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Spontaneous instrumental 
avoidance learning in social 
contexts
Rocco Mennella1,2*, Sophie Bavard2,3, Inès Mentec2 & Julie Grèzes2*

Adaptation to our social environment requires learning how to avoid potentially harmful situations, 
such as encounters with aggressive individuals. Threatening facial expressions can evoke automatic 
stimulus-driven reactions, but whether their aversive motivational value suffices to drive instrumental 
active avoidance remains unclear. When asked to freely choose between different action alternatives, 
participants spontaneously—without instruction or monetary reward—developed a preference for 
choices that maximized the probability of avoiding angry individuals (sitting away from them in a 
waiting room). Most participants showed clear behavioral signs of instrumental learning, even in 
the absence of an explicit avoidance strategy. Inter-individual variability in learning depended on 
participants’ subjective evaluations and sensitivity to threat approach feedback. Counterfactual 
learning best accounted for avoidance behaviors, especially in participants who developed an explicit 
avoidance strategy. Our results demonstrate that implicit defensive behaviors in social contexts are 
likely the product of several learning processes, including instrumental learning.

Imagine that you have started a new job and you have noticed that a new colleague is often angry. To stay out of 
trouble, you will rapidly learn what you must do to avoid meeting him at the coffee machine or, at least, to sit as 
far as possible from him in the cafeteria. Adaptation to our complex social environment requires the ability to 
flexibly learn how to avoid or escape potentially harmful situations, such as encountering aggressive individuals. 
Active avoidance is one peculiar kind of defensive behavior, “in which subjects learn to minimize or prevent con-
tact with aversive events […] by taking action”1. Active avoidance has classically been studied through condition-
ing paradigms built onto two learning phases, a Pavlovian and an instrumental phase e.g.,1–4. First, via Pavlovian 
conditioning, a neutral stimulus (CS +) is associated with an aversive outcome (US, often an electrical shock). 
Second, because the CS + allows individuals to predict the occurrence of an aversive event, they learn to perform 
specific actions to avoid the US (instrumental conditioning). Depending on the paradigm, such instrumental 
(goal-directed) actions can either prevent the occurrence of the US after CS + presentation (primary avoidance 
or US-avoidance) or directly prevent the CS + (secondary avoidance or CS-avoidance). In variations of active 
avoidance paradigms, subjects learn not to prevent, but to terminate—or increase the distance in space/time 
with—either the CS + (threat escape or CS-escape) or the ongoing US (harm-escape or US-escape)5,6. Despite 
some interesting psychophysiological  differences7,8, both active avoidance and escape are acquired through the 
same biphasic learning procedure and share neural  substrates9. They are therefore commonly considered varia-
tions of instrumental active avoidance  responses10.

Human experiments have mainly focused on US- avoidance e.g.,11–14, while less is known on CS-avoidance 
but  see6–8,15,16. This is surprising, given that, in social settings, we often begin avoiding the new aggressive col-
league before experiencing any concrete negative consequences. Individuals learn throughout life that angry 
facial displays, which communicate the intent to inflict verbal and/or physical harm, are a danger-predictive 
cue (a CS +), either by Pavlovian  conditioning17–19 or by experience and observation e.g.,20,21. Therefore, previ-
ous experience informs us that angry expressions might function as ready-to-go signals that help us predict and 
avoid possible future negative consequences. The aversive motivational value of angry expressions is evidenced 
through their associated perceptual and attentional advantages e.g.,22–26, induced physiological  changes27,28 as 
well as their influence on the anticipatory processing of action  intentions29 and action  selection30–32, even in 
the absence of  awareness33. To our knowledge, while the influence of social threat displays on specie-specific 
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defensive behaviors, such as  freezing34, or on stimulus-driven avoidance  tendencies35–37 has been established, it 
remains unknown as to whether they can drive instrumental CS-avoidance learning.

Here, we first tested the possibility that the aversive motivational value of angry facial displays can mediate 
instrumental CS-avoidance learning. We hypothesized that participants would learn to select, from among two 
options, the action that maximizes the probability of increasing the spatial distance from a threatening individual 
(avoidance) in a subsequent feedback phase. That is, consistently with previous results on humans showing that 
successful avoidance is intrinsically  rewarding38, we propose that the outcome “avoiding anger” is preferred to 
“approaching anger”, and, as such, will act as a reinforcer to promote instrumental CS-avoidance learning. To 
test our hypothesis, we converted our original free choice  paradigm30–32 into a reinforcement-learning (RL) task. 
Standard RL tasks require subjects to explicitly maximize their reward, often in terms of maximising points/
money gains or minimising points/money losses. To do so, subjects need to learn, in a preliminary Pavlovian 
phase, which option was associated with the best outcome. However, our tasks did not use monetary or point 
incentives but relied instead entirely on the intrinsic motivational value of the socio-emotional outcome of an 
action and, consequently, did not include a preliminary Pavlovian phase.

