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A game‑based approach 
for designing a collaborative 
evolution mechanism 
for unmanned swarms 
on community networks
Zhonghong Wu1, Li Pan2, Minggang Yu3*, Jintao Liu3 & Dan Mei4

Intelligent and coordinated unmanned aerial vehicle (UAV) swarm combat will be the main mode of 
warfare in the future, and mechanistic design of autonomous cooperation within swarms is the key to 
enhancing combat effectiveness. Exploration of the essential features and patterns of autonomous 
collaboration in unmanned swarms has become the focus of scientific research and technological 
applications, in keeping with the evolving conceptions of the military theatre. However, given the 
unique attributes of the military and the novelty of the warfare mode of unmanned swarms, few 
achievements have been reported in the existing research. In this study, we analysed the military 
requirements of unmanned swarm operations and proposed an analytic framework for autonomous 
collaboration. Then, a literature review addressing swarm evolution dynamics, game‑based swarm 
collaboration, and collaborative evolution on complex networks was conducted. Next, on the 
basis of the above work, we designed a community network for unmanned swarm cooperation and 
constructed a collaborative evolution model based on the multiplayer public goods game (PGG). 
Furthermore, according to the “network” and “model”, the dynamic evolution process of swarm 
collaboration was formally deduced. Finally, a simulation was conducted to analyse the influence 
of relevant parameters (i.e., swarm size, degree distribution, cost, multiplication factor) on the 
collaborative behaviour of unmanned swarms. According to the simulation results, some reasonable 
suggestions for collaborative management and control in swarm operation are given, which can 
provide theoretical reference and decision‑making support for the design of coordination mechanisms 
and improved combat effectiveness in unmanned swarm operation.

With the maturity of concepts and technologies related to intelligent and unmanned combat, unmanned combat 
platforms and equipment have been applied with increasing frequency on training grounds and even on the bat-
tlefield due to their low cost, easy deployment, and flexible organization. Intelligent and collaborative unmanned 
aerial vehicle (UAV) swarms will be the main form of warfare in the  future1.

Unmanned swarm combat is a joint combat operation in which multiple heterogeneous unmanned platforms 
expand the capability of a single platform to complete missions and the overall combat effectiveness of the swarms 
through capability complementation and coordinated  actions2. Unmanned swarm combat places extremely high 
requirements on collaboration among multiple platforms. Currently, collaboration in unmanned swarms is 
mainly realized through centralized control and distributed autonomy. In the complex electromagnetic environ-
ment of the battlefield, poor communication and even communication failure are  common3. When centralized 
control fails, the unmanned swarms must respond immediately according to the battlefield situation to achieve 
self-organization and self-coordination to continue carrying out the planned military actions.

The autonomous collaboration of unmanned swarms requires intelligent unmanned platforms with heteroge-
neous functions that carry out function segmentation and closely collaborate in various military missions based 
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on an integrated air–space–ground information network. For example, in collaborative search tasks, unmanned 
swarms equipped with multiple sensors (e.g., visible light, infrared, radar) should be deployed to make full use 
of various detection methods to detect and locate obstructed targets and to improve area coverage through task 
division. In a collaborative strike mission, reconnaissance UAVs first implement an intelligence investigation 
to detect the position, speed, and technical and tactical indicators of the target. Then, jamming UAVs perform 
electronic interference on the target while attack UAVs attack the target. Figure 1 shows the scenario for autono-
mous collaboration of unmanned swarms in a strike mission.

Interaction and collaboration among multiple individuals is a common phenomenon in nature. In microbial 
 communities4,5, the animal  kingdom6,7, and human  society8,9, individuals form a closely connected collabora-
tive network through adaptation, communication, division of labour, and collaboration, thereby developing 
capabilities that a single individual does not have and accomplishing tasks that a single individual is unable to 
complete. Elucidation of the emergence and maintenance of collective collaborative behaviour has for a century 
been a problem that has puzzled researchers in many disciplines, including biology, computer science, and 
control science. Collaborative behaviour has become one of the frontier hot topics in multidisciplinary research.

In the military domain, exploring the characteristics and laws of swarm networking and probing into the 
autonomous organization and coordination mechanisms of swarms is of vital practical value for designing combat 
modes and developing the combat power of unmanned swarms.

However, given the unique attributes of the military and the novelty of the warfare mode of unmanned 
swarms, few achievements have been reported in the existing research. Much basic research work remains to be 
carried out in regard to the specific field of autonomous collaboration of unmanned swarms. First, community 
networks should be constructed that satisfy the needs of information communication, functional clustering, 
and network energy collection based on the combat features of unmanned swarms. Second, an evolutionary 
game model that can characterize autonomous collaboration in swarm operations must be determined. Third, 
dynamic processes of swarm collaborative evolution should be designed, including payoff calculation and strat-
egy update rules.

In our previous work, we explored the collaboration and resource optimization allocation mechanism in 
unmanned swarms and deduced the strategy abundance function and conditions for strategy dominance in 
unmanned swarms based on evolutionary game  theory10–16. Based on the previous achievements, the present 
study was carried out in three aspects. First, we designed a community information network based on the opera-
tional capabilities required of unmanned swarms. Second, we abstracted collaboration in unmanned swarms into 
an N-person evolutionary game with multiple rounds of iterations, established a collaborative evolution model 
of unmanned swarms based on the evolutionary game of multiple public goods, and presented the evolutionary 
dynamic process of unmanned swarms on complex community networks. Finally, through a simulated analysis 
of the influence of swarm size, degree distribution, cost, and payoff on the level of collaboration in unmanned 
swarms, we examined the mechanism of collaboration emergence in unmanned swarms and proposed reason-
able suggestions for promoting collaboration in unmanned swarm combat.

Focusing on the military requirements of unmanned swarm operation, this paper innovatively introduces 
game theory and complex network theory into the design of the collaborative evolution mechanism of unmanned 
swarms. The proposed framework, model, and method provide a new view and technical approach to solve the 
autonomous collaboration of swarm combat.

Analytical framework for autonomous collaborative behaviour in unmanned swarms
The autonomous collaboration and collaborative evolution of unmanned swarms involve three key components, 
i.e., the emergence of swarm intelligence, construction of information networks, and design of coordination 
mechanisms, which jointly form the basic framework of autonomous collaborative behaviour in unmanned 
swarms. Among these components, the emergence of intelligence from individuals to a swarm is the inter-
nal driving force of autonomous collaborative behaviour in unmanned swarms, information networks form 

Figure 1.  Autonomous collaboration of unmanned swarms.
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the topological space where information interaction occurs within a swarm and serve as the spatial carrier of 
autonomous collaborative behaviour, and a coordination mechanism is the fundamental approach for achieving 
autonomous collaborative behaviour in unmanned swarms. Figure 2 shows the relationships among the three 
components.

According to the classic systems engineering principle “structure determines function”, an information net-
work with a topological structure is the foundation for the emergence of intelligence in swarms, and the emer-
gence of intelligence in turn drives the dynamic reconstruction of network topology. Moreover, the emergence 
of intelligence is essentially a time–space game among individuals based on payoff, with intelligence being the 
premise for “rational” individuals to collaborate to carry out interactive games. The adjustment of collaborative 
behaviour and the updating of strategy are closely correlated with the spatial network structure of a swarm. 
Therefore, network topology is an important basis for updating individual behaviour (strategy) in a coordina-
tion mechanism.

Emergence of intelligence. Intelligence, including the single intelligence of individuals and the collective 
emergent intelligence of groups, is a key requirement of distributed autonomous control of swarms. In unmanned 
swarms, units with “intelligence” not only passively accept preset instructions but also, most importantly, opti-
mally coordinate and organize their own resources, costs, behaviour, and other factors through the processes of 
unmanned autonomy, senior driven, collaborative interaction, utility optimization, capability generation, and so 
on. At the swarm level, higher-level intelligence beyond individual intelligence emerges, ultimately finally real-
izing optimization of the overall utility of the swarm. In fact, the concept of directing unmanned swarms to carry 
out military missions according to a predetermined plan has inherent shortcomings. In a complex environment, 
the battlefield situation is changing continuously. If micromanagement of a single unmanned platform is imple-
mented, resources such as communication will be seriously overloaded. In other words, the responsive control 
of a large number of unmanned platforms is beyond the current technology, cognition, and decision-making 
capabilities of human beings, with a high probability of leading to the failure of combat operations. Hence, a 
greater degree of decision-making and permission to act must be transferred to the autonomous control system 
of an unmanned swarm to enable the unmanned platform to independently coordinate its own decision-making 
to elicit behaviours supporting the swarm’s ability to realize its goals.

