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Predicting overall survival in diffuse 
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Diffuse gliomas are incurable brain tumors, yet there is significant heterogeneity in patient survival. 
Advanced computational techniques such as radiomics show potential for presurgical prediction of 
survival and other outcomes from neuroimaging. However, these techniques ignore non-lesioned 
brain features that could be essential for improving prediction accuracy. Gray matter covariance 
network (connectome) features were retrospectively identified from the T1-weighted MRIs of 305 
adult patients diagnosed with diffuse glioma. These features were entered into a Cox proportional 
hazards model to predict overall survival with 10-folds cross-validation. The mean time-dependent 
area under the curve (AUC) of the connectome model was compared with the mean AUCs of clinical 
and radiomic models using a pairwise t-test with Bonferroni correction. One clinical model included 
only features that are known presurgery (clinical) and another included an advantaged set of 
features that are not typically known presurgery (clinical +). The median survival time for all patients 
was 134.2 months. The connectome model (AUC 0.88 ± 0.01) demonstrated superior performance 
(P < 0.001, corrected) compared to the clinical (AUC 0.61 ± 0.02), clinical + (AUC 0.79 ± 0.01) and 
radiomic models (AUC 0.75 ± 0.02). These findings indicate that the connectome is a feasible and 
reliable early biomarker for predicting survival in patients with diffuse glioma. Connectome and 
other whole-brain models could be valuable tools for precision medicine by informing patient risk 
stratification and treatment decision-making.

Diffuse gliomas are the most common malignant primary brain tumor. While our understanding of the biologic 
foundations of these cancers has grown in recent years, all diffuse gliomas are considered incurable at this time. 
However, median survival broadly ranges up to approximately 15 years, varying within histologic and molecular 
 subgroups1. Predicting survival from baseline characteristics is especially useful in risk stratification and plan-
ning individualized therapy. Patients with favorable prognostic indicators at baseline may potentially be spared 
unnecessarily aggressive  treatments2. Improving preoperative diagnostics may also facilitate the development of 
window-of-opportunity clinical trials in neuro-oncology, where the difficulty of obtaining diagnostic biomarkers 
hinders the development of these therapeutic studies.

Persistent attempts to refine prognostic measures have been made based on histology and extent of surgical 
resection. Malignant astrocytomas are associated with lower progression-free and overall survival compared to 
oligodendrogliomas and  oligoastrocytomas3. Gross total tumor resection is not always possible but is associated 
with improved survival  outcome4. However, these variables are not typically known in advance of surgery. Tumor 
genotyping represents one of the most promising methods for risk stratification. For example, patients with isoci-
trate dehydrogenase wild-type tumors tend to have significantly lower survival rates compared to patients with 
mutant  tumors5. However, genomic and epigenomic tumor profiling requires neurosurgery and can be limited 
by the volume and quality of the tissue sample, available expertise, and cost. As such, current clinical practice 
does not allow for comprehensive molecular assessment on all patients. Further, some studies have found that 
isocitrate dehydrogenase status is poorly associated with long-term survival in high grade  tumors6.
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Neuroimaging is standard of care prior to neurosurgery for brain tumors and represents a noninvasive, 
early biomarker for risk stratification. Advanced computational imaging techniques, such as radiomics, have 
demonstrated potential for predicting survival in patients with diffuse glioma from presurgical  neuroimaging7. 
However, radiomic methods utilize only imaging features of the tumor itself, ignoring the rest of the brain. 
Our group and others have demonstrated that diffuse gliomas are associated with wide-spread brain network 
 disruption8–10. These findings reflect the fact that gliomas are not focal tumors, but malignancies that propagate 
throughout the brain. In fact, this dissemination is one of the reasons these tumors tend to recur and remain 
difficult to treat. Therefore, a focus solely on tumor characteristics likely neglects important prognostic informa-
tion. Accordingly, recent evidence suggests that changes in whole-brain networks (connectomics) may serve as 
indicators of  survival10–12. However, connectome models have not been compared to radiomic models in prior 
studies. We developed and cross-validated multivariable models for predicting overall survival in diffuse glioma.