Two samples of subjects (pilot n = 62, main experiment n = 278) were presented with a waiting room with four 
chairs, where the two middle chairs were occupied by two individuals and the two outer chairs were empty (See 
Fig. 1a). Subjects were instructed to indicate via button press on which chair in the scene they would prefer to sit, 
knowing that no wrong/right responses existed. At choice time, both individuals had a neutral expression but, 
immediately following the subject’s response, one of the individuals changed expression from neutral to anger, 
for 500 ms. Accordingly, in this short feedback phase following choice, subjects would find themselves either 
far from (avoidance scenario) or close to (approach scenario) the individual expressing anger. At each trial, one 
response (e.g., sit on the right chair) was associated with an 80% probability of avoidance in the feedback phase 
and to a 20% probability of approach. The other response (e.g., sitting on the left chair) was associated with the 
complementary probabilities (20% avoidance, 80% approach). Therefore, in our task, one angry individual was 
always present in the feedback phase, while the subject’s physical distance from the angry individual changed 
depending on response choice, similarly to threat escape paradigms. Furthermore, presenting the full scene in the 
feedback phase allowed for counterfactual learning, which refers to the ability to learn from forgone outcomes, 
i.e., the unchosen  option39, which has proven to be of importance in avoidance learning e.g.,40. To discourage 
habit formation or simple response perseverance, which play important roles in the instantiation of non-goal-
directed avoidance  responses1, and to ensure continuous instrumental learning, we introduced volatility in our 
environment, by setting action-outcome probability reversals every 25 trials on average.

Instrumental learning in humans and other animals relies on both implicit and explicit predictions of action 
 outcomes10,41,42. Most experiments have investigated explicit active avoidance, where individuals were told that 
performing a certain action would allow them to avoid the US or CS e.g.,11,43,44, including studies using emotional 
 faces45. In contrast, we never mentioned the presence of threatening facial displays to the participants, nor that 
one choice would be associated with a higher probability of avoiding the threatening individual. We expected 
that, thanks to the experience accumulated across trials, the available action options would acquire positive or 
negative experiential values from past outcomes, i.e., virtually sitting away from or next to an angry individual, 
respectively. Therefore, we predicted that participants would develop a preference for choosing the action with 
the highest subjective value, i.e., sitting on the chair that allowed them to avoid the angry individual, similarly 
to what might happen in real-life situations. Furthermore, as both human and non-human animal studies have 
observed large individual differences in US-avoidance learning and behavior e.g.,12,46,47, we investigated, on the 
basis of our pilot results and via an extensive debriefing at the end of the experiment, whether such individual 
differences in instrumental CS-avoidance learning could be sourced to the participant’s ability to explicitly 
report having developed an avoidance strategy. Finally, to further understand whether a spontaneous emergence 
of avoidance was linked to the subjective value that each subject attributed to approach/avoidances scenarios, 
we ran a short subjective evaluation task after the reinforcement learning task, asking for an explicit subjective 
evaluation of each possible scenario encountered in the main task (See Fig. 1b). We predicted that subjects would 
subjectively prefer avoidance vs. approach scenarios, and that this preference would account for the spontaneous 
emergence of avoidance behavior in the main task.

Results
Social threat avoidance emerges spontaneously via instrumental learning. To test whether sub-
jects spontaneously learned to avoid the angry individual, we first ran mixed logistic models on the probability 
of “hits”, namely the proportion of trials in which participants chose to sit on the chair that maximized the prob-
ability of avoidance in the feedback phase.