Moreover, intelligence and autonomy are the cores of intelligent combat mechanisms for winning in battle-
fields. The Defense Science Board of the U.S. Department of Defense pointed out that intelligence and autonomy 
are the core capabilities of the U.S. military’s unmanned systems and analysed the benefits brought by intelligence 
and autonomy to UAVs, unmanned ground systems, unmanned marine vehicles, and unmanned space  systems17. 
In the future, unmanned swarm combat systems will achieve stronger perception, analysis, planning, decision-
making, and execution capabilities to autonomously perceive battlefield situations, plan combat missions, carry 
out combat actions, coordinate combat actions, and evaluate combat effects.

Although the individual in the swarm has intelligence, the achievement of the optimal overall utility at the 
swarm level is not achieved overnight but, rather, is an iterative and self-organizing evolution process. Individu-
als must modify and improve strategies through a large number of repeated game processes, learning, imitation, 
and trial and error to constantly adapt to the external environment and finally achieve the optimal overall utility 
of the swarm. In the military field, from the long-term development of warfare, the generation of intelligence 
and its impact on combat is also a long-term development process. Based on the current situation, the develop-
ment of unmanned combat originates from the remote-control approach featuring human–computer interac-
tion, undergoes the collaborative transformation characterized by human–machine integration, and develops 
towards autonomous behaviour featuring human–machine  integration18. It is foreseeable that the emergence of 
intelligence in unmanned swarms will also experience the evolution from “embedding of intelligence”, where 
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Figure 2.  Framework for autonomous collaborative behaviour in unmanned swarms.
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humans play the leading role supplemented by machines, to “intelligent support” featuring unmanned autonomy, 
and finally to “intelligence dominance” with biomimetic autonomy and swarm attack and defence capabilities.

Construction of an information network. From the perspective of scale, with air forces as the case con-
sidered, unmanned swarm combat in the future can be divided into three levels: the wing type formed by fewer 
than thirty or fifty UAVs, the cluster type formed by thirty to one hundred UAVs, and the swarm type formed 
by hundreds and even thousands of UAVs. From the perspective of intelligence, once unmanned swarms enter 
the stage of “intelligence dominance” with biomimetic autonomy and swarm attack and defence capabilities, the 
scale of swarms will certainly be extremely large. The expansion of scale leads to more complicated interactions. 
How to build a swarm network based on the demands of information interaction between nodes and the busi-
ness logic of swarm combat is a practical problem that remains to be solved by combat planners.

The construction of information networks in unmanned swarm combat is not a rejection of traditional combat 
networks. Instead, these networks develop and evolve from traditional combat networks. Hence, a representa-
tive idea is to integrate random  networks19 and community  networks20,21 based on traditional tree networks to 
construct a network topology tightly coupled with combat missions, which not only retains the hierarchical 
and regular features of traditional combat networks but also features the characteristics of complex networks.

For instance, in a typical unmanned swarm attack on the ground or at  sea22, unmanned swarms can be divided 
into multiple subswarms performing different tasks, such as intelligence reconnaissance, electromagnetic interfer-
ence, and strikes. The subswarms are tightly coupled internally while loosely coupled with each other, exhibiting 
the organizational form of a “community network”. Figure 3 shows an example of unmanned swarms attacking 
a ground force. It is necessary to grasp the effective interactive transmission of information so that heterogene-
ous unmanned forces can be “dispersed in form but concentrated in spirit”. The top priority of network form 
design is to establish a mapping relationship between military requirements (e.g., information communication 
and network energy gathering) and complex network characteristics (e.g., scale-free and small-world networks).

Design of coordination mechanism. In the military field, the winning mechanism of intelligent war-
fare is primarily manifested in "intelligence" and "autonomy". Therefore, the autonomy of various unmanned 
systems and platforms will have to be improved with the needs of the battlefield in the future. An unmanned 
swarm combat system will have higher perception, analysis, planning, decision-making, and execution capa-
bilities and must be able to continuously complete the necessary control functions under uncertain object and 
environmental conditions and without human participation. Due to the regional distribution, intelligent auton-
omy, and decentralization of an unmanned swarm combat system, UAVs in unmanned swarms must conduct 
orderly collaboration and cooperation based on an information network, thereby ensuring high battlefield sur-
vivability and mission completion capabilities. Moreover, from the perspective of systems theory, the elements 
of unmanned swarms and those of the battlefield environment constitute a giant complex system in which the 
elements depend on, interact with, and restrict each other. The ultimate aim of collaboration among multiple 
unmanned platforms is to find the optimal control strategy for the entire giant system. Therefore, the design of 
the coordination mechanism is very important because it is the “soul” of swarm combat.

When interacting with other platforms, a single intelligent unmanned platform will inevitably calculate and 
evaluate its own energy, loss, cost, and behavioural cost to maximize its own payoff. This process is inevitably 
accompanied by competition among individuals, which causes the individual payoff to deviate from the optimal 
total utility of the swarms. Hence, keeping the individual payoff consistent with swarm utility is a key issue in 
the design of a coordination mechanism.

Figure 3.  Sketch diagram of unmanned swarms attacking a ground force.
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For example, in a fire strike mission, an intelligent combat platform with decision-making capabilities will 
prudently control the amount of firepower launched to maintain its own combat effectiveness; from the perspec-
tive of the swarms, the more firepower is contributed by each combat unit to the swarms, the higher the overall 
survival rate of the swarms and the greater the combat  effectiveness23–25. The contradiction between the two will 
result in the tragedy of the  commons26, which will not only lose the opportunity to win the battle but also provide 
the enemy with a counterattack opportunity.

The design of a high-quality coordination mechanism is the key to solving the contradiction between indi-
vidual payoff and the total utility of the swarms. Currently, the competition and conflict between components 
(individuals) and the system (collective) remain to be further explored under classic multiagent system  theory27, 
complex adaptive systems  theory28, and the complex network theory framework.

Related work
Autonomous collaboration is the ultimate state that unmanned swarms will reach. Rather than being achieved 
overnight, such a state will be realized by multiple iterations and gradual evolution. Therefore, the key to discov-
ering the coordination mechanism and ultimately achieving autonomous collaboration in unmanned swarms is 
to explore the mechanism of collaborative evolution of unmanned swarms over time.

Based on the abovementioned military requirements, in this section, focusing on the collaborative evolution 
mechanism, we present a literature review on pioneering studies worldwide on swarm system dynamics, game-
based swarm collaboration, and collaborative evolution of complex networks. The dynamic model is a powerful 
tool for revealing evolutionary mechanisms in swarm systems. Therefore, we first categorized the classic methods 
for modelling swarm dynamics; second, game theory was introduced into the swarm dynamics process in view 
of the unity of opposites of collaboration and conflict in swarm interaction; third, considering swarm evolution 
in spatial dimensions, we analysed the influence of spatial structure on dynamic evolution and the level of col-
laboration of unmanned swarms based on complex networks.

Dynamic modelling of swarm systems. A swarm system, as a kind of complex dynamic evolutionary 
system, contains a large number of random and nonlinear factors, such as changes in the environment and 
interactions between  individuals29. In a mathematical sense, dynamics (dynamic systems) refers to a discipline 
that studies the evolutionary patterns of systems under the action of various complex factors. Therefore, dynamic 
modelling of swarm systems is an effective tool for revealing the evolutionary mechanisms of swarm systems. 
Based on its degree of continuity, the dynamic process can be divided into the differential process (e.g., copying 
the dynamic  equation30) and the Markov process (e.g., the average abundance transition  probability31,32). Based 
on its spatial characteristics, the dynamic process can be divided into dynamic processes in Euclidean space (e.g., 
three-dimensional space) and dynamic processes in topological space (e.g., complex networks).

Swarm dynamics in Euclidean space involve two types of modelling ideas according to their spatial character-
istics: spatially discrete Lagrangian modelling based on individuals and spatially continuous Eulerian modelling 
based on collective  processes33. The specific models include the attraction–repulsion  model34, fluid mechanics 
 model35, Boids  model36, particle swarms  model37, and biological swarms (e.g., pigeon  flocks38 and wolf  packs39) 
model.

The collaborative evolution of swarms examined in this study is an example of dynamics in topological space. 
Dynamics in topological space cluster and split swarms according to different characteristics of individuals, e.g., 
behaviours, functions, and probability distributions. Vertical stratification and horizontal clustering are typi-
cal cases. Furthermore, the evolution of swarms in terms of behaviour, structure, and function is driven based 
on logical connections and communication between individuals. The modelling methods involved in swarm 
dynamics in topological space were classified in this study.

Networked systems and graph theory description. A swarm system in topological space refers to a networked 
system formed by the interaction of multiple individuals, which can be mathematically described and researched 
with graph theory. A swarm system can be represented by a graph G = (V ,E,A) , where V  denotes a collection of 
nodes representing individuals, E is a collection of edges that each describe the connection relationship between 
any two nodes, and A stands for the adjacency matrix describing the association topology (coupling relation-
ships and strength) of the swarm  system40,41. When studying swarm dynamics using a graph, the Laplacian 
matrix and its algebraic eigenvalue properties are effective tools for describing and analysing graph topological 
 structure42, and other concepts such as the connected  graph43 and the spanning  tree44 are also widely used in 
swarm dynamics.

