-
num (16.42%)
Z00–Z13: Persons encountering health services for 
examinations (15.37%)
I35: Nonrheumatic aortic valve disorders (14.95%)

Inpatient (99.94%)
Surgery/diagnostics (78.22%)
Ambulatory (31.21%)
Other (15.54%)

Blood flow (96.4%); Sinus rhythm (94.3%); Diuresis 
(92.2%); Color of urine (92.0%); Weakness (90.2%); 
Peristalsis (89.3%); Central venous pressure finding 
(86.7%); Atherosclerosis (86.0%); Cardiac index 
(85.4%); Angina Pectoris (83.1%); Stenosis (83.0%); 
Hemostatic function (80.2%); Left Ventricular Hyper-
trophy (75.2%); Cardiac activity (73.3%); Pulmonary 
artery pressure (70.8%)

Acute coronary syndrome

I50: Heart failure (73.30%)
I20: Angina pectoris (70.28%)
I21: Acute myocardial infarction (34.69%)
I25: Chronic ischemic heart disease (29.39%)
K20–K31: Diseases of esophagus, stomach and duode-
num (19.47%)
E08–E13: Diabetes mellitus (11.86%)

Inpatient (97.70%)
Surgery/diagnostics (61.95%)
Ambulatory (35.55%)
Other (22.33%)

Coronary heart disease (96.0%); Myocardial Ischemia 
(92.7%); Sinus rhythm (87.6%); Stenosis (80.4%); 
Blood flow (78.5%); Myocardial Infarction (77.6%); 
Cardiac Arrhythmia (76.6%); Pain (75.7%); Atrial Pre-
mature Complexes (73.8%); Unstable angina (62.6%); 
Systemic arterial pressure (61.9%); Acute Coronary 
Syndrome (59.2%); Wakefulness (59.1%); Acute myo-
cardial infarction (56.2%); Akinesia (50.0%)

CAD, high acuity

I20: Angina pectoris (76.61%)
I50: Heart failure (53.38%)
I25: Chronic ischemic heart disease (47.44%)
K20–K31: Diseases of esophagus, stomach and duode-
num (24.12%)
Z00–Z13: Persons encountering health services for 
examinations (13.39%)
I70-I79: Diseases of arteries, arterioles and capillaries 
(11.63%)

Surgery/diagnostics (69.74%)
Inpatient (69.03%)
Ambulatory (58.10%)

Coronary heart disease (95.8%); Hypertensive disease 
(90.8%); Angina Pectoris (88.4%); Myocardial Infarc-
tion (77.4%); Myocardial Ischemia (76.3%); Stenosis 
(73.8%); Heart failure (67.2%); Hypokinesia (58.8%); 
Atherosclerosis (54.7%); Chronic gastritis (50.6%); 
Akinesia (49.5%); Systemic arterial pressure (48.1%); 
Exercise-induced angina (34.3%); Chronic myocardial 
ischemia (33.0%); Dysplasia (32.8%)

Electrocardiography w/ apnea

I25: Chronic ischemic heart disease (19.21%)
I42: Cardiomyopathy (19.12%)
I20: Angina pectoris (16.57%)
I50: Heart failure (14.47%)
I10–I16: Hypertensive diseases (13.87%)
Z00–Z13: Persons encountering health services for 
examinations (13.83%)

Ambulatory (85.49%)
Inpatient (22.59%)
Surgery/diagnostics (13.78%)

Slow shallow breathing (100.0%); Apnea (100.0%); 
Cardiac Arrhythmia (98.6%); Premature ventricular 
contractions (84.1%); Sinus rhythm (76.8%); Atrial 
Premature Complexes (76.4%); Premature Cardiac 
Complex (75.1%); Supraventricular arrhythmia 
(49.0%); Ventricular arrhythmia (34.4%); Bradycardia 
(32.4%); Atrial tachycardia (24.0%); Sinus Arrhythmia 
(16.7%); Respiratory Insufficiency (17.2%); Tachy-
cardia (28.8%); Decreased systolic arterial pressure 
(4.1%)

Electrocardiography

I50: Heart failure (21.81%)
I42: Cardiomyopathy (17.33%)
I10–I16: Hypertensive diseases (15.13%)
I20: Angina pectoris (14.80%)
I47: Paroxysmal tachycardia (14.60%)
I25: Chronic ischemic heart disease (13.39%)
I49: Other cardiac arrhythmias (11.62%)

Ambulatory (60.71%)
Inpatient (50.59%)
Surgery/diagnostics (23.98%)
Other (10.95%)

Cardiac Arrhythmia (94.5%); Sinus rhythm (87.3%); 
Premature ventricular contractions (87.0%); Atrial 
Premature Complexes (82.5%); Premature Cardiac 
Complex (69.6%); Wakefulness (60.2%); Ventricular 
arrhythmia (46.3%); Supraventricular arrhythmia 
(43.8%); Bradycardia (36.7%); Tachycardia (35.5%); 
Respiratory Insufficiency (23.4%); Atrial tachycardia 
(21.8%); Sinus Arrhythmia (19.7%); ST segment 
(16.1%); Parasystole (14.5%)

Echocardiography

I25: Chronic ischemic heart disease (19.95%)
Z00-Z13: Persons encountering health services for 
examinations (17.94%)
I42: Cardiomyopathy (15.79%)
I20: Angina pectoris (10.46%)
I10–I16: Hypertensive diseases (10.22%)

Ambulatory (95.09%)

Mitral Valve Insufficiency (95.9%); Tricuspid Valve 
Insufficiency (95.8%); Cerebrovascular accident 
(95.4%); Pulmonary Valve Insufficiency (78.7%); Dias-
tolic dysfunction (73.8%); Aortic Valve Insufficiency 
(53.2%); Hypokinesia (53.2%); Pulmonary Hyperten-
sion (50.9%); Calcinosis (32.3%); Akinesia (27.8%); 
Eccentric hypertrophy (24.8%); Muscle Rigidity 
(24.7%); Concentric hypertrophy (23.8%); Fibrosis 
(14.4%); Idiopathic pulmonary arterial hypertension 
(13.7%)

Atrial fibrillation
I48: Atrial fibrillation and flutter (89.80%)
I50: Heart failure (14.05%)
I10–I16: Hypertensive diseases (10.80%)

Ambulatory (75.78%)
Inpatient (45.68%)
Surgery/diagnostics (36.71%)
Other (11.54%)

Atrial fibrillation and flutter (89.1%); Atrial Fibrilla-
tion (87.4%); Paroxysmal atrial fibrillation (43.1%); 
Atrial Flutter (39.8%); Persistent atrial fibrillation 
(20.7%); Under local anesthesia (14.7%); Irregular 
heart beat (13.5%); Ablation frequency (8.6%); Heart 
beat (18.3%); Palpitations (19.5%); Post-op diagnosis 
(6.0%); Fibrillation (7.1%); Cardiac rhythm type 
(10.3%); Chronic heart failure (80.9%); Cardiac 
conduction (25.9%)