The first model included the proportion of hits as a dependent variable and the intercept as a predictor, 
measuring difference from  chance48 (see “Statistical analyses” for full details on the fixed and random effects’ 
structure). Average hit rate was higher than chance level 0.5, as indicated by the significant fixed effect of the 
intercept (Odd Ratio (OR) = 1.18,  ORIC95% = 1.14 − 1.23, p < 0.001; see Table 1, model 1; Fig. 2 left top), signaling 
significant instrumental learning at the group level. Results from our second model, which included the effect of 
trial number within blocks of stable action-outcome contingency, showed that, on average, on the first trial after 
reversal hit rate fell significantly below chance (Intercept: OR = 0.83,  ORIC95% = 0.77 − 0.90, p < 0.001; see Table 1, 
model 2; Fig. 2 right top) to then increase hyperbolically above chance across the first twenty trials within a 
block of stable action-outcome contingencies (OR = 1.51,  ORIC95% = 1.35 − 1.70, p < 0.001; see Table 1, model 2; 
Fig. 2 right top). These results indicated that, across trials, subjects learned the association between each possible 
action and the respective outcome and updated this association after each reversal.
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To further characterize learning, we were interested in knowing whether subjects learned preferentially from 
positive/safety outcomes (avoidance) or negative/threat outcomes (approach). To this end we fitted a model pre-
dicting the probability of repeating at trial t the same action produced at trial t − 1, as a function of the obtained 
feedback (avoidance or approach). Interestingly, while the probability to repeat did not differ significantly from 
chance following approach feedback (Intercept: OR = 0.93,  ORIC95% = 0.82 − 1.07, p = 0.304; see Table 1, model 3; 
Fig. 2 left bottom), it increased significantly after avoidance feedback (OR = 1.73,  ORIC95% = 1.56 − 1.93, p < 0.001; 
see Table 1, model 3; Fig. 2 left bottom), suggesting that subjects learn preferentially from positive, as opposed 
to negative, outcomes.

Nonetheless, each subject might assign a very different value to each scenario, rendering it difficult to unam-
biguously attribute a positive value to avoidance feedback and a negative value to approach feedback. To check 

Figure 1.  Behavioral tasks. (a) In the reinforcement learning task, participants indicated on which free chair 
they would like to sit, via a left/right button press. The figure shows an example trial, in which the participant 
pressed the left button. In the feedback phase he could find himself far from (avoidance, in green) or close to 
(approach, in yellow) the individual displaying anger, depending on a hidden probability associated with each 
chair. (b) In the subjective evaluation task that followed the reinforcement learning task, participants had to 
subjectively evaluate each possible scenario seen in the feedback phase of the previous task (the example is of 
an approach scenario). Please note that the identities displayed were taken from the Radboud Faces Database 
and were selected for illustration purposes only (they were not used for the real experiment), following the 
guidelines of the database.
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whether subjective values differed for approach vs. avoidance scenarios, we ran a mixed linear model on sub-
ject responses on the subjective evaluation task. Subjects evaluated how much they would have liked to find 
themselves in the proposed scenario, on a visual analog scale ranging from ‘NOT AT ALL’ to ‘EXTREMELY’, 
and responses were converted to a 0–100 scale. Results indicated that approach scenarios were rated on average 
at 25.34  (IC95% = 23.24 − 27.44), while subjective value increased significantly by 37.05  (IC95% = 33.97 − 40.13, 
p < 0.001) for avoidance as compared to approach scenarios (see Supplementary Material, Table S1, model 1; 
Fig. S1, left). Therefore, on average, subjects preferred to find themselves in an avoidance, as compared to an 
approach scenario. On this basis, we ran a mixed logistic model on the probability of response repetition, 
this time including the subjective value attributed in the subjective evaluation task to each feedback obtained 
at trial − 1 in the reinforcement learning task. Consistently with the previous model, higher subjective values 
attributed to the feedback at trial − 1 predicted an increase in the probability of repetition at trial t (OR = 2.50, 
 ORIC95% = 2.09 − 2.98, p < 0.001; see Table 1, model 4; Fig. 2 right bottom), an effect especially driven by an increase 
in the probability of repetition for positively-valued feedback (Fig. 2 right bottom).

Controlling for the development of an explicit avoidance strategy. Figure 2 highlights substantial 
variability in learning, with some subjects clearly above chance level and others not very much so. Before run-
ning the present task, we ran an online pilot study on 62 subjects (6 excluded, see Supplementary Methods), 
where we began investigating potential sources of variability in a post-task debriefing, by asking participants 
whether they thought any feature of the faces influenced their choice (“Did you notice anything about the faces 
of the individuals in the scenes? Did this influence your choice? If so, how?”). We realized that approximately 
one third of subjects not only saw the emotion on the face in the feedback phase but reported strategically trying 
to avoid it (even if not all of them understood that there was a specific contingency between their response and 
the obtained outcome)  (Nnon-explicit = 35,  Nexplicit = 21). Roughly the same proportion of subjects, with an explicit 
versus non-explicit avoidance strategy, were found in the main experiment  (Nnon-explicit = 154,  Nexplicit = 60), con-
firming that only a minority were able to develop such an explicit strategy. Examples of subjects’ reports were: “If 
they looked angry after I sat next to them, I would sit on the opposite side the next time” or “If the expression was 
angry I selected the other option in the next round” (i.e., explicit avoidance strategy) and “I don’t think it con-
sciously influenced my choice because there was so little time to think, only to click”, “yes but I cannot explain 
why” or simply “no” (i.e., non-explicit strategy) (see Supplementary Material, Table S2 for full subjects’ report).