Few if any studies have evaluated T1-weighted MRI (T1w MRI) based connectome models of glioma survival. 
T1w MRI is routinely acquired presurgically as part of standard of care for patients with brain tumors. T1w MRI 
is used ubiquitously in neuroimaging research, including our own, to measure brain  volumes13–18. There exist 
coordinated variations in gray matter volumes that make connectome construction  possible19. These structural 
covariance networks are highly  heritable20 and are believed to reflect underlying axonal connections as well 
as common neurodevelopmental and neuroplastic processes involved in the formation of functional neural 
 communities21–23. Accordingly, our group and others have shown that gray matter connectomes are consistent 
with diffusion tensor imaging (DTI) and functional MRI (fMRI) derived  connectomes24,25 and are highly repro-
ducible and  reliable26. We hypothesized that a T1w MRI connectome model would outperform both clinical and 
radiomic models in predicting glioma survival.

Methods
Participants. We retrospectively identified adult (age 18 or older) patients with histopathologically con-
firmed World Health Organization grade II–IV gliomas who were newly diagnosed and first treated at MD 
Anderson Cancer Center. A total of 305 patients met these criteria and had an available pre-surgical, T1w MRI 
acquired at 3 T. Patients were treated during the years of 1996–2020. MRI, demographic, and other clinical data 
were extracted from the electronic medical record. This study, including a waiver of written informed consent, 
was approved by the MD Anderson Cancer Center Institutional Review Board (protocol# 2021-0236). The study 
was conducted in accordance with the Declaration of Helsinki.

Connectome predictors. Gray matter volumes were segmented from T1w MRI with Voxel-Based Mor-
phometry v8 and Statistical Parametric Mapping v12 (Wellcome Trust Centre for Neuroimaging, London, UK). 
We employed Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra, which uses a large 
deformation framework to preserve topology and employs customized, sample-specific templates resulting in 
superior image registration, even in lesioned brains, compared to other automated  methods27. Successful nor-
malization was confirmed using visual and quantitative quality assurance  methods9.

A connectome was constructed for each patient from gray matter covariance networks using a similarity-
based extraction  method28. Specifically, network nodes were defined as 3 × 3 × 3 voxel cubes spanning the entire 
gray matter volume (i.e. 54 gray matter values per cube). A correlation matrix was calculated across all pairs of 
nodes and binarized based on a threshold estimated from a random network with false discovery  rate28,29. We 
ensured that no binarized matrices were disconnected (i.e., had isolated nodes). We then applied graph theoretical 
analysis using the bNets Toolbox v2.2 (Brain Health Neuroscience Lab, Austin, TX)30 and Brain Connectivity 
Toolbox v2019-03-0331 to calculate local  efficiency32 for each connectome node. Local efficiency is consistently 
observed to be affected in patients with diffuse  glioma9,33–35. We also computed total brain volume, connectome 
size (number of nodes) and degree (number of nodal connections) as these can bias connectome measurements. 
Connectome size naturally varies across individuals, so gray matter volumes were collapsed across 90 cortical 
and subcortical  regions36 to facilitate  analyses9. The 90 efficiency values, brain volume, size and degree provided 
a total of 93 connectome predictors.

Radiomic predictors. Tumor segmentation was performed on the T1w MRI volume in the axial plane 
using 3D Slicer v4.11 (Slicer Community, Cambridge, MA)37. Specifically, two seed regions were created manu-
ally for a limited number of slices representing superior, midpoint and inferior aspects of the tumor. For each 
slice, one seed was set in the tumor area and the second was placed in the non-tumor area. The Fast GrowCut 
method was then employed to efficiently interpolate a full segmentation of the entire volume from the seed 
regions. Two expert raters reviewed the segmentations for accuracy.