Advanced & decompensated HF

I50: Heart failure (60.17%)
I25: Chronic ischemic heart disease (18.14%)
I42: Cardiomyopathy (15.30%)
I47: Paroxysmal tachycardia (13.04%)
I20: Angina pectoris (11.67%)
Z00–Z13: Persons encountering health services for 
examinations (10.65%)
I48: Atrial fibrillation and flutter (10.19%)

Inpatient (80.24%)
Ambulatory (50.83%)
Surgery/diagnostics (29.59%)
Other (21.84%)

Dyspnea (88.6%); Mitral Valve Insufficiency (84.5%); 
Heart failure (84.1%); Tricuspid Valve Insufficiency 
(81.6%); Edema (73.4%); Atrial Fibrillation (62.3%); 
Weakness (61.8%); Diuresis (59.4%); Pulmonary 
Hypertension (55.0%); Peripheral edema (49.4%); 
Swelling (46.2%); Decompensation (43.8%); Ventricu-
lar Tachycardia (39.5%); Effusion (35.3%); Cardiac 
asthma (33.4%)

Dilated cardiomyopathy
I42: Cardiomyopathy (87.20%)
I50: Heart failure (13.08%)
I47: Paroxysmal tachycardia (11.27%)

Ambulatory (82.01%)
Inpatient (29.23%)
Surgery/diagnostics (18.46%)
Other (11.08%)

Dilated cardiomyopathy (96.4%); Chronic heart 
failure (92.9%); Cardiomyopathies (63.0%); Mitral 
Valve Insufficiency (62.7%); Ventricular Tachycar-
dia (29.0%); Cardiomegaly (21.6%); Myocarditis 
(20.2%); Paroxysmal ventricular tachycardia (18.0%); 
Esophageal Diseases (28.3%); Hernia (30.3%); Dysp-
nea (61.9%); Interventricular dyssynchrony (8.5%); 
Hyperuricemia (6.3%); Pulmonary Thromboembo-
lisms (9.3%); Tricuspid Valve Insufficiency (46.5%)

Continued
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each disease state (selected clusters shown in Fig. 3a). We also characterized these disease states in terms of 
number of patients/snapshots falling within the cluster, sex distribution, age, body mass index (BMI), and in-
hospital mortality (Fig. 3b).

We show that a hypothesis-free, high dimensional approach using unstructured data can successfully segment 
temporal snapshots of HF into meaningful groups without the need for any time-consuming, top-down data 
structuring approaches. In the next section, a detailed clinical interpretation of HF disease states is presented 
based on these results.

Clinical interpretation of HF disease states.  From Fig. 2b, we observe that HF disease states can be 
interpreted hierarchically. We use this hierarchy and disease state characteristics as a framework to provide a 
clinical description of each HF disease state (Table 3). The first major split in HF occurs between ischemic and 
non-ischemic heart disease. Ischemic heart disease then splits into subgroups corresponding to disease states 
dominated by metabolic, vascular, and heart valve disease (Diabetic complications, CAD with arteriosclerosis, 
Lipid disorders, Aortic stenosis, Cerebrovascular disease, and General vascular disease) and those with acute coro-
nary syndrome, aneurysm, and cardiac surgery (Aneurysm, CAD with myocardial ischemia, CAD with cerebral 
involvement, Cardiac surgery, Acute coronary syndrome, and CAD, high acuity).

The first split within the non-ischemic heart disease branch contains infants and children with congenital heart 
disease (Congenital heart defects and Neonatal intensive care (NICU)). The next branch contains disease states 
dominated by cardiac diagnostic modalities (Echocardiography, Electrocardiography, and Electrocardiography 

Cluster name ICD-10 codes Encounter type Significant concepts

Hypertrophic cardiomyopathy I42: Cardiomyopathy (88.74%)
Ambulatory (75.90%)
Inpatient (31.55%)
Surgery/diagnostics (23.54%)

Hypertrophic Cardiomyopathy (100.0%); Hypertro-
phy (31.6%); Hypertrophic cardiomyopathy without 
obstruction (17.1%); Dynamic obstruction (7.4%); 
Asymmetric hypertrophy (6.4%); Primary Cardio-
myopathies (6.3%); Left Ventricular Hypertrophy 
(47.2%); QRS complex feature (2.8%); Subaortic 
stenosis (3.9%); Heart murmur (18.8%); Syncope 
(10.2%); Sudden Cardiac Death (4.8%); Systolic Mur-
murs (16.8%); Diastolic dysfunction (29.2%); Blood 
flow (42.0%)

Non-CV encounters
I10–I16: Hypertensive diseases (23.11%)
I42: Cardiomyopathy (17.16%)
I25: Chronic ischemic heart disease (10.72%)
I50: Heart failure (10.18%)

Ambulatory (78.54%)
Inpatient (26.98%)
Surgery/diagnostics (15.15%)

Pregnancy (18.1%); Gynecological history (14.1%); 
Splenomegaly (11.4%); Exanthema (9.4%); Arthralgia 
(7.7%); Bleeding tendency (6.6%); Joint swelling 
(3.5%); Morning stiffness—joint (2.9%); Osteoporosis 
(5.1%); erythrocyte sedimentation rate result (17.4%); 
Toxic diffuse goiter (2.8%); Unspecified Abortion 
(10.0%); Menopause (14.0%); Mean Corpuscular 
Volume (3.4%); Autoimmune thyroiditis (12.3%)

Pediatric cardiomyopathy

I50: Heart failure (55.06%)
I42: Cardiomyopathy (53.81%)
I47: Paroxysmal tachycardia (19.33%)
I51: Complications and ill-defined descriptions of 
heart disease (18.39%)
I49: Other cardiac arrhythmias (16.19%)
Q20–Q28: Congenital malformations of the circula-
tory system (16.14%)
I44: Atrioventricular and left bundle-branch block 
(14.45%)

Inpatient (81.07%)
Surgery/diagnostics (58.69%)
Ambulatory (14.25%)
Other (12.11%)

Cardiac Arrhythmia (85.8%); Cardiomyopathies 
(82.5%); Sinus rhythm (76.4%); Myocarditis (72.8%); 
Birth (70.3%); Pregnancy (66.8%); Cardiac conduc-
tion (63.1%); Microalbuminuria (50.6%); Pericarditis 
(50.4%); Childbirth (49.8%); Wakefulness (48.3%); 
Viral respiratory infection (47.9%); Myocardial 
dysfunction (45.1%); Respiration Disorders (44.8%); 
Systolic Murmurs (44.1%)

Congenital heart disease

Q20–Q28: Congenital malformations of the circula-
tory system (83.54%)
I50: Heart failure (46.99%)
Z00–Z13: Persons encountering health services for 
examinations (10.75%)

Ambulatory (54.08%)
Inpatient (53.72%)
Surgery/diagnostics (49.75%)