Therefore, we re-ran all previous models, including the main effect of strategy (0 = non-explicit, 1 = explicit) 
as a between-subject variable, as well as the interaction of strategy with the other variables (Table 2; Fig. 3). 
Results showed that the development of an explicit strategy was associated with better avoidance learning, as 
indicated by higher hit proportion (Strategy: OR = 1.25,  ORIC95% = 1.16–1.35, p =  < 0.001; see Table 2, model 1; 
Fig. 3 left top) and a steeper hyperbolic increase of hits across trials within blocks (hyp(trial)*strategy: OR = 1.74, 
 ORIC95% = 1.36–2.22, p < 0.001; see Table 2, model 2; Fig. 3 right top). Most interestingly, instrumental learn-
ing for the non-explicit strategy group remained significant, as indicated by the model 1 intercept (OR = 1.11, 
 ORIC95% = 1.07–1.16, p < 0.001; see Table 2, model 1; Fig. 3 left top) and by the model 2 true main effect of 
hyperbolic increase of hits across trials within blocks (hyp(trial): OR = 1.30,  ORIC95% = 1.14–1.47, p < 0.001; see 
Table 2, model 2; Fig. 3 right top). Furthermore, model 3 indicated that, while individuals without an explicit 
strategy did not differ significantly from chance in the probability of repeating the previous response following 
approach feedback (Intercept: OR = 1.09,  ORIC95% = 0.94–1.27, p = 0.258), they did repeat more often the previous 

Table 1.  Mixed logistic models. Random effects: σ2 = Residual variance, τ00 = random intercept variance, 
τ11 = random slope variance, ρ01 = random intercept/slope correlation, ICC = Intraclass Correlation Coefficient. 
Significant values are in bold.

Model 1: hits Model 2: hits Model 3:repetition Model 4:repetition

Predictors 
(across models) Odds ratios CI p Odds ratios CI p Odds ratios CI p Odds ratios CI p

Intercept 1.18 1.14–1.23  < 0.001 0.83 0.77–0.90  < 0.001 0.93 0.82–1.07 0.304 0.85 0.75–0.96 0.012

Hyp(trial) 1.51 1.35–1.70  < 0.001

Feedback t − 1 
(avoidance) 1.73 1.56–1.93  < 0.001

Subjective value 
feedback t − 1 2.50 2.09–2.98  < 0.001

Random effects

σ2 3.29 3.29 3.29 3.29

τ00 0.06subject 0.08subject 0.95subject 0.78subject

τ11 0.35subject.hyp(trial) 0.55subject.feedback t-1 (avoidance) 1.33subject.subjective value feedback t −1

ρ01 − 0.98subject − 0.29subject − 0.21subject

ICC 0.02 0.02 0.24 0.23

N 214subject 214subject 214subject 214subject

Observations 62,815 50,240 62,093 62,093

Marginal  R2/
Conditional  R2 0.000/0.017 0.002/0.022 0.017/0.250 0.017/0.242
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response after avoidance feedback (feedback t-1: OR = 1.40,  ORIC95% = 1.25–1.57, p < 0.001; see Table 2, model 
3; Fig. 2 left bottom). Individuals with an explicit strategy learned both from approach and avoidance feedback 
(feedback t − 1 * strategy: OR = 2.14,  ORIC95% = 1.73–2.65, p < 0.001; see Table 2, model 3; Fig. 2 left bottom). 
Model 4 confirmed that subjective value associated with the received feedback was also a significant predictor 
of the subsequent response in the group without an explicit strategy (subjective value feedback t − 1: OR = 1.79, 
 ORIC95% = 1.48–2.16, p < 0.001), and that the interaction with the factor strategy was significant as in model 3 
(subjective value feedback t − 1 * strategy: OR = 3.10,  ORIC95% = 2.20–4.38, p < 0.001; see Table 2, model 4; Fig. 2 
right bottom). At the subjective level, subjects with an explicit strategy valued as less positive the proposed 
scenarios overall (strategy: Estimate = − 7.45,  IC95% = − 12.02 to − 2.88, p < 0.001). Despite the fact that this effect 
appeared  to be mostly driven by a difference in the approach condition (see Supplementary Material, Fig. S1), 
the interaction term did not reach significance (p = 0.146).