Swarm dynamics model based on the cellular automaton. Since the cellular automaton was proposed by Von 
Neumann, it has quickly attracted widespread attention in the research field of swarm systems due to its simple 
local evolutionary rules and diverse and complex holistic emergent phenomena. The cellular automaton is a 
network dynamics model with discrete time, space, and state, where there is a causal and interactive relationship 
between space and  time45. For a step size, the variable value of each cell is determined by the variable values of 
its neighbouring cells according to local rules. Therefore, a cellular automaton, with the ability to simulate the 
spatiotemporal evolution of networked complex systems, is an effective tool for studying the dynamic evolution 
of such systems.

Agent‑based swarm dynamics model. Unlike the swarm dynamics model based on the cellular automaton, in 
agent-based swarm dynamic modelling, individuals are abstracted as agents with beliefs, desires, and intentions 
(BDIs). The theoretical basis of the agent-based swarm dynamic modelling method is that the global behaviour 
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of a complex system is generated from the interactions between the low-level components of the  system46. When 
modelling, we first need to build agents with different BDI attributes from the bottom to the top and then design 
the local interaction rules between the agents for swarm attributes to emerge based on the rules. This agent-
based modelling method, which can simulate a variety of complex emergent behaviours of swarms, is particu-
larly applicable to describing complicated and intelligent behaviours of swarms.

Swarm dynamic models based on game theory. If there is rationality or bounded rationality in the interactions 
between individuals in a swarm, game theory can be used to model the dynamic processes of swarm behaviours. 
All individuals are regarded as the participants in a game, with a variety of optional behaviours constituting the 
strategy set of the game. The group of individuals, the strategy set, and the corresponding payoff of each strategy 
form the game situation. Each individual selects a specific strategy by evaluating the influence of surrounding 
individuals and environmental factors and maximizing the payoff for the swarms and their individual payoff 
through adaptive learning during repeated  games47,48. Finally, the mechanism of swarm behaviour emergence is 
revealed with the help of the Nash equilibrium of classic game theory or an evolutionarily stable strategy for an 
evolutionary game.

Game‑based swarm collaboration. In contrast to traditional optimization, swarm collaboration does 
not necessarily improve the adaptability of all individuals by simply selecting a specific behaviour. A more com-
plicated situation is that in which individuals’ attempts to improve their interests are often in conflict with each 
other in interactions among individuals who directly influence each other. Unlike the traditional methods that 
maximize unilateral utility, game theory emphasizes the interdependence of individual strategies and focuses on 
analysing the interactions and effects of multiple individual behaviours, which reveal the unity of the opposites 
collaboration and conflict. Game theory provides an effective research framework for studying the interactions 
and coordination among multiple individuals in a swarm.

In contrast to classic game theory, evolutionary game  theory49–52 holds that, due to the bounded rationality 
of individuals, the optimal equilibrium in an individual’s game cannot be found at the beginning, as in classic 
game theory; instead, individual strategies are modified and improved through abundant and repeated game 
processes. Evolutionary game theory describes the process of swarms eventually reaching an evolutionarily stable 
state by constantly adapting to the external environment through learning, imitation, and trial and error under 
the circumstances of imperfect rationality, asymmetric information, and deviations from the environment and 
expectations. Therefore, evolutionary game theory can describe the local dynamic nature of dynamic systems to 
predict individual behaviour and the emergence of swarm intelligence.

The application of evolutionary game theory in the field of swarm collaboration has been extended to various 
problems, including natural biological  evolution53–55, environmental pollution  control56–58, urban public resource 
 construction59,60, and human cultural  evolution21,61,62. Its application in the military domain mainly includes 
formation control, path planning, and mission assignment of unmanned swarms.

Formation control. Formation control aims to maintain a specific formation at the physical level and to guar-
antee a rational communication relationship at the information  level63. One of the key factors is the division of 
labour; that is, an individual with any one role or function cannot independently complete a specific task that 
must be completed through the division of labour and collaboration between two or more different roles.

In an intelligence reconnaissance mission, collaboration between the intelligence unit and the informa-
tion integration unit is required; a fire strike mission cannot be completed without close coordination among 
the intelligence, support, and firepower units. In such coordinated control, an important task is to effectively 
distribute strategies across complex networks so that individuals with different strategies can be distributed as 
homogeneously as possible around individuals with complementary  strategies24,64. Adaptive collaborative control 
of swarms can be achieved by choosing the appropriate game type (e.g., the snowdrift game (SG) or the chicken 
game), designing a suitable method of calculating the payoff, and updating the evolutionary rules.

Path planning. Path planning, as an important research field of swarm collaboration, aims to make rapid deci-
sions in complicated environments according to requirements (e.g., the shortest distance, minimum energy 
consumption, and the shortest time) and plan an optimal path from the starting point to the finishing point.

Compared with single individuals, path planning for swarm collaboration presents higher technical require-
ments. Since the individuals in a swarm have to compete against and cooperate with each other as well as 
adapt to the environment, both path planning for individuals and mutual collaboration among individuals 
are  necessary65,66. The optimal path planning for individuals is not equivalent to the best path planning for the 
swarms. Therefore, the key is to coordinate the allocation of resources among individuals and realize a balance 
between individual needs and collective interest.

In swarm path planning based on evolutionary games, individuals are regarded as game players, path seg-
ments are taken as strategies, and the degree to which demands are satisfied is considered the game payoff. On 
this basis, the payoff function, evolutionary factors, and disturbance factors of individuals are constructed; 
individual behaviour is integrated with swarm utility; and the selection logic of individuals is simulated through 
evolution to realize collaboration where individuals obey the swarms and ultimately attain the evolutionarily 
stable strategy and the global optimal solution.

Mission assignment. An overall mission is divided into multiple subtasks. Individuals in the unmanned swarms 
perform their respective subtasks to achieve a division of labour at the collective level.
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Since the costs for implementing different subtasks vary and the payoffs also differ, individuals with rationality 
and bounded rationality tend to prefer tasks that can result in higher payoffs at lower execution costs, especially 
when the payoffs of the tasks might be shared by all individuals. There may even be a “free-rider”  phenomenon67, 
which could impair the execution of the overall mission, harm the interests of the swarms, and ultimately lead 
to the dilemma of division of  labour68,69.

The reaction threshold  model70, self-reinforcing  model71, foraging  model72, and network task assignment 
 model73 are the traditional models used to realize mission assignment. These models are mostly inspired by the 
social behaviour of ant colonies and swarms, but they are not universally applicable to all domains. In evolution-
ary games, various methods for researching dynamics, such as replicator  dynamics30, pairwise  comparison74, and 
Moran  processes75, are applied to map the missions to different strategies; the payoff function is designed based 
on the cost and payoff of the missions; and the missions are effectively assigned by adjusting the prevalence or 
fixed probability of each strategy. In recent years, researchers in various fields have attached importance to the 
exploration of mission assignment mechanisms by combining evolutionary games with complex  networks76–78. 
An evolutionary game provides a unified framework for solving the problem of self-organized mission assign-
ment from a new perspective.

According to the connectivity of individuals in topological space, swarms can be divided into well-mixed 
swarms and structured swarms. The former assumes that all individuals are connected (from the perspective of 
graph theory, the graph is fully connected), while the latter imposes the constraint that individuals only interact 
with their neighbours, thereby forming scale-free complex networks. The collaborative evolution of groups is 
actually a collaborative evolution within a spatial structure, so the integration of evolutionary game theory and 
complex networks holds great practical and application value. In fact, this combination has led to many interest-
ing conclusions in specific fields, which have become new knowledge points.

Collaborative evolution mechanisms in complex networks. In 1992, Nowak and May introduced the concept of 
spatial dimensions into evolutionary game theory, pioneering the study of network evolutionary  games79,80. Net-
work evolutionary game theory uses the network to describe interactions between individuals and emphasizes 
the influence of network structure on the dynamic evolution and the level of collaboration of the swarms. Unlike 
the case of a well-mixed swarm, as long as the structure is appropriate, simple strategies can also maintain the 
survival of the cooperators.