Atrial Septal Defects (100.0%); Congenital heart 
disease (90.8%); Congenital Abnormality (51.7%); 
Congenital Heart Defects (43.1%); Air Embolism 
(17.3%); Respiration Disorders (14.1%); Fluid over-
load (10.0%); Birth (32.5%); Right Ventricular Hyper-
trophy (10.0%); Pregnancy (34.9%); Cardiac activity 
(19.2%); Under local anesthesia (9.8%); Systolic 
Murmurs (23.8%); Childbirth (18.2%); Hereditary 
Diseases (8.9%)

NICU

Q20–Q28: Congenital malformations of the circula-
tory system (94.94%)
I50: Heart failure (75.42%)
G96: Other disorders of central nervous system 
(21.33%)
Z00–Z13: Persons encountering health services for 
examinations (17.90%)
G93: Other disorders of brain (15.47%)
P91: Other disturbances of cerebral status of newborn 
(10.46%)

Inpatient (86.01%)
Surgery/diagnostics (55.26%)
Ambulatory (16.20%)
Newborn/obstetrics (10.65%)

Congenital heart disease (95.0%); Congenital 
Abnormality (77.3%); Birth (72.1%); Diuresis (67.0%); 
Ventricular Septal Defects (60.5%); Pregnancy 
(59.1%); Congenital Heart Defects (58.3%); Systolic 
Murmurs (57.0%); Childbirth (47.4%); Wheezing 
(46.0%); Atrial Septal Defects (42.5%); Color of urine 
(37.7%); Surgical wound (32.1%); Urination (31.0%); 
Cyanosis (30.7%)

Table 2.   Cluster characteristics for K = 23. Top ten most significant concepts for each phenotype, ranked 
by p-value (smallest to largest). Significance was determined using a one-sided (greater) sum of ranks test 
with Bonferroni correction testing the null hypothesis that the distribution of values of TF-IDF features for 
a medical entity in cluster i are drawn from the same distribution as the same entity in all other clusters. The 
“ICD-10” column shows the six most frequent ICD-10 codes and/or groups of codes with more than 5% 
incidence within the cluster. The “Encounter type” column shows the types of encounters that comprise the 
snapshots within each cluster.
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with apnea). Finally, at higher values of K, the non-ischemic branch culminates in two further subgroups; the 
first contains patients with various types of cardiomyopathies (Hypertrophic cardiomyopathy and Pediatric cardio-
myopathy) and various non-cardiac complaints (Non-cardiovascular (CV) encounters), while the second contains 
patients with advanced heart failure and high-risk comorbidities (Atrial fibrillation, Dilated cardiomyopathy, and 
Advanced & decompensated HF).

Table 3 provides a brief clinical description of each disease state (based on information in Table 2, Fig. 3, 
Supplementary Table S4). A more in-depth description of each disease state can be found in the supplementary 
appendix.

Quantifying HF patients at risk.  Understanding risk in patient populations is central to healthcare, from 
therapy development to clinical decision making. HF patients in particular are at significantly higher risk of 
morbidity and mortality4. From the previous section, we can observe that the HF disease states represent dif-
ferential levels of disease severity, and that there are complaints associated with certain states that correspond 
to poor outcomes (e.g., “decompensation” in Advanced & decompensated HF). To quantify the risk within the 
HF cohort, we defined clinical events of interest, including patient encounter type (hospitalization, ICU admis-
sion), in-hospital mortality, acute conditions (ischemic stroke, acute kidney injury, decompensation, pulmonary 
embolism, aneurysm), and procedures (CABG, angioplasty, septal defect correction, aneurysm repair, valve 
repair & prosthesis, pacemaker implantation, and heart transplant). We then labeled each data point in the 
dataset with binary labels that indicate whether or not each clinical event occurred within the 30-day snapshot 
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Figure 2.   (a) Exemplary 2D visualization of the relative distances between all clinical snapshots EHRs in 
the heart failure cohort using t-SNE. Colors show cluster assignment using K-means clustering (K = 23). (b) 
Visualization of cluster centroids (K = 23) for a subset of complaint features (x-axis). Centroids are sorted by 
hierarchical clustering and reflect the similarity phenotypes at different values of K. Branches are labeled using 
a clinical interpretation of the hierarchical structure of the clusters. Each cluster is shown with an interpretable 
name defining the heart failure phenotype.
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window. Additionally, to quantify the future risk of an event, we labeled snapshots that occurred before snapshots 
containing the event.

Using these labels, the prevalence of clinical events in present and future snapshots can be visualized over the 
entire HF cohort using kernel density estimation (Fig. 4a). For example, in-hospital mortality is concentrated 
within Advanced & decompensated HF, NICU, and a concentrated area of snapshots in Cardiac surgery. We also 
observe that snapshots within the Aortic valve disease cluster show relative enrichment for risk for mortality in a 
future snapshot. Similarly, although CABG occurs primarily within the Cardiac surgery disease state, we observe 
that patients in CAD, high acuity, CAD with myocardial ischemia, Cerebral ischemia, and Aneurysm are most at 
risk for a future CABG. Similarly, although hemorrhagic and ischemic strokes are both concentrated within the 
Cerebrovascular disease state, risk enrichment differs for these two events; for hemorrhagic stroke, patients in 
Aneurysm, Dilated cardiomyopathy, Advanced &  decompensated HF, and Aortic stenosis are most at risk, while 
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Figure 3.   (a) The prevalence of various grouped complaints per cluster disease state. Traces in red show the 
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for ischemic stroke, patients in Diabetic complications, Atrial fibrillation, Aortic stenosis, General vascular disease 
and Aneurysm were most at risk.

We also quantified risk of present and future events over all events (Fig. 4b). Using this framework, we can 
gain insight into the probability of near-term and future events associated with HF subpopulation disease states. 
For example, in Lipid disorders patients, the prevalence of stroke is very low (0.5%) but risk for a future stroke 
is relatively high (3.0%), uncovering the well-studied association between elevated lipid levels and stroke4,44–46 
without relying on lipid level measurements as an explicit biomarker. Similarly, we observe that patients in the 
Dilated cardiomyopathy state have a relatively high risk of future in-hospital mortality (2.4%), indicating that 
patients within this group are likely to suffer adverse outcomes and present a large expense to health systems. 
This approach to comprehensive risk assessment provides an at-a-glance, high-level understanding of risks of 
adverse outcomes and patterns of hospital resource consumption across HF disease states which could benefit 
targeted strategies for risk mitigation in HF subpopulations.

Building a temporal progression map of HF disease states.  Understanding the patterns of disease 
progression is vital in chronic, slowly progressing diseases like heart failure. Here, we develop an approach to 
understand the temporal progression of HF disease states within patient timelines. HF typically manifests as 

Table 3.   Clinical description of heart failure disease states.