Radiomic features were extracted from the tumor segmentation using PyRadiomics v3.01 (PyRadiomics 
Community, Boston, MA), a Python-based, open-source software package that has a 3D Slicer integration. 
PyRadiomics implements hard-coded algorithms for image processing and feature definition to improve the 
standardization and reproducibility of radiomics  analyses38. Another advantage of PyRadiomics is the ability 
to extract radiomic features from a single T1w MRI volume, making this approach the most comparable to our 
connectome model. We obtained at total of 107 PyRadiomics predictors including 14 shape features, 18 intensity 
features and 75 texture features.

Clinical predictors. Available clinical variables included primary tumor location (1 = occipital, 2 = pari-
etal,3 = temporal,4 = frontal) and hemispheric laterality (left = 1, right = 0), multifocal tumor (yes = 1, no = 0), 
tumor grade (2,3,4), histology (1 = astrocytoma, 2 = oligodendroglioma; 3 = oligoastrocytoma), extent of surgical 
resection (1 = gross total, 2 = subtotal, 3 = biopsy), patient age at diagnosis in years, and biological sex (1 = male, 
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0 = female) for a total of 8 predictors. Other known predictors of glioma survival such as tumor genotype and 
Karnofsky performance status were not available for most participants. It is important to note that tumor grade, 
histology and extent of resection are not typically known presurgery, so this represented an advantaged model 
compared to the neuroimaging models. We therefore also examined a truly presurgical clinical model that 
included only primary tumor location, laterality, multifocality, age at diagnosis, and biological sex (5 predictors).

Statistical analysis. We fit a Cox proportional hazards model to predict overall survival time in months 
for each of four models, one with connectome covariates, one with presurgical only clinical covariates (clinical 
model), one with the advantaged clinical covariates (clinical + model), and a fourth with radiomics covariates. 
Given the large number of covariates, we implemented regularized  regression39 and 10-folds cross-validation40 
to decrease model complexity and reduce overfitting. Specifically, the N = 305 datasets were randomly shuffled 
and then split into 10 subsets (i.e., folds). For each of the 10 cross-validation loops, a Cox proportional hazards 
model with a ridge penalty was trained on the data from 9 of the folds and then tested on the left-out fold such 
that every fold was tested once.

Model performance for predicting survival time in the test fold was measured using the time-dependent AUC 
of the receiver operating characteristic (ROC). In this case, the AUC was the integral of AUC on the range of 
survival time from 0 to maximum, weighted by the estimated probability density of the time-to-event outcome. 
In other words, this measurement takes into account the time-dependent nature of the parameters and the impact 
of  censoring41. The AUC was averaged across the 10 cross-validation loops. We compared the mean AUC from 
each of these models using a pairwise t-test with Bonferroni correction for multiple comparisons.

Results
All 305 patients identified for analysis had complete data. Patient characteristics are outlined in Table 1. Age 
at diagnosis ranged from 18 to 82 years and most patients were male. Most patients had left frontal, high 
grade tumors and received gross total resection. Median survival time was 134.2 months, ranging from 0.36 to 
334.8 months (Fig. 1).

As shown in Fig. 2, the connectome model (AUC 0.88 ± 0.01) demonstrated superior performance (P < 0.001, 
corrected) compared to the clinical (AUC 0.61 ± 0.02), clinical + (AUC 0.79 ± 0.01) and radiomic models (AUC 
0.75 ± 0.02) in predicting overall survival. The clinical + and radiomics models outperformed the clinical model 
(P < 0.001, corrected) and the clinical + model outperformed the radiomics model (P < 0.001, corrected).

To further interpret our findings, we conducted three post-hoc models, one that combined clinical and 
connectome features, one that combined clinical + and connectome features, and one that included gray matter 
volumes extracted from the same 90 regions of interest that were applied to the connectome efficiencies. Regional 

Table 1.  Patient characteristics N = 305.