The research team led by Nowak conducted theoretical derivations and numerical simulations of collective 
evolution in spatial structures such as regular lattices, doughnut charts, Erdős-Rényi random graphs, and small-
world networks and innovatively proposed the relationship between the benefit–cost ratio (b/c) of a strategy and 
the average network connectivity degree k, pointing out that the lower the network connectivity is, the higher 
the probability for collaboration to arise by natural  selection81,82. In addition, they used pairwise approximation 
theory to theoretically derive collaboration in regular lattices and obtained the boundary conditions for the 
generation and expansion of  collaboration83. Based on the above research, by further analysing the differences 
between homogeneous and heterogeneous networks in the promotion of collaborative behaviours, weak connec-
tions were found to be more likely to promote collaboration in heterogeneous  networks40. In a study of graphical 
multiparty games conducted by Pena et al., spatially structured games were found to be more likely to promote 
collaborative behaviours in collaborative games than were unstructured  populations41. Collaborative evolution 
in the context of spatial structure has been extended to social networks to analyse the critical conditions for 
generating collaborative behaviours in human  society84. In view of the contradiction between the probability and 
time of evolutionary convergence, Josef et al. preliminarily explored the tradeoff between fixation probability 
and fixation time in a spatially structured  system85 and further extended collaborative evolution in structured 
populations to weighted  graphs86. For N-person snowdrift games, past  studies87,88 have investigated the relation-
ship between the benefit–cost ratio (b/c) and the level of collaboration in well-mixed and structured populations 
and compared the significant differences between homogeneous/heterogeneous networks and unstructured 
populations in the promotion of collaboration.

Promising achievements in collaborative evolution mechanisms in complex networks have been attained by 
the research team led by Wang from Beijing  University89–94, the team led by Zheng from Zhejiang  University95–98, 
and the team led by Lyu from Beihang University. These researchers have conducted long-term and systematic 
studies on various evolutionary game models, such as the prisoner’s dilemma (PD), public goods, snowdrift, 
and deer hunting, as well as investigations of evolutionary dynamics and collaborative emergence mechanisms 
in complex networks, such as regular lattice networks, random graph networks, small-world networks, and 
free-scale networks.

Santos has played a leading role in the study of evolutionary games in scale-free networks. Due to the com-
plexity of these networks, previous studies related to collaborative behaviours in scale-free networks have mainly 
been carried out by means of statistical simulation. We know the input and output but have no clue about the 
mechanism. Santos theoretically derived the internal mechanism of collaborative evolution by abstracting, sim-
plifying, and approximating scale-free  networks99. Based on a comparative analysis of collaborative behaviours 
in several special network structures, such as uniform attachment networks, configuration networks, and scale-
free random networks, Santos revealed that the direct attachment between the scale-free nature (heterogeneity) 
of networks and nodes with many degrees of network connectivity are the core factors for the emergence of 
collaboration. The scale-free network based on the growth and preferential attachment mechanism provides a 
unified framework for the emergence of collaborative  behaviours100–103.

Community networks, as a special type of complex network tightly coupled internally and loosely connected 
externally, are commonly found in natural biological communities, social groups, scientific research teams, and 
military swarms. Studies of collaborative evolution mechanisms in community networks have mainly been 
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carried out from the following two aspects: exploring the influence of network degree, including average degree, 
internal degree, and external degree, on the level of collaboration based on specific game models and studying 
how the parameters of game models (e.g., the temptation of betrayal b in PD and the benefit–cost ratio r in SG) 
affect the collaborative level.

There have been staged and representative research results. Simulation analysis of the PD model on com-
munity networks showed that the collaboration level declined with the increase in the average degree of the 
network; given a constant average degree, swarm collaboration was enhanced by either increasing the internal 
degree m or reducing the external degree n , while collaboration was inhibited by increasing n with m unchanged 
or increasing m with n remaining  constant90,104. Through further exploration of PD and SG on community 
networks, collaboration was found to weaken with increasing b in PD, and collaboration was inhibited with 
increasing r in  SG20,105–107. In recent years, some machine learning methods have been applied to the modeling 
and characteristic analysis of community networks. The  literature108 develop a unified architecture of network 
community finding methods to characterize the state-of-the-art of the field of community detection, and  in109, 
a novel redefined SBM (Stochastic blockmodel) with Poisson distribution and its block-wise learning algorithm 
that can efficiently analyze large-scale networks are proposed. Nevertheless, compared with well-mixed swarms, 
given the same parameters, the level of collaboration was significantly improved.

The challenges for the study of collaborative evolution on community networks include the design of a 
rational community generation mechanism based on the specific research background, selection of a suitable 
evolutionary game model, and construction of a dynamic process that satisfies practical needs. A community 
network also serves as a spatial structure foundation for the collaborative evolution of unmanned swarms in this 
study. Considering the dynamic reconstruction of the underlying network structure in evolution, collaborative 
evolution on complex networks has developed towards coevolution, namely, the coevolution of the strategy and 
the underlying interactive network  topology110.

In this section, we review studies worldwide on swarm collaboration from three perspectives. The above 
research findings are of great theoretical and engineering application value. However, they cannot be directly 
transplanted to the field of unmanned swarm operations to solve the problem of autonomous collaboration.

In “Unmanned swarms in community networks”, a community information network based on the opera-
tional capabilities required of unmanned swarms is designed. In “Unmanned swarm collaboration model based 
onmultiplayer public goods evolutionary game”, we abstract collaboration in unmanned swarms into an N-person 
evolutionary game with multiple rounds of iterations, establish a collaborative evolution model of unmanned 
swarms based on the evolutionary game of multiple public goods, and present the evolutionary dynamic process 
of unmanned swarms in complex community networks. In the last section, through a simulated analysis, some 
reasonable suggestions for promoting collaboration in unmanned swarm combat are proposed.

Unmanned swarms in community networks
The information network can maintain the static form to a certain extent when the confrontation between us and 
the enemy is not fierce or in a short time interval of the whole cycle of the confrontation. Therefore, this study 
starts with a relatively simple situation and assumes that the swarm information network is a static network.

Information networks for unmanned swarms must be able to reflect the composition rules and principles 
of the battlefield combat system. First, a network should be capable of revealing the correct flow of materials, 
energy, and especially information; second, a network should be able to reflect the informational cohesion of 
homogeneous (functional) combat units as well as the loose coupling of information among heterogeneous 
units. Moreover, considering operational commands, we must take into account the hierarchical nature of the 
information network. According to the requirements concerning information network construction in “Analytical 
framework for autonomous collaborative behaviour in unmanned swarms”, we propose in this section a method 
of constructing community networks for unmanned swarms and analyse network characteristics such as degree 
distribution. A community network functions as the spatial basis for collaborative evolutionary behaviours in 
unmanned swarms.

Network construction. We modelled a military operation in which a total of M(M ≥ 2) unmanned 
swarms with heterogeneous functions were required to collaboratively complete the combat missions. The com-
munity network was generated by inner-community preferential attachment and inter-community preferential 
attachment as follows:

Initialization. Each community was initially composed of m0(m0 > 1) fully connected nodes. A fixed node was 
randomly selected in each community, and each community was connected with the remaining M − 1 commu-
nities with C2

M edges to ensure that every two communities were connected by one edge.
Figure 4 shows an initial network with M = 3 and m0 = 3.

Growth. In each time step, a new node was added to a random community. The new node was connected to 
m(1 ≤ m ≤ m0) currently available nodes in the community through m edges and to the n(0 ≤ n < m) nodes in 
the other M − 1 communities through n edges.

Preferential attachment. Preferential attachment occurred simultaneously between internal nodes and external 
nodes.
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Inner-community preferential attachment. When a new node was internally attached to a randomly selected 
community (e.g., the j-th community), the probability 

∏

sij
 of node i in community j being selected was propor-

tional to its internal degree sij.

Inter-community preferential attachment. When a new node was externally attached to node i in the k(k  = j)
-th community, the probability 

∏

lik
 of node i being selected was proportional to its external degree lik.

After repeating the three steps described above, a community network with M communities, Mm0 + t nodes, 
and (MC2

m0
+ C2

M)+ (m+ n)t edges was generated after t  time steps.

Analysis of network characteristics. sij is assumed to be continuous. According to the mean field 
 theory106, 

∏

sij
= sij

/
∑

k skj is approximately averaged as the continuous rate of change in sij . Therefore, for node 
i in community j , the following equation is obtained:

For community j , �sj = m
/

M and sij =
∑

k skj = 2mt 1
M +m0(m0 − 1) . Therefore, the following equation 

is obtained:

Over a long time t  , 
∑

k skj = 2mt 1
M +m0(m0 − 1) ≈ 2mt 1

M , and thus the following equation is obtained: 
∂sij
∂t

≈
sij
2t ⇒

∂sij
sij

≈ ∂t
2t , that is

At a time step ti , a new node i is added into swarms j , so the initial conditions of sij(ti) = m are satisfied. By 
substituting sij(ti) = m into the above equation, the following equation is obtained:

Then, the probability of the node degree being lower than k satisfies the following equation:

Assuming that all nodes, including the initial nodes, are added to the network with the same time step 
(interval), then time step ti is a homogeneously distributed random variable whose probability density can be 
expressed as follows:

(1)
∏

sij

=
sij

∑

k skj

(2)
∏

lik

=
lik

∑

i,k �=j lik

(3)
∂sij

∂t
= A

sij
∑

k skj

(4)
∂sij

∂t
=

m

M

sij
∑

k skj

(5)sij(t) ≈ c(t)0.5

(6)sij(t) ≈ m

(

t

ti

)0.5

(7)P(sij(t) < k) = P

(

ti >
m2t

k2

)