Disease state Description

Diabetic complications Advanced diabetic complications (diabetic kidney disease, neuropathy, retinopathy, diabetic foot) with 
high rates of obesity, hypertension, and coronary artery disease

CAD w/arteriosclerosis
Coronary artery disease and associated comorbidities (hypertension, hyperlipidemia, diabetes, obesity, 
COPD, kidney disease, gastric complaints) in a primarily outpatient setting. Higher rates of atrial fibril-
lation and cardiomegaly

Lipid disorders Patients with hyperlipidemia, obesity, and hypertension treated in a primarily outpatient setting

Aortic stenosis Aortic stenosis and associated problems and symptoms, including aortic valve insufficiency, aortic valve 
calcification, bicuspid aortic valve, endocarditis, and congenital heart disease

Cerebrovascular disease
Patients with several forms of cerebrovascular disease, including cerebral atherosclerosis, carotid 
stenosis, and stroke (and common sequelae and complications following stroke). Also common are 
symptoms of cerebrovascular disease such as vertigo and amnesia, among others

General vascular disease Vascular disease, including cerebrovascular and peripheral vascular disease

Aneurysm Predominantly male (82%) patients experiencing an aneurysm. Ischemic heart disease and associated 
problems such as myocardial infarction and angina are common in this group

CAD w/ myocardial ischemia
Coronary artery disease and associated comorbidities (hypertension, hyperlipidemia, diabetes, obesity, 
COPD, kidney disease, gastric complaints) in a primarily outpatient setting. Higher rates of male sex 
(62%), angina, and myocardial infarction

CAD w/ cerebral involvement
Coronary artery disease and associated comorbidities (hypertension, hyperlipidemia, diabetes, obesity, 
COPD, kidney disease, gastric complaints) in a primarily outpatient setting. Higher rates of female sex 
(62%) and vertebrobasilar insufficiency

Cardiac surgery Cardiac surgery, primarily coronary artery bypass grafting and valve repair

Acute coronary syndrome Acute coronary syndrome, including acute myocardial infarction and unstable angina

CAD, high acuity Coronary artery disease in a primarily inpatient setting. Common comorbidities include hypertension, 
diabetes, COPD, and stomach disease

Electrocardiography w/ apnea
Electrocardiography diagnostic findings, including cardiac arrhythmia, ventricular arrhythmia, pre-
mature ventricular contractions, atrioventricular block, atrial fibrillation, bradycardia, and tachycardia. 
Also includes respiratory findings commonly found during sleep studies

Electrocardiography Electrocardiography diagnostic findings, including cardiac arrhythmia, ventricular arrhythmia, prema-
ture ventricular contractions, atrioventricular block, atrial fibrillation, bradycardia, and tachycardia

Echocardiography Echocardiography diagnostic findings, including valve insufficiency, diastolic dysfunction, left ventricu-
lar hypertrophy, stenosis, and cardiomegaly

Atrial fibrillation Atrial fibrillation and flutter, with significantly enriched rates of obesity, hypertension, and thyroid 
disorders

Advanced & decompensated HF

Late-stage heart failure and associated symptoms, including edema, dyspnea, and cardiac asthma. 
Patients experience high rates of acute decompensation, in-hospital mortality, and acute problems such 
as multiple organ failure, cardiac arrest, respiratory failure, and acute kidney failure. Patients typically 
have several comorbidities and concomitant problems, including atrial fibrillation, COPD, anemia, and 
dilated cardiomyopathy

Dilated cardiomyopathy
Dilated cardiomyopathy with well-known symptoms, such as dyspnea, cardiac asthma, edema, valve 
insufficiency, arrhythmia, clotting events, and pulmonary hypertension. This group is predominantly 
male and has frequent documentation of alcohol abuse, chronic liver disease, and COPD, supporting 
evidence of alcoholic cardiomyopathy

Hypertrophic cardiomyopathy Hypertrophic cardiomyopathy and commonly reported symptoms, including syncope, heart murmur, 
and mitral valve insufficiency

Non-CV encounters
Group with lower rates of cardiovascular complaints but higher rates of other problems such as autoim-
mune disease (e.g., toxic diffuse goiter, autoimmune thyroiditis, Graves disease, lupus, and rheumatoid 
arthritis), blood cancers (e.g., multiple myeloma, lymphoma, and leukemia), and gynecological and 
obstetric findings (etc., fibroid tumor, pregnancy, menopause)

Pediatric cardiomyopathy Primarily pediatric population with cardiomyopathy related to myocarditis and pericarditis



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17871  | https://doi.org/10.1038/s41598-022-22398-4

www.nature.com/scientificreports/

the end stage of another disease process and as a result, HF patients typically experience a large number of 
comorbidities and clinical states over the course of their disease. To illustrate how multiple disease state clusters 
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Figure 4.   Current and future risk enrichment for clinical events in HF disease states. (a) Kernel density 
estimate of clinical events overlaid over HF disease states for six events: hospitalization, in-hospital mortality, 
and coronary artery bypass graft, hemorrhagic stroke, ischemic stroke, and acute kidney injury. Red density 
shows the density of snapshots in which the clinical event occurs (N clinical events). Blue density shows the 
density of snapshots before the first occurrence of the event (N snapshots before event). (b) Prevalence of 
clinical events (%) for the patient population in each disease state cluster in (a).



12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17871  | https://doi.org/10.1038/s41598-022-22398-4

www.nature.com/scientificreports/

manifest during HF progression, Fig. 5a shows an exemplary case study from a patient in the HF cohort. The 
patient was first referred to a cardiologist at the health system used in our study for worsening symptoms on a 
background of coronary artery disease and heart failure, at which time the complaints mentioned in the patient’s 
clinical notes led the disease state to be classified as CAD with arteriosclerosis. At the patient’s next snapshot, 
labeled as Echocardiography, they received an echocardiogram, which revealed newly diagnosed atrial fibrilla-
tion. Finally, in their last snapshot, the patient was hospitalized with acutely decompensated heart failure and 
was assigned the state Advanced  & decompensated HF.

To understand the dominant patterns of disease state progression over time across the entire HF cohort, we 
employ a twofold approach that first finds significantly co-occurring disease state pairs within patient timelines 

 

 

Visit 1: Examination & consultation by a cardiologist
Primary diagnosis: I25.1 (Atherosclerotic heart disease of native coronary artery)
Summary: Patient visits the clinic on the background of dyspnea and 
general weakness, which have gradually worsened over the past two months. 
Recommendations: Schedule another consultation after an 
echocardiography study. 

t = 0 months

Background at first visit: 
83-year-old male with a history of heart failure, coronary 
artery disease. Experienced an anterior wall myocardial 
infarction three years ago, at which time EF = 28%. As of 
three months ago, his EF was measured at 39%. 
Current medications:
Bisoprolol 2.5. mg, atorvastatin10 mg, torasemide10 mg, 
spironolactone 25 mg, losartan12.5, aspirin 75 mg

Visit 2: Echocardiography study
Ejection fraction: 27%
Findings: Atrial fibrillation. Left ventricle eccentric 
hypertrophy. Grade 3 mitral valve regurgitatation, 
grade 2 aortic valve regurgitation, grade 2 tricuspid 
valve regurgitation, pulmonary valve regurgitation. 

Visit 3: Examination & consultation by a cardiologist
Primary diagnosis: I48 (Atrial fibrillation and flutter)
Summary: Consultation after echo. 
Current diagnoses: HF (NYHA III), angina, and atrial fibrillation.
Recommendations: Start therapy with apixaban 2.5 mg or 
dabigatran 110 mg. 