N (%)

Age at diagnosis 43.96 ± 14.8 years

Biological sex

Male 180 (59.0%)

Female 125 (41.0%)

Histologic phenotype

Astrocytoma 221 (72.4%)

Oligodendroglioma 69 (22.6%)

Oligoastrocytoma 15 (5.0%)

Histologic grade

Grade II 123 (40.3%)

Grade III 79 (25.9%)

Grade IV 103 (33.8%)

Tumor laterality

Right 86 (28.2%)

Left 219 (71.8%)

Primary tumor location

Frontal 154 (50.5%)

Temporal 105 (34.4%)

Parietal 44 (14.4%)

Occipital 2 (0.7%)

Extent of resection

Gross total resection 136 (44.6%)

Subtotal resection 108 (35.4%)

Biopsy 61 (20.0%)
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volumes were measured from the segmented gray matter image for each participant using the fslstats tool in 
FMRIB Software Library v6.0 (FMRIB, Oxford, UK)42. The connectome/clinical model demonstrated a mean 
AUC of 0.88 ± 0.01, the connectome/clinical + model demonstrated a mean AUC of 0.93 ± 0.01), and the gray 
matter volumes model demonstrated a mean AUC of 0.88 ± 0.01. The connectome/clinical + model significantly 
outperformed the connectome model (P < 0.001) and the gray matter volumes model was significantly better than 
the clinical + model (P < 0.001). ROC curves for each fold of each model are presented in Fig. 3.

The emphasis of machine learning models such as these is on generalizable models, and they are not designed 
for inference. In other words, the goal of this and similar studies is not to determine specific factors that predict 
outcome, but to develop reproducible models that perform well across samples. Cross-validation results in a 
different Cox proportional hazards fit within each fold and thus it is not possible to precisely determine the 
coefficients or significance values for the covariates. However, given that this is the first gray matter connectome 
model of glioma survival, examination of individual predictors may provide important insights for future stud-
ies. Therefore, predictors with a mean p value of 0.05 or less across the 10 cross-validation loops are listed for 
each model in Table 2. Coefficients and p values for every predictor, for every fold of every model are provided 
in the  Supplementary Data.

Figure 1.  Kaplan–Meier plot of overall survival probability. Dotted vertical line indicates median survival time 
of 134.2 months.

Figure 2.  Violin plots of AUC values across 10-folds cross-validation. The connectome model (AUC 0.88 ± 
0.01) demonstrated superior performance compared to the clinical (AUC 0.61 ± 0.02), clinical + (AUC 0.79 ± 
0.01) and radiomic models (AUC 0.75 ± 0.02) in predicting overall survival. The clinical + and radiomics models 
outperformed the clinical model and the clinical + model outperformed the radiomics model. *** P < 0.001, 
corrected.
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Discussion
We evaluated the accuracy of connectome features derived from presurgical T1w MRI to predict overall survival 
in patients with diffuse glioma. We compared the connectome model to a presurgical clinical model, an advan-
taged clinical model that included both pre- and post-surgically known features, and a model with radiomic 
features, also derived from the presurgical T1w MRI. As hypothesized, we found that the connectome model’s 
performance was superior to all other models, having the highest cross-validated mean AUC. The differences in 
AUCs between the models were highly significant (P < 0.001), even after controlling for multiple comparisons. 
Thus, although three of the four models showed strong performance, the connectome model was superior 
beyond chance. These findings illustrate the valuable prognostic information contained within the entire brain, 
not limited to tumor characteristics.

Notably, our connectome model demonstrated equal or better predictive accuracy than the radiomics model 
within our own sample and in comparison to previous studies, including those that used manual tumor seg-
mentation and multiple imaging  sequences43,44. Manual tumor segmentation is time consuming, requiring one 
or more expert raters. Even semi-automated methods such as the one we employed here require expert raters, 
which can reduce reliability and reproducibility. In comparison, extracting connectome features is completely 
automated and our open-source connectome software tools for doing so are publicly  available45. The various 

Figure 3.  Receiver operating characteristic (ROC) curves. The ROC curve for each of the 10 cross-validation 
folds are shown here for the primary (clinical, clinical +, radiomics, connectome) and post-hoc (clinical 
connectome, clinical + connectome, gray matter volumes) models predicting overall glioma survival.