(8)Pi(ti) =
1

Mm0 + t

Figure 4.  Initial network with M = 3 and m0 = 3.
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By substituting Eq. (8) into Eq. (6), the following equation is derived:

By taking the derivative of k in the above equation, the probability density of P(k) is obtained as follows:

This probability density function obeys P(k) ∼ k−γ , the power-law distribution pattern of γ = 3.
Similarly, the external degree distribution of nodes satisfies the following equation:

where 
∑

m,n,n =j lmn = 2M−1
M nt + [M(M − 1)− (M − 1)] , and the solution to the above equation can be approxi-

mated as follows:

where β = [M(M − 1)− (M − 1)]M
/

2n(M − 1) . When t is large, 2M−1
M nt >> [M(M − 1)− (M − 1)] . There-

fore, ∂lik
/

∂t ≈ lik
/

2t ; that is,

Hence, the degree distribution of external attachment is expressed as follows:

This probability density function obeys P(k) ∼ k−γ , the power-law distribution pattern of γ = 3.
Based on the above conclusions, kij(t) , the degree of node i in community j , is expressed as follows:

Then, the degree distribution of the entire community network is expressed as follows:

In other words, the entire community network also obeys the power-law distribution pattern of γ = 3.
In addition, since n < m , based on Eqs. (6) and (13), the external degree of nodes is always lower than the 

internal degree, which further verifies the above features of community networks.

Unmanned swarm collaboration model based on multiplayer public goods 
evolutionary game
Multicluster unmanned swarm collaboration with community structure is essentially a multiplayer evolutionary 
game with multiple iterations. Among the many evolutionary game models, the public goods game (PGG) pro-
vides a basic theoretical framework for revealing the collaborative evolution mechanism and solving the tragedy 
of public resources. With investment in public goods as the background, this game model portrays the process 
during which the cooperators and defectors (free riders) conduct strategic games based on parameters such as 
cost, multiplication factor, and selection intensity with the passage of time so that the proportions of cooperators 
and defectors in the swarms dynamically change and eventually reach an evolutionarily stable state. In the PGGs, 
balancing individual payoff and swarm utility and increasing the proportion of cooperators are important pre-
requisites for solving the tragedy of the commons and realizing autonomous collaboration of unmanned swarms.

In this section, based on the framework of the multiplayer public goods evolutionary game, we model the 
collaborative evolution of multicluster unmanned swarms on community networks and present the correspond-
ing evolutionary game framework and dynamic process.

Framework of multiplayer public goods evolutionary game. Evolutionary game theory combines 
“equilibrium” in economics with “adaptability” in biology to depict the process by which individuals adapt to the 
external environment through learning, imitation, and trial-and-error under boundary rationality and asym-
metric information. The PGG provides a basic theoretical framework for revealing the cooperative evolution 
mechanism and coping with the tragedy of the commons. PGG reflects that investors (collaborators) and hitch-
hikers (non-collaborators) play strategic games over time based on cost, multiplication factor, selection inten-
sity, etc., which makes the proportion of collaborators and betrayers in the population change dynamically and 

(9)P

(

ti >
m2t

k2

)

= 1− P

(

ti ≤
m2t

k2

)

= 1−
m2t

k2(Mm0 + t)

(10)P(k) =
∂P(sij(t) < k)

∂k
=

2m2t

Mm0 + t
k−3

(11)
∂lik
∂t

=
M − 1

M
n

lik
∑

m,n,n�=j lmn

(12)lik(t) = n

(

t + β

tj + β

)0.5

(13)lik(t) ≈ n

(

t

tj

)0.5

(14)P(k) =
2n2t

Mm0 + t
k−3

(15)kij(t) = sij(t)+ lij(t) ≈ (m+ n)

(

t

ti

)0.5

(16)P(k) =
2(m+ n)2t

Mm0 + t
k−3
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finally tends to an evolutionarily stable state (ESS). The research focus of PGG is to calculate the mathematical 
expectation of the proportion of collaborators in a population after a multi-round game, that is, the average 
abundance, and then analyse the relationship between the average abundance and parameters (i.e., cost, multi-
plication factor, selection intensity, etc.) to achieve the ultimate purpose of manual control.

In essence, the autonomous collaboration of unmanned swarms is a multiparty and multi-round game process 
that focuses on the autonomous allocation of public resources. Therefore, we use a multiplayer public goods 
evolutionary game to model the cooperative evolution of unmanned swarms.

Table 1 shows the relationship between concepts of unmanned swarms on community networks and the 
multiplayer PGGs.

In the specific application scenario, a single unmanned platform in the swarm acts as an individual. A swarm 
composed of multiple unmanned platforms with a common mission (e.g., fire attack on the same position and 
intelligence reconnaissance on the same area). A single unmanned platform has different optional behaviour 
modes (such as dropping ammunition, dropping ammunition of different equivalents, and not dropping ammu-
nition) as a game strategy. At every moment, the platform interacts with its “neighbours” (other unmanned plat-
forms with physical connections based on geographical location and logical connections based on information 
communication). According to its own and its neighbours’ strategies, it obtains certain combat effectiveness and 
certain benefits (payoff). An intelligent unmanned platform with independent decision-making ability changes its 
behaviour mode (strategy update) by evaluating its payoff. After multiple rounds of games and repeated strategy 
updates among individuals, a high degree of synergy has emerged at the swarm level, making swarm control 
finally reach the target state (such as consistency, synchronization, division of labour, etc.). In the above process, 
the selection of game type, the design of income calculation method, and the determination of strategy update 
rules are very important. The above factors are the key to the realization of swarm independent cooperation goals.

The evolutionary game occurs in multicluster unmanned swarms on community networks. With the progres-
sion of multiple rounds of evolution, a single unmanned platform i constantly updates its strategy in the strategy 
set {C, D} according to the payoffs for itself and its neighbours until the proportions of platforms with different 
strategies in the swarms stabilize.

Multiplayer games can be regarded as a superposition of multiple two-player games or an expansion of tra-
ditional two-player games with the characteristic of “multiplayer interaction” embedded into the  payoff98. Based 
on the second conceptualization, on a community network with scale N , ki = kCi + kDi  denotes the degree of i , 
where kCi  and kDi  are the numbers of individuals holding C and D strategies, respectively, among the neighbours 
of i in a certain round of the game.

(1) If i  selects collaboration strategy C, the total contribution of all players in the multiplayer PGGs com-
posed of i and its neighbours would be kCi c + c , where c is the amount of resources contributed by a single 
player to the swarms, r(kCi c + c) denotes the total output multiplied by the multiplication factor r , and 
r(kCi c + c)

/

(ki + 1) represents the payoff of each individual. Since c is the cost of i , the net payoff of i is 
r(kCi c + c)

/

(ki + 1)− c.
(2) If i chooses defection strategy D, the total contribution of all players in the multiplayer PGGs composed 

of i and its neighbours would be kCi c , the total output would be rkCi c , and the payoff for each individual 
would be rkCi c

/

(ki + 1) . Since i contributes nothing, its net payoff is rkCi c
/

(ki + 1) . Let akCi  and bkCi  be the 
payoffs of individuals who select strategies C and D, respectively; then,

(17)akCi
= r(kCi c + c)

/

(ki + 1)− c

(18)bkCi
= rkCi c

/

(ki + 1)

Table 1.  Relationships between concepts of unmanned swarms on community networks and the multiplayer 
public goods game.

Unmanned swarm collaborative evolution Public goods evolutionary game

Unmanned swarms Spatially structured population

Clusters Community networks

Public resources (e.g., bombs and communication) Public goods

Single unmanned platform Individual

Multiple unmanned platforms participating in collaborative combat Multiple players

Unmanned platforms contribute resources to the swarms Collaboration strategy (C)

“Free-riding” phenomenon among platforms refusing to contribute resources Defection Strategy (D)

Resources obtained by platforms under specific spatial structures and strategies Payoff

Platforms’ payoff-based strategy conversion under specific spatial structures Game

Dynamic change in proportion of platforms holding different strategies in multiple rounds of games Evolution

The proportions become stable after multiple rounds of games, and the games are terminated Evolutionarily stable state
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The payoff matrix is shown in Table 2.
Based on Eqs. (17) and (18), given the same network structure with kCi  and kDi  remaining constant, the payoff 

for individual i to choose strategy D would always be higher than the payoff brought by selecting strategy C. 
Therefore, from the individual perspective, i should prefer to choose strategy D to gain greater benefits, e.g., bat-
tlefield survivability, by “exploiting” strategy C holders among its neighbours through “free-riding”; at the swarm 
level, the more resources are contributed by individuals to the swarm, the better the overall combat effectiveness. 
There is an uncompromising contradiction between individual selfishness and the overall demands of the swarms. 
Hence, increasing the proportion of collaboration strategy holders in the swarm while avoiding the tragedy of the 
commons is an important problem in the research on and practical application of unmanned swarm technology.