Visit 4: Hospitalization for worsening CHF
Primary diagnosis: I50 (Heart failure), I48 (Atrial fibrillation and flutter)
Summary: The patient was admitted on a referral from the clinic for treatment of decompensated heart 
failure on the background of tachysystole. Coronary artery disease, angina, CHF (NYHA III), 
post-infarction cardiosclerosis, newly diagnosed AF. Left ventricle dilation with a decreased in EF (27%). 
Treatment plan on admission: beta-blockers, statins, oral anticoagulants, diuretics (furosemide). 
Discharged after 17 days. 
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Figure 5.   (a) Example timeline of a patient in the heart failure cohort. Visits have been aggregated into time 
bins and a clinical summary of the visits is provided. The disease state (cluster assignment) of each snapshot is 
shown. (b) Schematic illustrating the construction of a cluster co-occurrence matrix and cluster order count 
matrix using eight patient timelines from the HF cohort. The first timeline (P1) is expanded in (a). (c) Odds 
ratio of clusters co-occurring within HF patients for a selected subset of clusters, computed over all patients. 
Values greater than 1 (blue) indicate a positive association, while values less than 1 (red) indicate a negative 
association. Odds ratios falling outside of a 95% confidence interval are masked. (d) For selected cluster pairs, 
probability of the first cluster (y-axis) coming before the second cluster (x-axis) in patients in which both 
clusters co-occur across the entire HF population.
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and then determines the probability of each disease state occurring first or second within a patient timeline. To 
do so, we count the number of patients in which each disease state pair co-occurs, then compute the odds ratio of 
the two states co-occurring. A positive and statistically significant odds ratio quantifies the association between 
pairs of disease states. Next, for each disease state pair Si and Sj , we count the number of times that Si occurs 
before Sj in patients in which both disease states occur. From this, we can compute the probability of Si preceding 
Sj across the entire HF cohort, revealing the order in which positively associated disease state pairs tend to occur. 
The process of computing cluster co-occurrence and temporal ordering is shown for eight exemplary HF patient 
timelines in Fig. 5b. Statistically significant cluster co-occurrence odds ratios and cluster order probabilities for 
ten disease state clusters are shown in Fig. 5c,d (results for all clusters are shown in Supplementary Figs. S4 & S6).

Using the odds ratio computed from disease state co-occurrence between all clusters, we can construct a 
temporal network of HF disease states (Fig. 6a, odds ratio ≥ 1.33). The directionality of network edges reflects the 
disease state order probability in Fig. 5d, where probabilities in the range [0.45, 0.55] are shown as bidirectional 
arrows. The median time to transition between two disease states is overlaid on each edge. In this representation, 
we can observe disease states with only outgoing arrows, which we labeled as “start” states, and disease states 
with only incoming arrows, which we labeled as “end” states. We also observed a set of partially overlapping 
HF disease state “subnetworks” that contain both “start” and “end” states and a network of high-frequency state 
transition pathways, which are shown with transparent overlays. To aid in the interpretation and clinical insights 
of this network, demographic information (Fig. 6b), grouped complaint phenotypes (Fig. 6c), and clinical events 
(Fig. 6d) are shown overlaid on the network.

Figure 6.   (a) Temporal patterns of HF evolution. Network diagram showing connections between positively 
associated clusters (odds ratio > 1.33). Node size is proportional to the number of snapshots with the 
corresponding cluster assignment. Arrow thickness is proportional to the odds ratio in Fig. 5c. Arrow direction 
is derived from Fig. 4b; probabilities in the range [0.45, 0.55] are shown as bidirectional arrows. The median 
number of 30 days bins (months) for patients to transition between disease states is overlaid on the arrows. 
When arrows are bidirectional, the mean of the two values is shown. Disease states with only outgoing arrows 
are as labeled as “start” states, whereas disease states with only incoming arrows are labeled as “end” states. HF 
disease state subnetworks are shown with transparent overlays. (b) The prevalence of demographics (age, sex), 
(c) comorbidities (grouped complaints), and (d) clinical events overlaid on the network in (a).
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Visualizing demographics, grouped complaint phenotypes, and clinical events on top of this network provides 
a unique framework for hypothesis-free and scalable insight generation within a health system. Some example 
subnetworks are highlighted below.

Juvenile HF.  The youngest patients are concentrated in the subnetwork containing NICU, Congenital heart 
disease, and Pediatric cardiomyopathy (Fig. 6b, orange overlay). The disease state NICU serves as an entry point 
for HF for infants with congenital heart disease; those who survive the ICU (Fig. 6d) transition to the more stable 
states of Congenital heart disease and Pediatric cardiomyopathy.

Coronary artery disease, male‑dominated.  Another subnetwork we observed contains disease states pertaining 
to ischemic heart disease (Fig. 6a, blue overlay). In this subnetwork, Acute coronary syndrome serves as an entry 
point into further disease states, which supports the understanding of myocardial infarction as a driver of HF4. 
Within this male-dominated subnetwork (Fig. 6b), patients then progress to disease states CAD with myocardial 
ischemia and CAD, high acuity. Because they have HF stemming from an ischemic etiology, patients within this 
subnetwork frequently reach advanced disease end states of Cardiac surgery (CABG), Cerebrovascular disease, 
and Diabetic complications.

Coronary artery disease, female‑dominated.  In this subnetwork, we observe that Lipid disorders, which contains 
obese patients with hyperlipidemia and hypertension, is also an entry point to HF (Fig. 6a, yellow overlay). 
This state is commonly followed by CAD with cerebral involvement, which contains similar complaints as Lipid 
disorders but also contains additional comorbidities indicative of a more advanced disease state, (e.g., higher 
rates of atherosclerosis and angina, Fig. 3a). These patients then commonly progress to Diabetic complications 
and Cerebrovascular disease. Within the HF network, this subnetwork exhibits the highest prevalence of females 
(Fig. 6b), corroborating findings of distinct and separate progression patterns for males and females with HF47.

High‑risk HF.  We observe another subnetwork (Fig. 6a, red overlay) in which patients with snapshots in the 
Atrial fibrillation, Dilated cardiomyopathy, and CAD with arteriosclerosis clusters are likely to also experience 
Advanced & decompensated HF, the end state for this subnetwork and the state with the highest adult moral-
ity (Fig. 6d) and rates of other indicators of poor outcomes, including thromboembolism (Fig. 6d), respiratory 
failure, and decompensation (Fig. 3a). Although CAD with arteriosclerosis has complaints that are similar to 
the other disease states of ischemic heart disease, it also contains several complaints that distinguish it from the 
other groups, including higher rates of cardiomegaly (Fig. 3a) and thyroid disorders (Fig. 6c), which may point 
to potential factors for differential risk identification within HF subpopulations. In fact, thyroid disorders have 
a uniformly high prevalence in the subnetwork with advanced HF and within the Diabetic complications state, 
identifying correlates of poor outcomes and potentially identifying patients in need of alternative treatment 
strategies48. Similarly, the prevalence of CKD is highest in Advanced & decompensated HF and Diabetic compli-
cations (Fig. 6c), two of the most advanced disease states within the HF network, matching previous findings of 
CKD as a risk factor for poor outcomes47.