Figure 2.  Summary of behavioral results. Left top: proportion of hits throughout the task. The red point 
represents the mean while the error-bar represents the confidence interval at 95% for the normal distribution. 
Shaded points represent single subject means while grey tones reflects whether, within each subject, the 
binomial test against chance (0.5) is significant (dark grey) or not (light grey). Right top: mean proportion of 
hits across the first 20 trials over blocks of stable action-outcome contingency (trial 1 = reversal trial). Points 
represent means within trial and error-bars represent confidence intervals at 95% for the normal distribution. 
The fitted curve represents the best fit (and 95% confidence interval) for the same hyperbolic function used in 
the mixed linear models (see “Methods”). Left bottom: mean proportion of action repetition following either 
approach or avoidance feedback. Black points represent means while error-bars represent confidence intervals 
95% for the normal distribution. Shaded points represent single subject means. Right bottom: mean proportion 
of action repetition as a function of the subjective value attributed to the feedback obtained at t − 1. Black points 
represent means while error-bars represent confidence intervals 95% for the normal distribution. The fitted 
curve represents the best fit (and 95% confidence interval) for a logistic function.
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To conclude, results from mixed models indicated that: (1) on aggregate, subjects showed significant instru-
mental learning based on the approach/avoidance feedback provided; (2) avoidance scenarios were associated, 
on average, with a more positive subjective value than approach scenarios, which affected learning; (3) subjects 
who developed an explicit avoidance strategy during the task were better at learning how to avoid the threaten-
ing individual and valued the proposed scenarios as more negative, in general. Furthermore, they learned both 
from approach (negative) and avoidance (positive) outcomes, contrary to subjects without an explicit avoidance 
strategy who seemed to learn only from avoidance (positive) outcomes. Concerning the replicability of these 
behavioral results, the results from our pilot study align largely to those of the main task (see Supplementary 
Material, Fig. S2; Table S3; note that the pilot study did not include a subjective evaluation task).

Avoidance learning is counterfactual. Previous research has shown learning advantages when one’s 
choices and their associated outcomes are considered in the context of alternative outcomes that might have 
been experienced from alternative but unchosen  options39. In the present task, we reasoned that the subjects 
may or may not integrate, within their model of the environment, that the two possible action options had a 
complementary probability of leading to an approach or an avoidance outcome. To test this, we contrasted rein-
forcement learning (RL)  models49,50 where only the value of the chosen option was updated after each choice 
(simple learning), to models where both the value of the chosen and the unchosen option were updated (coun-
terfactual learning), with the unchosen option being updated based on the value of the complementary feedback 
to the feedback obtained (see “Methods”). Furthermore, we compared these models to a random model giving 
random choices (50% probability of choosing right or left), to check whether each model fit the data better than 
chance. Due to the peculiarity of this task, where the action choice which maximizes reward (i.e., threat avoid-
ance) remained the same over the course of an entire block before probability reversal, both the simple and the 
counterfactual models were slightly complexified versions of the classic RL model, to account for the tendency to 
repeat actions previously  performed51. Other than the learning rate (α) and the inverse temperature (β) param-
eters, they both integrated a learning parameter αhab that captured that tendency of subjects to value an action 
on the basis on how many times it had been chosen in the past (see “Methods”). We acknowledge that in our 
task an actual habit would probably not have had the time to develop over the course of a block, therefore αhab 
can be considered a simple measure of response perseveration, i.e., the tendency to repeat previously performed 
responses. The instrumental action value Q and the "perseverance" value H were weighted by a final parameter 
w, which indicated how much a subject was prone to respond based on the tendency to persevere (values tending 
to 1) or on the instrumental value of the action (values tending to 0; for more details see “Methods”).

Table 2.  Mixed logistic models. Controlling for the effect of having an explicit strategy. Random effects: 
σ2 = Residual variance, τ00 = random intercept variance, τ11 = random slope variance, ρ01 = random intercept/
slope correlation, ICC = Intraclass Correlation Coefficient. Significant values are in bold.