Dynamic processes of collaborative evolution in unmanned swarms. Unconditional  imitation88, 
replicator  dynamics30, and the Fermi  rule107 are the current typical strategy update rules in evolutionary games. 
Among them, the Fermi rule emphasizes comparing the payoff to an individual with the payoffs to its neigh-
bours. Driven by this rule, the probability of individual i switching its strategy in strategy set {C, D} is as follows:

where ω ∈ [0 , 1] is the selection intensity that can enlarge or reduce the influence of Fi − Fki  on the strat-
egy update probability, and the reality test shows that a weaker selection intensity ( ω << 1 ) promotes 
 collaboration110,111. Fi ∈ {akCi

, bkCi
} denotes the payoff to individual i , and Fki  stands for the average payoff to its 

ki neighbours. Let � = Fi − Fki  . If � = 0 , PSi∈{C, D} = 1
/

2 , and the unmanned platforms hold the same prefer-
ence for strategies C and D; if � > 0 (that is, Fi is higher than Fki  ), the unmanned platforms are more likely to 
maintain the current strategy; and if � < 0 (that is, Fi is lower than Fki  ), then PSi∈{C, D} > 1

/

2 , and individuals 
are more inclined to switch the current strategy to another strategy in the strategy set {C, D}.

The dynamic processes of collaborative evolution in unmanned swarms on community networks were 
abstracted into the following four steps.

(1) According to the community network generation algorithm, a multicluster unmanned swarm network 
with scale N and number of communities M is generated.

(2) Random strategy distribution is implemented on N network nodes, with the holders of strategies C and D 
accounting for approximately 50% each.

(3) Individual i forms a game group G with all its neighbours with direct network connections, the game is 
conducted according to the framework of a multiplayer public goods evolutionary game, and Fi and Fki  
are calculated.

(4) After each game round, individual i evaluates the payoff of the current strategy and then updates the strat-
egy according to the Fermi rule.

The process is illustrated in Fig. 5.
The above steps were repeated until the proportion of individuals holding a certain type of strategy in the 

entire swarm reached a stable state.
Multi-cluster unmanned swarm collaboration with community structure is essentially an evolutionary game 

process with multiple participants and multiple rounds of iteration. How to build an unmanned swarm coopera-
tion evolution model based on the evolutionary game framework of multiple public goods; analyse the swarm 
scale, network degree distribution, and the impact of key parameters such as cost and multiplication factor on 
the level of swarm cooperation; and explore the emergence mechanism of unmanned swarm cooperation are 
crucial and urgent problems in the research and practical application of unmanned swarm technology.

Analysis of mechanisms of collaborative evolution
Based on the community network construction algorithm in “Unmanned swarms in community networks” and 
the framework and dynamic processes of the multiplayer public goods evolutionary game in “Unmanned swarm 
collaboration model based onmultiplayer public goods evolutionary game”, we simulated and analysed the influ-
ence of swarm size N , average degree k , relationship between intra-community attachment and inter-community 
attachment m/n , cost c and multiplication factor r on collaborative behaviours in unmanned swarm combat.

Influence of swarm size and network degree on collaboration. In unmanned swarm operations, 
swarm scale is an important consideration. If the scale is too large, the combat cost (human, material, and 
financial resources) increases, while if the scale is too small, the expected operational effectiveness may not be 

(19)PSi∈{C, D} =
1

1+ eω(Fi−Fki )

Table 2.  Payoff matrix of multiplayer public goods evolutionary game.

ki · · · k
C

i
· · · 1 0
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/
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achieved. Therefore, it is necessary to find the mechanism of the influence of swarm scale on cooperation to 
guide combat design.

Let N = 50, 100, and 300 and k ≈ 5 . The curve of the relationship between swarm abundance fC(k) and 
multiplication factor r was simulated and mapped under weak selection ( ω = 0.1 ) and strong selection ( ω = 1 ), 
as shown in Fig. 6. The simulation settings were as follows: each data point was operated 100 times (10 imple-
mentations of network topology corresponded to 10 distributions of initial policies) and then averaged; for each 
operation, cooperators and defectors were randomly distributed in equal proportions on the network. After 
10,000 steps of evolution, the results of 2000 steps were averaged. Unless otherwise specified, the subsequent 
simulation settings were the same.

As shown in Fig.  6, when the selection intensity and average degree remained constant, the swarm 
abundance curves under different swarm sizes were basically consistent. Furthermore, given a fixed selec-
tion intensity, the influence of swarm size on the stability of swarm abundance was investigated. The slope 
of each segment connecting adjacent data points was calculated, and the variance δ2 of the slope was calcu-
lated to characterize the stability of swarm abundance (the smoothness of the curve). As shown in Fig. 6a, 

Figure 5.  The dynamic processes of collaborative evolution in unmanned swarms.

Figure 6.  (a) Dependence of the emergence of collaboration on swarm size with strong selection; (b) 
dependence of the emergence of collaboration on swarm size with weak selection.
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δ2|N=1000 < δ2|N=500 < δ2|N=300 < δ2|N=100 < δ2|N=50 , and the inequation is still valid in Fig. 6b. Hence, 
the larger the swarm size is, the more stable the swarm abundance.

We try to qualitatively analyse the above simulation results. Since each data point is set in the simulation, 
the average is calculated after 100 operations. For each operation, after 10,000 evolution time steps, the results 
of 2000 steps are averaged. Therefore, the value of each data point in the figure is a result in a mathematical and 
statistical sense. When the swarm scale is relatively small, the randomness of the results is relatively large, which 
is reflected in the jump between data points on the graph; that is, the trend between data points is poor. When 
the scale is relatively large, the randomness of the results decreases, and the trend between data points will be 
more obvious, which shows that the smoothness of the curve increases.

Conclusion 1. The emergence of collaboration in unmanned swarms on community networks depends nonsig-
nificantly on swarm size; however, the smaller the swarm size is, the more unstably the swarm abundance varies 
with the multiplication factor.

Because the topology of an unmanned swarm is a scale-free complex network, it is of guiding value for the 
construction of a swarm network to investigate the impact of the network average on the level of cooperation. 
Furthermore, it is of particular relevance to investigate the strategy distribution on nodes with different degrees 
for targeted regulation of swarm collaborative behaviour.

Through basic mathematical substitution and rearrangement of Eqs.  (17) and (18), we obtained 
akCi

= bkCi
+ [r

/

(k + 1)− 1] · c . Therefore, the coefficient r
/

(k + 1) was of great importance to individuals’ 
selection of strategies. Let η=r

/

(k + 1) . The curve of the relationship between swarm abundance and the coef-
ficient η under different values of m and n was obtained, as shown in Fig. 7a. On this basis, k was isolated, and the 
relationship between swarm abundance and average degree was further examined, as shown in Fig. 7b.

As shown in Fig. 7a, given the same η , with the increase in average degree k (according to the process of gen-
erating community networks described in “Network construction”, the average degree of nodes k ≈ 2(m+ n) ), 
even if the multiplication factor r were large, collaboration on the community network would be suppressed, 
and fC

∣

∣

k≈4
> fC

∣

∣

k≈6
> fC

∣

∣

k≈10
 . As shown in Fig. 7b, as k further increased, the collaboration in the swarms 

was inhibited; especially under strong selection, collaboration in the swarms collapsed sharply, with the col-
laborative level dropping below 40% when k > 5 . The probable reason was that the increased average degree 
resulted in closer links between nodes, which made it easier for defectors to “exploit” the cooperators by means 
of free-riding to gain greater benefits and to better survive.

Conclusion 2. The increase in average degree decreases the average abundance of swarms on community 
networks; that is, the close connection between nodes restrains the emergence of collaborative behaviours in 
unmanned swarms.

The scale-free nature of the community network constructed in this study is demonstrated in “Analysis of 
network characteristics”. Therefore, investigation of the distribution of strategies among nodes differing in the 
degree of network connectivity is of great value to elucidating the emergence of collaboration. Figure 8a shows 
the degree distribution, and Fig. 8b shows the dependence of the emergence of collaboration on degree. The 
simulation parameters were set as follows: N = 100 , m = 2 , n = 1 , and r = 5.

Figure 8a shows the degree distribution in a single calculation, where the green parts denote the numbers of 
cooperators, presenting a significant power-law distribution pattern. Figure 8b shows the overall statistical results. 
Under either weak selection or strong selection, fC(k) is a monotonically decreasing function of k . Especially 

Figure 7.  (a) Dependence of the emergence of collaboration on η ; (b) dependence of the emergence of 
collaboration on average degree.
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under weak selection, fC(2)|ω=0.1 ≈ 0.52 and fC(12)|ω=0.1 ≈ 0.35 . In addition, with the further increase in k , 
fC(k) drastically declines.