Taken together, these results highlight the typical progression patterns of HF disease states within a single 
health system. Importantly, we show that there are several subnetworks of disease states, which contain patients 
with similar clinical manifestations and progression pathways of HF.

Discussion
Understanding real-world disease manifestation and progression is a crucial step in developing and implementing 
effective interventions49. Historically this has been challenging in practice, especially in multifaceted syndromes 
such as HF where patients are elderly, highly complex, and have a range of lifestyle factors that vary widely across 
populations and play a large role in disease development and progression4,50. Disease-specific guidelines derived 
from results of RCTs with narrow inclusion/exclusion criteria, enrollment biases, and highly protocolized care 
may not be generalizable to large segments of the population across diverse geographies, sociodemographic 
categories, or health systems49. Additionally, such guidelines typically rely heavily on biomarkers and functional 
classifications, which may not reflect the nuance of disease presentation and severity that may be necessary to 
drive more targeted intervention strategies10,11. As a result, pharmaceutical companies and healthcare providers 
do not have an accurate and complete map of the HF disease landscape that is inclusive of all manifestations, 
progression patterns, and treatment responses across the full spectrum of HF patients that can be used to guide 
development of better interventions and management strategies. Generating practice-based evidence from RWD 
has emerged as a potential solution to these problems20, but challenges in data quality and methodological 
limitations to take noisiness into account have limited the applications of RWD51–53. Much research has focused 
on supervised predictive models that use limited variables or curated data for specific use cases22–26, but these 
approaches do not offer a more top-down view of disease that can be used in higher-level decision making.

In this study, we present an alternative approach to understanding the real-world manifestation and progres-
sion of HF by using a data-driven methodology for identifying HF disease states and common trajectories. In 
contrast to top-down approaches that use predefined criteria to classify HF disease states, the unsupervised, 
hypothesis-free approach presented in this study requires no high-level data structuring or top-down defini-
tions. Instead, we utilized free-text mentions of complaints extracted from clinical notes, which contain the 
rich descriptors of patient disease that are not found elsewhere in RCTs or other secondary use datasets. The 
resultant HF disease states are clinically meaningful in terms of HF etiology, comorbid conditions, symptoms, 
disease severity, and care utilization patterns, and have the potential to provide a richer and more complete 
picture of patient disease states at both an individual and population level compared to top-down classifications. 
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Characterizing these HF states over time reveals a more differentiated picture of HF presentation and evolu-
tion dynamics across a large population, which begins to characterize a comprehensive HF phenome that can 
be computed on large datasets at scale to capture the patterns of clinical presentation of HF patients based on 
real-world clinical practice.

We demonstrate the utility of the HF phenome in a large HF population in Western Russia. By revealing how 
patients with similar disease states typically progress into more severe disease states over time, our approach 
allows us to identify differential risk patterns for future undesirable events in high-risk HF disease states. For 
example, by identifying the disease states in which thromboembolisms (Fig. 6c) or ischemic strokes (Fig. 6d) 
are most prevalent, the patients on the pathways that lead to these higher-risk states can be specifically targeted 
for early intervention. We also observe HF disease states (for example, those corresponding to outpatient CAD) 
that appear very similar in terms of complaints and patient characteristics but that have very different risk 
profiles and progression pathways, which may not be differentiated using a limited set of top-down criteria 
(such as trial inclusion/exclusion criteria). This intriguing finding that similar-looking patient subgroups can 
experience dramatically different progression pathways further supports the assertion that current classification 
schemes do not adequately represent real world HF disease trajectories and warrants further research into the 
factors leading to disparate outcomes across HF subpopulations. This breakdown of the HF disease landscape 
into clinically-similar disease states over time allows for the quantification of risk of various endpoints within 
more precisely defined subpopulations, which can help providers decide which populations to focus on within 
resource-constrained care settings. At the same time, for the pharmaceutical industry there is also potential to 
enable risk-enrichment strategies in RCTs that more reliably reflect disease progression in the real world. EHR-
derived progression phenotypes could also provide evidence for alternative clinical endpoints that truly reflect 
the disease burden and medical need under standard of care conditions. This can be particularly valuable when 
population-specific guidance from RCTs are limited, unreliable, or unavailable.

An additional advantage of the data-driven approach employed in this work is that the insights into HF 
manifestation and progression are generated in a scalable manner on routinely collected EHR data and can 
thus serve as the basis for a highly tailored and localized landscape of disease that reflects the population and 
practices specific to targeted subpopulations, including those found in individual healthcare systems. Using a 
single unified approach, we find that we are able to replicate many well-established etiologies, risk factors, and 
progression patterns of HF. At the same time, our approach also surfaces patterns localized to the specific study 
population that may not be apparent via top-down methods. For example, in the Russian EHR dataset used for 
this study, we found a high prevalence of younger males with alcoholic cardiomyopathy54 and high prevalence 
of structural valve changes and complications due to rheumatism55, two groups which would likely still be pre-
sent but likely at much lower numbers in a US dataset. Localized HF landscapes could serve as the foundation 
for data-driven personalized medicine, with the potential to deliver real-world insights tuned to the particular 
needs of clinicians and their patients at the point of care. Given that large portions of real-world HF populations 
are still underrepresented in clinical research, especially older patients, women, minorities56, and patients living 
outside specific geographies that are typically targeted for RCTs, this approach may be of particular value for 
risk-bearing healthcare entities to better understand outcomes and treatment performance more accurately and 
completely across diverse populations. Periodic regeneration and assessment of localized HF landscapes within 
healthcare systems over time could also help providers understand the impact of changes in HF management 
strategies and the local patient population on outcomes and provide a feedback system for further hypothesis 
generation and optimization of care programs.

Limitations and future directions
In this study, we utilize clinical notes from a single health system to generate an unsupervised, hypothesis-free 
understanding of HF disease states and progression pathways. A potential limitation of our study is that although 
a large number of HF patients were used in the analysis (N = 25,861), it remains to be determined whether the 
HF disease states presented in this work will remain stable across larger patient populations and geographies. 
Additionally, in this work we defined HF disease states using only complaints extracted from clinical narratives 
in the EHR without using any structured data (e.g., diagnostic codes) or structured or unstructured data corre-
sponding to clinical interventions (e.g., medications, procedures) or measurements (e.g., vitals, labs, diagnostics). 
Future avenues of research can explore utilizing additional sources of information in the EHR as data sources for 
HF subtyping, as well as additional healthcare data sources such as administrative data and claims.

The clustering methodology used in this study assigns one disease state per data point. A future direction 
of study could utilize multi-assignment clustering models, which may be explored in an attempt to explicitly 
model multimorbidity. Furthermore, we observe patients with similar complaints (i.e., CAD disease states) that 
ultimately experience very different progression pathways and outcomes; future research could explicitly model 
longer term disease state trajectories rather than the pairwise approach taken in this work to understand more 
complex, nuanced relationships between disease progression and outcomes.