Model 1: hits Model 2: hits Model 3:repetition Model 4:repetition

Predictors 
(across models) Odds Ratios CI p Odds Ratios CI p Odds Ratios CI p Odds Ratios CI p

Intercept 1.11 1.07–1.16  < 0.001 0.88 0.81–0.97 0.008 1.09 0.94–1.27 0.258 1.01 0.87–1.16 0.922

Strategy (explicit) 1.25 1.16–1.35  < 0.001 0.80 0.67–0.95 0.010 0.57 0.43–0.76  < 0.001 0.57 0.43–0.74  < 0.001

Hyp(trial) 1.30 1.14–1.47  < 0.001

Hyp(trial) * strat-
egy (explicit) 1.74 1.36–2.22  < 0.001

Feedback t − 1 
(avoidance) 1.40 1.25–1.57  < 0.001

Feedback 
t − 1 (avoid-
ance) * strategy 
(explicit)

2.14 1.73–2.65  < 0.001

subjective value 
feedback t − 1 1.79 1.48–2.16  < 0.001

subjective 
value feedback 
t − 1 * strategy 
(explicit)

3.10 2.20–4.38  < 0.001

Random effects

σ2 3.29 3.29 3.29 3.29

τ00 0.05subject 0.07subject 0.88subject 0.74subject

τ11 0.29subject.hyperbole(trial_num) 0.43subject.rew_prec_factavoidance 1.01subject.subjValue_prec

ρ01  − 0.98subject  − 0.19subject  − 0.11subject

ICC 0.01 0.02 0.23 0.22

N 214subject 214subject 214subject 214subject

Observations 62,815 50,240 62,093 62,093

Marginal  R2/
Conditional  R2 0.003/0.017 0.006/0.022 0.024/0.249 0.022/0.241
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The Friedman test on RL model log-likelihood was statistically significant, χ2
(2) = 78.8, p < 0.001, indicating a 

difference in the ability of the models to fit the data (Fig. 4, left top). Wilcoxon paired tests, Bonferroni corrected, 
further indicated that the random model (median = − 206, min = − 208, max = − 175) had a lower likelihood com-
pared to both the simple (Z = 2613,  pcorr < 0.001, effect size = 0.67; median = − 198, min = -210, max = − 3.87) and 
the counterfactual models (Z = 2432,  pcorr < 0.001, effect size = 0.68; median = − 197, min = − 210, max = − 3.88), 
which better fit the data. Importantly, the counterfactual model had a higher likelihood compared to the simple 
model (Z = 6638,  pcorr < 0.001, effect size = 0.37). These results indicate that counterfactual models fitted the data 
significantly better than chance as well as better than the simple model (moderate effect size). Further investiga-
tion as to whether the counterfactual model better explained the data compared to the simple model within each 
group, demonstrates that this was the case for both the group without an explicit strategy (Z = 4270,  pcorr = 0.007, 
effect size = 0.25, small) and with an explicit strategy (Z = 262,  pcorr < 0.001, effect size = 0.62, large).

Both models reproduced the data very well, as indicated by the Spearman correlation between the simulated 
and the real hits; ρ = 0.81, p < 0.001 for the simple model and ρ = 0.82, p < 0.001 for the counterfactual model. For 
both models, the correlation was stronger for the group with an explicit strategy than for the one without (simple 
model: strategy ρ = 0.93, p < 0.001, no strategy ρ = 0.70, p < 0.001; counterfactual model: strategy ρ = 0.92, p < 0.001, 
no strategy ρ = 0.72, p < 0.001; Fig. 4, right top). Further visual appreciation of the models’ ability to reproduce 
behavioral effects can be found in Fig. 3. Concerning the probability to repeat the previous action as a function of 
the obtained feedback (Fig. 3, left bottom), the counterfactual model (in green), contrary to the simple model (in 
orange), was able to reproduce the pattern for which the group without an explicit strategy learns primarily from 
avoidance (positive) feedback, and for which the group with an explicit strategy learns from both avoidance and 
approach feedback. Computationally, based on the structure of our models, the encoded value of each option is 
composed of a Q-value component (Q) and a perseverance (H) component. If the feedback of the chosen option 

Figure 3.  Summary of behavioral results as a function of the presence/absence of an explicit avoidance strategy. 
All information provided in the legend for Fig. 2 applies to Fig. 3. The figure highlights the differences between 
the group without an explicit avoidance strategy (light blue) and the group with an explicit strategy (violet). 
Prediction from the simple and the counterfactual reinforcement learning models (see next paragraph and 
“Methods”) are in orange and green, respectively (solid lines for the group without an explicit strategy and 
dotted lines for the one with explicit strategy). Orange and green points represent means of simulations, and 
the fitted curve in the right top graph represents the best fit for the same hyperbolic function used in the mixed 
linear models, fitted on simulated data.
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is avoidance (i.e., positive feedback), then both components will be updated to overall favor the chosen option. 
However, if the feedback is approach (i.e., negative feedback), the Q-learning component will be decreased but 
the perseverance component will still be increased, which allows the model to account for the observed behavior. 
This insight is also consistent with the parameter values reported in Fig. 4 (bottom): for participants with an 
explicit strategy, the update of the Q-value is higher than for non-explicit participants because the learning rate 
is significantly higher. Hence, this could explain why the model is able to capture both (1) the tendency to learn 
more from one type of feedback than the other and (2) the difference in patterns between participants. The effect 
is even stronger for the counterfactual model because the Q-value updating following approach feedback goes 
even further in the opposite direction as to the habit update.