Conclusion 3. Most (in the tiny minority) nodes with a high degree of connectivity on the community network 
hold strategy D, and many nodes with a low degree of connectivity are more likely to be occupied by individuals 
selecting strategy C.

Nodes with a high degree were able to select strategy D “at will” because there was a high probability that 
they would find a neighbour holding strategy C for “exploitation”. However, a low-degree node was not able to 
be so empowered because it was connected to a high-degree individual holding strategy D, and the probability of 
finding a neighbour holding strategy C was extremely small. Hence, strategy C was its best choice, which could 
at least prevent its own payoff from being zero. In summary, a large number of low-degree nodes were occupied 
by individuals holding strategy C, and all high-degree nodes became free riders by exploiting neighbouring 
individuals holding strategy C.

Insight 1. Based on the above Conclusions 1–3, in unmanned swarm operations, the swarm scale should be 
reasonably determined based on specific military requirements, such as combat tasks and combat styles. A small 
swarm scale can reduce the difficulty of equipment support, but may restrict the exertion of combat effective-
ness. A large swarm scale can occupy advantages in attack and defense, but has high requirements for equip-
ment support. Therefore, the determination of swarm scale is necessary to strike a balance between equipment 
investment cost and combat effectiveness; during the construction of swarm network, the number of network 
links should be reduced as much as possible on the premise of ensuring the core connectivity requirements. On 
the one hand, it ensures the level of cooperation within the swarm, on the other hand, it reduces the difficulty 
of our network construction and improves the difficulty of enemy communication interference; If the battlefield 
electromagnetic and communication conditions permit, the swarm can be controlled mainly by swarm self-
organization and supplemented by human forced intervention. The human intervention focuses on the strategy 
selection of hub nodes (generous nodes) in the swarm network to improve the overall cooperation level.

Influence of inner‑community attachment and inter‑community attachment on collabora‑
tion. In the construction of a swarm network, in addition to the parameter of attention distribution, the 
relative relationship between internal connections and external connections is also an important consideration 
because even if the two networks have the same average degree, if the relative relationship between internal/
external connections is different, they will show different network characteristics. Based on the obtained pattern 
of influence of network degree on swarm collaboration, we further partitioned network degree and analysed the 
relationship between the relative degrees of intra-community attachment and inter-community attachment on 
the level of collaboration. Figure 9 shows the simulation results with M = 5 and N = 100.

As shown in Fig.  9a, fC(k ≈ 4)
∣

∣

m=2, n=0, ω∈[0.1, 1] ≈ fC(k ≈ 4)
∣

∣

m=1, n=1, ω∈[0.1, 1] . In Fig.  9b, 
fC(k ≈ 6)

∣

∣

m=3, n=0, ω∈[0.1, 1] ≈ fC(k ≈ 6)
∣

∣

m=2, n=1, ω∈[0.1, 1] , and in Fig. 9c, fC(k ≈ 8)
∣

∣

m=4, n=0, ω∈[0.1, 1] ≈ fC

(k ≈ 8)
∣

∣

m=3, n=1, ω∈[0.1, 1] . Therefore, with the average degree k remaining constant, the collaboration level was not 
significantly strengthened or weakened by increasing or decreasing intra-community attachment m or inter-community 
attachment n , that is, by increasing or reducing the value of m/n . By horizontally comparing Fig. 9a–c, it was found that the 
collaborative level weakened with increasing k (when ω = 0.5 , fC(4) ≈ 0.4492 > fC(6) ≈ 0.4453 > fC(8) ≈ 0.4431 ), 
which also verified the results in Fig. 7.

Figure 8.  Degree distribution and dependence of the emergence of collaboration on degree. (a) Degree 
distribution in a single calculation; (b) dependence of the emergence of collaboration on degree.
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Conclusion 4. With a constant average degree of community network connectivity, changes in the relative 
degrees of intra-community attachment and inter-community attachment will not affect collaboration.

With fixed m and n , we further simulated the influence of changes in m and n on collaboration, the results of 
which are shown in Fig. 10a,b, respectively.

When m = 3 , we fitted the average abundance curves of the swarms when n = 0, 1, 2 . As shown in 
Fig.  10a, fC(k)

∣

∣

m=3, n=0 > fC(k)
∣

∣

m=3, n=1 > fC(k)
∣

∣

m=3, n=2 , which indicated that collaboration would be 
inhibited by increasing inter-community attachment when intra-community attachment remained constant. 
When n = 1 , the average abundance curves of the swarms when m = 1, 3, 4 were fitted. As shown in Fig. 10b, 
fC(k)

∣

∣

n=1, m=1 > fC(k)
∣

∣

n=1, m=3 > fC(k)
∣

∣

n=1, m=4 , implying that collaboration would be restrained as well by 
strengthening intra-community attachment with inter-community attachment remaining unchanged.

Conclusion 5. Collaboration in unmanned swarms on community networks will be weakened by either 
increasing inter-community attachment with intra-community attachment remaining constant or increasing 
intra-community attachment with inter-community attachment unchanged.

Network heterogeneity and the direct connectivity between high-degree nodes are the core driving forces 
of  collaboration103. Hence, the reasons for the results described above were qualitatively analysed from the fol-
lowing three aspects.

Figure 9.  Dependence of the emergence of collaboration on intra-community attachment and inter-
community attachment. (a) k ≈ 4 ; (b) k ≈ 6 ; (c) k ≈ 8.
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(1) According to the data analysis/simulation, when the average degree of network connectivity was low, the 
initial fixed node was always the hub  node98 with the greatest degree in its community, while as m or n 
increased ( k increased), other nodes would compete for the hub position, which weakened the heterogene-
ity of the network to some extent.

(2) With increasing m or n, the node would have a greater number of neighbours, but the uncollaborative free 
riders among the neighbours would also increase at the same time, thereby weakening the emergence of 
collaboration.

(3) Given a fixed average degree k , the best structure was that in which five scale-free networks were connected 
through five inter-community links (that is, n = 0), and all new nodes were only attached within the com-
munity. This contributed to the formation of loop structures, which have been demonstrated to greatly 
facilitate  collaboration53.

Insight 2. Based on Conclusions 4–5, based on the existing swarm network, according to the task and the 
requirements for the flexibility, survivability, and robustness of the combat network, the communication rela-
tionship and network structure inside and outside the community should be optimized on the premise of keep-
ing the average degree of the network unchanged as far as possible. In the operational stage dominated by a 
single operational cluster (such as intelligence investigation, firepower strike), the communication links between 
clusters can be reduced and the internal communication connections of cluster can be strengthened. In the oper-
ational stage requiring the collaborative participation of multiple clusters, the internal communication links of 
cluster can be reduced and the communication connections between cluster can be guaranteed.At the same time, 
on the premise of ensuring the core connectivity requirements, the number of internal or external links of the 
community network should be reduced as much as possible to promote the emergence of cooperative behaviour.

Dependence of collaboration on cost and the multiplication factor. It is of strong practical guid-
ing value to explore the influence of operational costs (e.g., communications, intelligence, and firepower) and the 
multiplication factor on collaboration in unmanned swarms. In this section, we combine theoretical derivation 
with data simulation to explore how the level of collaboration varies with two types of parameters to provide 
decision support for actual combat.

First, we examined the impact of cost on the collaborative level. In real combat, we seek to exchange the 
lowest cost investment for the optimal swarm coordination effect and finally achieve the maximum combat 
effectiveness. In contrast, if the cost is too high, we will fail to achieve the combat purpose, in which “the gain 
outweighs the loss”. Generally, let c = 1.0 represent the total amount of basic resources, and the general value 
range of c is c ∈ [1.0, 2.0] . When c = 2.0 , the actual resource consumption is doubled. If c > 2.0 , from a practical 
point of view, the cost of investing resources is too high, which has lost its operational relevance. Therefore, we 
make c ∈ [1.0, 2.5] , which not only covers the general value space but also considers the unexpected situation.