We demonstrate the ability to generate a high-level understanding of the real-world manifestation of HF 
within a health system using only unstructured data. A natural extension of this work would be to further analyze 
these HF subgroups using interventions, outcomes, and other covariates. For example, future research could 
analyze how covariates such as age, sex, comorbidities or other complaints, or even traditional biomarkers such 
as LVEF may correlate with or serve as drivers of disease progression between the HF disease states identified in 
this study. Additionally, because the methodology developed in this study groups patients together by similarity 
of disease manifestation at a particular point in time, future research could characterize the treatment response 
of different HF subgroups, potentially identifying treatments with differential impact on disease progression and 
critical outcome measures across different stages and etiologies of HF. Such an approach can thus serve as the 
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basis for comparative efficacy studies and potentially serve as a supplement or alternative to other population 
matching methods such as propensity scoring.

Methods
Description of dataset.  In this study, we analyzed de-identified secondary healthcare data that was 
extracted from the EHR system of a national medical research center located in Western Russia39. The center 
provides the full cycle of medical services, including inpatient and outpatient departments, imaging, rehabilita-
tion services, perinatal care (including pediatric intensive care and surgery), and dentistry. Inpatient services 
are spread across various institutes and departments, and include, among others, internal medicine, functional 
diagnostics, intensive care units (ICU), including neonatal ICU (NICU), surgery (including cardiovascular, 
oncology, neurology, robotic surgery, etc.), clinical pharmacology, and chemotherapy. The longitudinal records 
used in this study were collected over a 10-year time span (2008–2018). Use of de-identified data for research 
purposes was approved by the institution. The study was verified IRB exempt as non-human subjects research 
not requiring informed consent according to 45CFR46.104(d) (Solutions IRB). All research was performed in 
accordance with relevant guidelines and regulations.

A Russian-language clinical NER system36,39 was used to extract free-text complaints from the totality of the 
unstructured notes in patient EHRs. The NER system (Droice Flamingo) extracts mentions of clinical concepts 
from several clinically relevant ontologies included in the Unified Medical Language System57 (UMLS) and maps 
them to a concept unique identifier (CUI), which allows different strings to be matched to the same normal-
ized entity (e.g., “Type 2 diabetes” and “DM2” will both be assigned the same CUI). In this study, we extracted 
entities in SNOMED CT and represented each entity by its normalized CUI. Within UMLS, each CUI has one 
or more semantic types. We limited our analysis to entities corresponding to patient complaints (e.g., diseases, 
signs, symptoms, conditions; for a full list of UMLS semantic types, see Supplementary Table S1) and discarded 
entities corresponding to interventions (e.g., medications, procedures) and anatomy. We also removed from the 
analysis all entities with negative polarity (e.g., “Patient denies headache”).

Clustering complaint feature vectors.  We utilized a cluster-based approach to construct HF disease 
states. The HF disease state clusters used as the basis of this study are constructed from a large dataset (> 100,000 
examples) and underwent extensive clinical interpretation; we thus chose K-means as the clustering algorithm 
because of the inherent interpretability of the resultant cluster centroids and its ability to scale well to large 
datasets. We aggregated all positively mentioned complaints for each patient over the entirety of the EHR time-
line to generate a vector of counts of each complaint for each patient, which was used as the input to K-means 
clustering. The vector of counts of complaints of each patient was transformed using term frequency-inverse 
document frequency41 (TF-IDF). Templated forms and copy and pasting are common phenomena in clinical 
text and become even more prevalent in patients with longer records. To reduce the contribution of repeated text 
chunks and normalize term counts over patients with different timeline lengths, we utilized a logarithmic term 
frequency, followed by an L2 normalization of each patient vector.

The relative frequency of complaints in the dataset follows a power law distribution. To limit the dimensional-
ity of the representation and to exclude rare terms, we restricted the complaints vocabulary V  to 99% the most 
frequent complaints, which reduced the vocabulary size from 9,375 to 1,276. Vectorization of the entire heart 
failure cohort results in a two-dimensional matrix of the form P = (pi,j)ǫR

N×V . Here, N denotes the number of 
snapshots in the cohort (N = 103,833).

Evaluation of clustering models.  We hypothesized that clustering with different K values (numbers of 
clusters) would group HF snapshots by different levels of disease hierarchy (i.e., small values of K would result in 
cohorts grouped by broad disease features, whereas a large values of K would results in cohorts grouped by more 
granular disease features). To determine which values of K yield stable clusters for the HF dataset, we quantified 
cluster stability for each value of K with a bootstrapping strategy42. For values of K that represent true clusters in 
the underlying dataset, these clusters should be re-identifiable in randomly subsampled portions of the original 
dataset.

First, for Kǫ[2, 3, . . . , 30] , we clustered data points via K-means clustering to obtain reference clustering 
results [Cref

K=1,C
ref
K=2, ...,C

ref
K=30] . Then for each reference clustering result for each value of K, we utilized a cluster 

bootstrapping strategy in which we 1) subsampled a fixed fraction of the original dataset fd then 2) clustered 
again to generate a bootstrapped clustering result Cfd

K=k . We repeated the bootstrapping for varying fractions of 
data fdǫ[0.5, 0.25, ..., 0.0078125] to investigate whether the size of the available dataset would limit the level of 
accuracy and robustness of the cluster identification. This procedure was repeated 1000 times for each value of 
K and each fraction of data.

To evaluate the stability of clustering results, we compared the similarity of each bootstrapped clustering 
result to the corresponding reference clustering at each value of K . The Jaccard index characterizes how robust 
the grouping of patients within a cluster is to changes in the specific population of patients through random 
subsampling of the data set. Similarity was thus calculated using the Jaccard index across the reference and 
bootstrapped clustering results:

Here N denotes the number of data points used in both clustering models, nij is the number of datapoints 
present in cluster i from reference clustering Cref

K=k and cluster j from bootstrapped clustering Cfd
K=k . Jij is the 

Jaccard index between in clusters i and j:

J(C
ref
K=k ,C

fd
K=k) =

1

N

∑k

i=1

∑k

j=1
nij · Jij
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For each value of K  and each fraction of data, this analysis yields a distribution of 1000 values of J , which 
can be used to quantitatively compare the stability of clustering across different values of K . In this formulation, 
a value of J = 1 means that the data has been partitioned identically in the reference and bootstrapped cluster-
ing (perfect stability). As less data is sampled for bootstrapping (lower values of fd ), we can empirically test the 
amount of data at which the clustering result breaks down.

To test the stability of the medical concepts characterizing the different patient clusters, we utilized a semantic 
similarity measure based on a modification of the Jaccard index. Semantic similarity S quantifies the similarity of 
the significant complaints associated with each cluster between the reference and bootstrapped clustering results:

As before, N denotes the number of datapoints used in both clustering models, nij is the number of datapoints 
present in cluster i from reference clustering Cref

K=k and cluster j from bootstrapped clustering Cfd
K=k . Sij is the 

semantic similarity index between in clusters i and j , and quantifies the overlap of the significantly associated 
complaints vocabularies between the two clusters:

As with the Jaccard index bootstrapping, we repeated the bootstrapping for varying fractions of data 
fdǫ[0.5, 0.25, ..., 0.0078125] . Robust identification of local maxima in Jij and Sij across increasingly diminishing 
fractions of the data provides the basis for selection of stable clusters.