For the winning counterfactual model, we compared, using Wilcoxon tests, model parameters between the 
groups with and without an explicit avoidance strategy. Compared to the group without a strategy, the group 
with an explicit strategy had both a higher learning rate (median αnon-explicit = 0.50, median αexplicit = 0.74; Z = 3411, 
p = 0.003) and a stronger tendency to take into account the instrumental value of the action options, compared to 
their tendency to persevere (median  wnon-explicit = 0.78, median  wexplicit = 0.63; Z = 5917, p = 0.001). The two groups 
did not differ on the two remaining parameters (median αhab_non-explicit = 0.084, median αhab_explicit = 0.06; Z = 4995, 
p = 0.36; median βnon-explicit = 1.50, median βexplicit = 1.84; Z = 3928, p = 0.09).

Figure 4.  RL models results. Left top, log-likelihood comparison (Wilcoxon paired tests) between the random, 
simple, and counterfactual models. Right top, correlation between real and simulated mean hit proportions 
for the simple and the simulated models, as a function of the presence (violet) or the absence (light blue) 
of an explicit avoidance strategy. Lines represent the best linear fit (and 95% Confidence Interval). Bottom, 
comparison (Wilcoxon unpaired tests) between the groups with (violet) and without (light blue) an explicit 
avoidance strategy on subject best fit parameters for the winning counterfactual model. *=  p < .05, **= p < .01, 
***= p < .001.
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The more negative the value for threat approach, the better the instrumental avoidance 
learning. Table 3 presents the correlation between subject parameters for the winning counterfactual model 
and subjective measures, including both affective and personality questionnaires, and the mean subjective value 
attributed by each subject to approach and avoidance scenarios in the subjective evaluation task. Interestingly, 
the subjective value attributed by subjects to approach scenarios correlated with all parameters, except for β. In 
particular, the more negatively subjects valued approaching a threatening individual, the greater their learning 
rate α (ρ = − 0.2,  punc = 0.004), as well as their propensity to use the instrumental value of the action to respond, 
as opposed to the simple tendency to persevere (w, ρ = 0.33,  punc < 0.001). Consistently, subjects that tended to 
give a less negative evaluation of the approach scenario relied more on response perseverance (αhab, ρ = 0.16, 
 punc < 0.022). At the same time, the value attributed to the avoidance (safe) scenario correlated with the β param-
eter, in the sense that the more positive the value the stronger the propensity to explore new action possibili-
ties (ρ = − 0.18,  punc = 0.009). Interestingly, within group correlations with α, w and β were stronger overall in 
the group without an explicit strategy as compared to the group with a strategy (see Supplementary Material, 
Tables S4 and S5). Concerning the questionnaires, across groups, neither anxiety nor autism traits appeared to be 
related to any of the learning parameters. A small negative correlation emerged between the Behavioral Inhibi-
tion System, and the w parameter (ρ = − 0.16,  punc = 0.02), possibly indicating that the more the subjects were sen-
sitive to negative and anxiogenic stimuli, the more they relied on the instrumental value of the response action, 
as opposed to the simple tendency to persevere. It must be noted that, when applying FDR correction for mul-
tiple comparisons, only the correlation between subjective value in the approach scenarios and w  (pcorr < 0.001) 
and, marginally, α  (pcorr = 0.08), remained significant.

In light of the correlation between the value attributed to the approach scenario and the quality of instru-
mental learning (as indicated by α and w parameters), we wanted to explore whether this could be related to 
differences observed in response repetition after approach/avoidance feedback between the groups with and 
without an explicit avoidance strategy. Past research indicates that win-stay responses—i.e., repeating a response 
after a rewarded choice—are a proxy of an individual’s sensitivity to positive feedback, whereas lose-switch 
responses—i.e., not repeating a response after a punished choice—attests to an individual’s sensitivity to nega-
tive  feedback52–55. Therefore, we expected to find a correlation between the tendency to repeat the response after 
approach/avoidance feedback and the learning rate, as well as the w parameter. Since we had a direct measure 
of the extent to which subjects valued approach and avoidance scenarios, we also correlated the tendency to 
repeat with the subjective evaluation of those scenarios. Concerning approach feedback, the tendency to repeat a 
response was indeed negatively correlated with α (ρ = − 0.24, p < 0.001) and positively correlated with w (ρ = 0.46, 
p < 0.001) and, importantly, with subjective evaluations (ρ = 0.36, p < 0.001). Conversely, concerning avoidance 
feedback, the tendency to repeat a response was only positively correlated with α (ρ = 0.36, p < 0.001) but neither 
correlated with w (ρ = − 0.02, p = 0.75) nor with subjective evaluations (ρ = 0.00, p = 0.95).