Figure 11 shows how the collaborative level fC varies with c when m = 2 and n = 1.
As shown in Fig. 11a, the initial condition was that the defection strategy dominated ( fC < 0.5 ). With 

increasing cost c , fC monotonically decreased. The simulation results also verified the theoretical derivation 
mentioned above. Since akCi = bkCi

+ [r
/

(k + 1)− 1] · c , when the defection strategy dominated, akCi < bkCi
 ; 

that is, [r
/

(k + 1)− 1] · c < 0 . Therefore, with increasing c , akCi  would be further decreased, and collaboration 
would be further inhibited. Given the same cost, fC(k)|ω=0.1 > fC(k)|ω=0.5 > fC(k)|ω=1 . Hence, the smaller 

Figure 10.  Dependence of the emergence of collaboration on the relative degrees of m and n. (a) The influence 
of fixed n, m on collaboration; (b) the influence of fixed m, n on collaboration.
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ω is, the greater the average abundance fC . In addition, as ω increases, the influence of c on fC strengthens: 
� < fC(ω = 0.1) >

∣

∣

c∈[1.0, 2.5] ≈ 0.020 , � < fC(ω = 1) >
∣

∣

c∈[1.0, 2.5] ≈ 0.094.
In Fig. 11b, the collaboration strategy was dominant ( fC > 0.5 ). Based on Eqs. (17) and (18), when the col-

laboration strategy dominates, increasing c increases akCi  , but the benefits to defectors bkCi  increase as well. Since 
[r
/

(k + 1)− 1] · c > 0 , akCi  increases more significantly than bkCi  ; that is, increasing c promotes collaboration.
However, at the same time, we should pay attention to the collateral effect which means that when an indi-

vidual changes strategies, the most direct impact is the change that will bring his own benefits, but in addition, 
it will affect the strategy choice of his neighbours. For a D strategy holder iD , it can be seen from Eq. (18) that 
for each additional cooperator jC among its neighbours, it can obtain the benefit rc

/

(k + 1) by “exploiting” the 
cooperator, and rc

/

(k + 1) is greater than the benefit increment [r
/

(k + 1)− 1] · c brought by strategy conversion 
of iD (from strategy D to strategy C). Therefore, iD is more inclined to maintain the existing D strategy instead of 
converting to strategy C. In other words, the strategy transformation of jC (from strategy D to strategy C) has a 
collateral effect on the strategy choice of iD , so that iD , who was supposed to change to strategy C, abandons the 
strategy transformation and adheres to strategy D. Therefore, the collateral effect inhibits cooperation; this is, in 
Fig. 11b, the increase in cost will basically maintain the cooperation level near the initial value.

Conclusion 6. When the defection strategy dominates, increasing cost will decrease the level of collaboration, 
especially when the selection intensity is relatively high; when the collaboration strategy dominates, the increase 
in cost will basically maintain the cooperation level near the initial value.

The multiplication factor r determines the “appreciation rate” of individual resources. The appreciation of 
resources is reflected in the overall efficiency of “1 + 1 > 2” brought by swarm coordination. An excessively small 
multiplication factor cannot promote the transformation of an unmanned platform to a cooperation strategy, 
and an excessively large multiplication factor has no practical relevance. Figure 12 shows the average abundance 
with respect to the multiplication factor when r ∈ [1, 6] , m = 2 , and n = 1.

As shown in Fig. 12, with the increase in the multiplication factor r , fC increases monotonically, indicating 
that due to the increased multiplication factor, a large number of collaborative behaviours emerge in the swarms, 
and the “free-riding” behaviour is inhibited; nevertheless, as r increases, the influence of r on the promotion 
of fC gradually declines. When ω = 1 , � < fC(k) >

∣

∣

r∈[1, 10] ≈ 0.074 , and � < fC(k) >
∣

∣

r∈[10, 25] ≈ 0.041.

Conclusion 7. An increase in the multiplication factor contributes to the emergence of collaboration, but the 
greater the multiplication factor is, the less significantly it promotes collaboration.

However, the means of increasing the level of collaboration by adjusting the multiplication factor is of only 
theoretical value but not of practical relevance when the multiplication factor is too high ( r > 5 ). As stated in 
Conclusion 7, the greater the multiplication factor is, the less significantly it promotes collaboration because 
increasing the multiplication factor increases the payoffs of both cooperators and defectors. Therefore, we tried 
to separate the multiplication factor rC of cooperators from the multiplication factor rD of defectors. By only 
increasing rC(rD remained unchanged), we fitted the curves showing the effects of varying rC on average abun-
dance (Fig. 13). When rC=3 , the average abundance is approximately equal to 0.5 (as shown by the black curve 
in the figure), which indicates that the proportions of cooperators and defectors in the swarms are basically 
balanced. As rC further increases, when rC=5 , the average abundance is greater than 0.5 at ω = 0.1 , and then as 
the selection intensity becomes stronger, the average abundance exceeds 0.65, which is a substantial increase. 

Figure 11.  Relationship between average abundance and cost. (a) Defection strategy dominates; (b) 
collaboration strategy dominates.
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Moreover, as rC increases, when the dominant strategy changes, strong selection would be more conducive to 
the emergence of collaboration.

The increase in the multiplication factor rC meant that free riders who adopted defection strategies would no 
longer gain the same payoffs as the cooperators. The decrease in payoff would directly increase the probability 
of defectors updating their strategies PD→C , thereby causing more units to collaborate.

Conclusion 8. With the multiplication factor of cooperators separated from that of defectors, increasing the 
multiplication factor of cooperators alone can greatly increase the average abundance of the swarms; when the 
collaboration strategy dominates, in contrast to the traditional model with “collaboration facilitated by weak 
selection”89, strong selection will be more conducive to the emergence of collaboration.

The ideal scenario in actual control is to simultaneously increase the multiplication factor rC and reduce the 
costs to cooperators. However, for specific missions on the battlefield, to ensure the effectiveness of combat, the 
cost will increase rather than decrease. Nevertheless, according to Conclusion 6, when the defection strategy 
dominates, the increase in cost will reduce the collaborative level, which counteracts the increase in rC . Hence, 
it is necessary to comprehensively consider the situation where rC and c increase at the same time. Figure 14a 
shows the variation in the collaborative level with rC and c increasing at the same time when the defection strategy 
dominates. With c = 1 and rC = 1.5 as the benchmark (as shown by the red data points), when the cost rises by 
50% (from c = 1 to c = 1.5 ) and the multiplication factor increases by 33% from rC = 1.5 to rC = 2 (as shown 
by the black data points), the negative effects of c on collaboration are offset, and the emergence of swarm col-
laboration can also be promoted.

Figure 12.  Relationship between average abundance and the multiplication factor.

Figure 13.  Relationship between average abundance and intensity under different values of rC.
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According to Conclusion 6, when the collaboration strategy dominates, increasing cost improves the level of 
collaboration, but not very significantly. Here, rC and rD are regulated and controlled separately. Only rC increases 
( rD remains constant). As shown in Fig. 14b, the collaborative level is tremendously improved when the multi-
plication factor increases to 3 and the cost to 1.5 (as shown by the blue data points), which is inconsistent with 
Conclusion 6. As c increases, the payoffs to cooperators and defectors increase at the same time. However, since 
rC > rD , based on Eqs. (17) and (18), rC kc c

/

k + 1 > rD kc c
/

k + 1 , and the cooperators gain an extra portion 
of the payoff (rC

/

k + 1− 1) c . Therefore, the emergence of collaborative behaviour was apparently improved 
over that in Fig. 11b.

Conclusion 9. When the defection strategy dominates, regulation of rC not only offsets the negative influence 
of cost on collaboration but also contributes to the emergence of collaborative behaviours; when the collabora-
tion strategy dominates, comprehensive regulation of rC and c can remarkably improve the collaboration level.

Insight 3. Based on simulation Conclusions 6–9, in the actual control, the multiplication factor of cooperators 
in the unmanned swarm should be increased as much as possible and the multiplication factor of non-coopera-
tors should be restrained. For example, with the help of management means, for each combat unit of the swarm, 
the investment cost (such as the total amount of bombs dropped) of its previous operations can be accumulated. 
In the subsequent operations, those with higher investment cost shall be given more material and ammuni-
tion supply, or higher priority of material and ammunition supply; Under the initial conditions dominated by 
non-cooperators in the swarm, reduce, at least maintain the cost of a single operation as much as possible. For 
example, with the help of advanced technology, improve the reliability and survivability of the combat platform, 
and improve the strike accuracy and damage power of unit ammunition.

The above simulation was completed based on the NetLogo 6.1.1 platform. The images and videos in the 
“Supporting Materials” show the configuration of the platform interface, the generation of the initial network, 
and the process of the evolutionary game.

Conclusion
The greatest advantage of an unmanned swarm lies in the autonomous collaboration among its units. When 
manual control fails because a single platform is damaged or communication is blocked, the unmanned swarm 
is still able to operate in an orderly manner. In view of the collaborative evolution of unmanned swarms, we 
analysed relevant military demands in this study and reviewed pioneering studies worldwide. On this basis, a 
dynamic evolutionary game model was established to simulate and analyse the influence of swarm size, network 
connectivity degree distribution, cost, and the multiplication factor on collaborative behaviours in unmanned 
swarms. In addition, we proposed reasonable suggestions for coordinated management and control in swarm 
combat. The conclusions reached enable related theories to be applied in practical applications.

In this study, the information network was assumed to be static. However, limited communication conditions 
and the destruction of nodes may lead to the dynamic reconstruction of the network topology in actual combat. 
The follow-up study will focus on how to investigate the coevolution of strategy and structure and explore their 
collaborative evolutionary mechanisms under dynamic topology.

Figure 14.  (a) Effects of cost and the multiplication factor on average abundance when the defection strategy 
dominates; (b) effects of cost and the multiplication factor on average abundance when the collaboration 
strategy dominates.
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