Selection of K and constructing disease state hierarchies.  To select the valid values of K that can 
be considered HF disease states at differing levels of hierarchy, we considered local maxima when sampling 50% 
of data ( fd = 0.5 ) resulting in m values of Kǫ[k1max , k

2
max , . . . , k

m
max] . After choosing to analyze a set of clusters 

satisfying both local maximum criteria at a given value of K , which we denote m∗ , we aimed to visualize the hier-
archical structure of the clustering result. Doing so allows us to understand which disease states are more similar 
to each other and thus frame the results at various levels of hierarchy. To do so, we computed the Jaccard index 
between the clustering results Cm∗

max and the clustering result for all local maxima for values of K less than m∗ 
Cm
max , mǫ[m∗ − 1,m∗ − 2, . . . , 1] . This results in a Jaccard similarity matrix of size [m∗ ×m] ; we then computed 

the pairwise distance between each cluster in Cm∗
max . We repeated this for each value of m , computed the average, 

then use the resulting combined distance matrix to create a dendrogram using hierarchical clustering (com-
plete linkage). The resulting HF disease state dendrogram allows us to understand the hierarchical relationship 
between clusters at different values of K and provides a visualization that can be understood as a phylogenetic 
tree of complaints and symptoms.

Statistical testing for identification of distinctive features of disease states clusters.  To inter-
pret clusters of patients discovered via K-means clustering, we utilized statistical testing to find complaints that 
were significantly overrepresented within the cluster as compared to the rest of the heart failure population. 
Doing so allows us to determine the distinguishing features (medical complaints) of each cluster. More specifi-
cally, for each cluster i we break the patient matrix P into two submatrices, Pi and Pj , where Pi contains the data 
points of all patients from cluster i ( k = i ) and Pj , contains the data points from all other clusters ( k  = i ). For 
each feature f  , we then use a right-sided t-test to test the null hypothesis that the mean of the TF-IDF features 
in Pfi  are equal to Pfj . Rejection of the null hypothesis for feature f  means that this complaint is overrepresented 
in cluster i and can be interpreted as a distinguishing characteristic of the cluster. Performing this test for each 
complaint within a cluster yields a vocabulary of significantly associated complaints Vs . We employed Bonferroni 
correction for multiple comparisons. Samples were tested to confirm to be normally distributed.

Grouping complaint features into clinical phenotypes.  The complaint features used in this study 
were extracted from clinical text and mapped to SNOMED CT, which has a hierarchical structure. As a result, 
there are terms in the feature vector that are more specific than others. For example, there are features that cor-
respond to anemia, a more general term, as well as iron-deficiency anemia, hemolytic anemia, and hypochromic 
anemia, which are more specific types of anemia. To summarize these hierarchical relationships between disease 
state features, we defined 50 high-level complaints and utilized a keyword-based search to group input complaint 
features into these grouped complaint clinical phenotypes (Supplementary Table S3).

Calculating clinical characteristics for HF disease states.  In addition to analyzing the NLP-derived 
concepts, each HF disease state was further characterized by the sex distribution (% female), median age, median 
BMI, and prevalence of in-hospital mortality. The sex of each patient and in-hospital mortality were derived 
directly from structured fields within the EHR. For each data element in the de-identified analysis dataset, age 
was calculated as the difference between the element timestamp and the patient’s date of birth (days), with ages 

Jij =

∣∣∣crefi

⋂
c
fd
j

∣∣∣
∣∣∣crefi

⋃
c
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j

∣∣∣
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1

N
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above 90 years set to 90 years (32,872 days); the age used to compute the median age of the disease state snapshot 
was the age of the patient when they first entered the snapshot, converted to years. The BMI of the patient at each 
disease state was taken as the average of all BMI measurements taken within the 30 day window. Because BMI 
is not measured at all visits, for each disease state, the fraction of data points used in the calculation of median 
BMI is provided in Supplementary Fig. S2.

Clinical summary of HF disease states.  Each HF disease state cluster can be understood as HF patient 
timeline segments grouped by similar patterns of complaints, symptoms, and comorbidities; disease states are 
complex and typically multimorbid. Although it is difficult to summarize such complex patterns succinctly, to 
facilitate communication of results and interpretation of figures, each disease state was given a clinically inter-
pretable name and concise description by the authors (Table 3). The cluster names and descriptions were based 
on interpretation of Table 2, Supplementary Table S2, and Figs. 2 & 3.

Defining temporal progression between HF disease states.  Once we characterized HF disease 
states based on complaints over 30-day time windows, we sought to quantify the temporal relationship between 
these states to understand HF disease evolution. This was accomplished using a two-step process.

Quantifying the association between disease states.  First, we quantified the likelihood that each disease state 
(cluster) pair co-occur within a patient’s timeline over the entire HF population. This was done by computing a 
cluster-wise co-occurrence matrix (Fig. 5b), then computing the odds ratio between each cluster pair58 (Fig. 5c). 
For disease states i and j, the odds ratio would be computed as ORij =

ni,jn¬i,¬j
ni,¬jn¬i,j

 , where ni,j is the number of times 
disease states i and j cooccur across the HF cohort, ni,¬j is the number of times disease state i occurs with any 
disease state that is not disease state j, n¬i,j is the number of times disease state j occurs with any disease state that 
is not disease state i, and n¬i,¬j is the number of disease state co-occurrences across all disease states that are not 
i or j. Statistically significant cluster pairs with odds ratios > 1 were considered positively correlated.

Temporally ordering disease states.  Next, for each cluster pair ci and cj , we computed a count matrix that counts 
which cluster comes first in patients where both clusters occur (Fig. 5b). Normalizing these counts into prob-
abilities yields the probability that ci occurs before cj over the entire HF dataset (Fig. 5d).

Combining steps 1 & 2 for each cluster pair, we can both quantify the strength of the association between the 
clusters and assign a temporal directionality to positively associated disease state clusters. These relationships 
can be visualized as a graph, which describes the temporal relationship between HF disease states (Fig. 6). To 
emphasize stronger associations, statistically significant odds ratios > 1.33 were used as edges in the graph. The 
direction of edges was computed using the temporal ordering of clusters, where probabilities in the range [0.45, 
0.55] are shown as bidirectional arrows.

Statistical package versions.  TF-IDF vectorization, K-means clustering, and t-SNE were implemented 
using Python’s Scikit-learn (0.19.1). Statistical tests were implemented using Scipy (1.3.0).

Data availability
The patient-level electronic health record dataset was made available for this study with permission from the 
originating health system. The de-identified analysis dataset that supports the findings of this study may be 
made available to qualified investigators upon request with appropriate institutional review board approval and 
execution of a data use agreement with Droice Labs. For requests for access to the data, interested researchers 
should contact data-requests@droicelabs.com.
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