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18783  | https://doi.org/10.1038/s41598-022-22387-7

www.nature.com/scientificreports/

imaging sequences used in prior radiomics studies require additional processing and are not consistently avail-
able. Alternatively, our connectome features were derived from a single, standard of care, T1w MRI volume.

No prior studies have evaluated T1w MRI -based connectome models of glioma survival. Our T1w MRI 
connectome model was superior to previously reported fMRI and DTI based connectome models in predicting 
glioma survival, which have demonstrated AUCs or accuracies of 0.75–0.8111,12,46. T1w MRI has distinct advan-
tages compared to DTI in terms of reliability in constructing brain networks and standardizing pulse sequences 
across scanner  types47,48. Unlike fMRI, T1w MRI is more routinely prescribed as presurgical, standard of care. 
T1w MRI has greater resistance to artifact over other imaging modalities and requires less resource to preprocess 
and analyze than other  acquisitions47.

Tumor cells are difficult to differentiate from gray matter in T1w MRI and are intermixed with normally 
functioning tissue within the  tumor49. Preservation of functional cells within tumor boundaries has been associ-
ated with improved  survival50 and pathologic neural networks formed by glioma cells promote tumor progres-
sion through growth factor  release51. Therefore, all voxels within the tumor boundary are important to include 
because the relationships of those voxel in the network will theoretically reflect the pathology of the tumor and 
be important for predicting outcomes. This constitutes a true whole brain approach, rather than a tumor only 
or non-tumor only approach.

The connectome model outperformed the clinical model but also the advantaged clinical model, which 
included tumor grade and histology features that are not typically known presurgery. The superior accuracy of 
the connectome model likely reflects the whole brain network’s incorporation of variables that are both intrinsic 
and extrinsic to the tumor. The combination of presurgically known clinical variables with connectome predictors 
did not improve model performance suggesting that the connectome incorporates some or all of these clinical 
features. Previous studies have provided evidence that connectome metrics reflect important molecular proper-
ties of the tumor. Our group and others have demonstrated that isocitrate dehydrogenase wild-type tumors are 
associated with significantly greater connectome disruption compared to mutant  tumors8,9. We also showed that 
connectome properties can predict isocitrate dehydrogenase tumor status with high  accuracy52. Connectome 
organization has been associated with other prognostic factors such as tumor grade, Karnofsky performance 
status, cognitive function, age, socioeconomic status, psychological function, and biological  sex10,53–57. However, 
the addition of clinical + and connectome features resulted in a superior model indicating that the connectome 
may not reflect certain postsurgically known variables such as tumor grade.

Local efficiencies in multiple brain regions were associated with overall survival in the connectome models. 
While most patients had left-hemispheric tumors, nearly twice as many right-sided brain regions were predictive 
of overall survival. Additionally, the predictive regions were not limited to the frontal areas where most tumors 
were located, but were spread throughout frontal, subcortical, temporal, and postcentral midline areas. These 
findings provide further evidence that gliomas have broad ranging effects within the brain network. Widespread 
effects may reflect propagation of pathology through tumor-induced neural  networks51,58 or neuroplastic adap-
tation of the brain to the tumor. Both mechanisms would depend on tumor type, with more aggressive tumors 
demonstrating greater disease propagation and less neuroplastic  adaptation59. Our results indicated that local 
efficiencies were largely inversely related to survival. Higher efficiency reflects a greater number of direct con-
nections between brain  regions32, which may facilitate propagation of pathology. Local efficiency is also directly 
related to error  tolerance60,61 and therefore, the regions identified by our connectome model may be particularly 
vulnerable to disseminated tumor effects, resulting in decreased survival.

The performance of the gray matter volume model was better than the clinical + and radiomics models and 
equal to the connectome model. These findings again suggest that the use of whole brain data for predicting 
glioma outcome is superior to tumor-limited data, but connectivity between regions may not be the critical factor. 
However, regression considers the additive relationship between predictors based on the general linear model 
and this multivariate space is how brain connectivity is defined. Thus, the gray matter volume model may not 
be entirely devoid of connectivity information. Despite equivalent model performance, the connectome data 

Table 2.  Model predictors with a mean p value of 0.05 or less across cross-validation loops. The mean 
unstandardized coefficient is shown in parenthesis. a See Supplemental Fig. S1 for visualization of predictive 
regions.

Clinical None

Clinical + Tumor grade (0.98), tumor lobe (− 0.24)

Radiomic None

Connectomea
Left inferior triangularis (− 124), right rolandic operculum (− 97), right anterior cingulum (− 135), right hip-
pocampus (− 96), right calcarine (− 87), left cuneus (− 80), right superior occipital (90), left paracentral lobule 
(− 94), right putamen (− 86), right pallidum (58), right thalamus (124), left superior temporal pole (97)

Connectome/clinical
Gender (− 1.1), brain volume (0.005), left inferior triangularis (− 107), right rolandic operculum (− 110), right 
anterior cingulum (− 132), right hippocampus (− 98), right calcarine (− 85), left paracentral lobule (− 86), right 
thalamus (123), left superior temporal pole (104)

Connectome/Clinical + 
Tumor grade (− 1.5), left inferior triangularis (25), right inferior orbitofrontal (50), right rolandic operculum 
(− 44), right anterior cingulate (72), right superior occipital (107), left paracentral lobule (60), right thalamus 
(− 33), left superior temporal pole (54), right superior temporal pole (83)

Gray matter  volumea Left cuneus (0.002), left inferior triangularis (0.001), right inferior triangularis (− 0.003), left superior parietal 
(− 0.002), left inferior temporal (0.001)
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provide greater insight regarding potential mechanisms of brain network disruption, as noted above. However, 
volume data are easier to calculate compared to connectome properties and should be explored further in terms 
of predicting glioma outcomes.

This was a retrospective study with a limited number of available clinical predictors. Our clinical, connectome, 
and radiomic models require further validation in an independent dataset to verify their value in predicting 
patient survival. We used connectome features based on prior literature but recognize that alternative metrics 
may yield different results. Studies with larger sample sizes are required to examine and compare additional con-
nectome features. We limited our sample to 3 T field strength imaging which may not be available in all clinical 
settings. An additional goal of further research would be to compare these results with other advanced imaging 
modalities, such as DTI and fMRI, as well as multi-sequence-based radiomics. Future studies with larger samples 
should further evaluate the accuracy of models that combine neuroimaging and clinical features.

In summary, we provide promising evidence that overall survival in patients with glioma can be accurately 
predicted by presurgical connectome features. Our results also emphasize the prognostic information that can 
be obtained from standard T1w MRI sequences to support precision medicine applications. The connectome 
and gray matter volumes models significantly outperformed clinical and radiomic models. This work suggests 
that whole-brain data are valuable and easily attainable biomarkers that can provide an early understanding of 
glioma trajectory. Data regarding patient prognosis at time of diagnosis influences multiple aspects of patient care, 
including the nature and aggressiveness of anti-cancer treatment, counseling of patients and family members, 
and goals of care planning. With further validation, our work may ultimately provide a novel method to refine 
the biologic stratification of patients in clinical trials and clinical practice.

Data availability
All data relevant to the study are included in the article. The original MRI data underlying this article cannot 
be shared publicly due to data protection regulation, but connectome matrices are available upon request to the 
corresponding author (srkesler@austin.utexas.edu). All preprocessing and analysis codes are available at https:// 
github. com/ srkes ler.
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