Discussion
The current study set out to explore the possibility that the aversive value of threatening (angry) facial displays 
that one encounters in everyday social contexts can drive uninstructed instrumental CS-avoidance learning. 
The main result of two online studies on independent large cohorts of participants is that, in the absence of any 
explicit instruction concerning the presence of threatening expressions, or concerning the necessity to avoid 
them, at the group level participants spontaneously learned to avoid—i.e., choose the action that maximizes 
their distance from—individuals displaying anger. Participants subjectively evaluated avoidance feedback as 
positive and approach feedback as negative. For most participants (approximately two-thirds), learning was not 
accompanied by the development of an explicit threat-avoidance strategy and was mostly driven by trials in which 
avoidance was successful. The remaining participants developed an explicit avoidance strategy that led to better 
learning. In this group, learning was influenced by feedback from both successful and unsuccessful avoidance 
trials and was associated with more negative evaluations of the social threat scenarios overall. Results from RL 
models suggest that participants integrated counterfactual information (outcome from the unchosen option) 
during instrumental CS-avoidance learning. This demonstrates an understanding of the (simple) model of the 
environment, which was more pronounced in the group that developed an explicit avoidance strategy, even if 
still present in the group without an explicit strategy.

Table 3.  Spearman’s correlations between counterfactual model parameters and subjective measures. 
Correlations in bold survive FDR correction for multiple comparisons.SVapp = subjective value for 
approach scenarios, SVav = subjective value for avoidance scenarios, BIS = Behavioral Inhibition System, 
BASd = Behavioral Activation System, Drive subscale, BASr = Behavioral Activation System, Sensitivity 
to Reward subscale, BASd = Behavioral Activation System, Funseeking subscale, BAPQa = Broad Autism 
Phenotype Questionnaire, Aloof Personality, BAPQpl = Broad Autism Phenotype Questionnaire, Pragmatic 
Language, BAPQr = Broad Autism Phenotype Questionnaire, Rigidity. *= p < .05, **= p < .01, ***= p < .001.

SVapp SVav STAIt STAIs BIS BASd BASr BASf BAPQa BAPQpl BAPQr

alpha  − 0.2** 0.02 0.05 0.08 0.06  − 0.01  − 0.01 0.02  − 0.09  − 0.11  − 0.04

alphahab 0.16* 0.05 0  − 0.04  − 0.06  − 0.05 0.03 0.02 0.02 0.09 0.06

beta 0  − 0.18** 0.01 0.07 0.04 0.04 0 0.04 0.05 0.04  − 0.03

w 0.33***  − 0.02  − 0.11  − 0.04  − 0.16* 0.13 0.01 0.02  − 0.01  − 0.03  − 0.11
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Research on human defensive behaviors in response to socio-emotional displays mostly focused on species-
specific reactions to threat, e.g.,  freezing34, or on stimulus-driven avoidance  tendencies35–37. If stimulus-driven 
reactions prevail in the case of highly imminent  threat56, everyday social behaviors, including defensive behaviors, 
are more often executed under threat which is less imminent, but see e.g.,57, where instrumental mechanisms 
might predominate. Furthermore, recent research in  humans58,59 and other  animals60,61 converge in assigning a 
more important role to instrumental defensive responses, either under  low62 or relatively imminent  threat2,10,63. 
Consistently with the abovementioned literature, we have previously shown that human approach/avoidance 
decisions between multiple targets for action in social contexts were influenced by the presence of threat-related 
facial displays. We suggested that such an influence was mediated by the fact that threat displays increased the 
value of the action leading to  avoidance32. We revealed that avoidance decisions did indeed result from rapid 
and implicit value-based competition between action alternatives, a mechanism sourced in the ventromedial 
prefrontal and the orbital  cortices31, for a conceptual replication  see64, and modulated by changes in participants’ 
positive affective  state30.

The abovementioned results strongly support the involvement of instrumental processes in the emergence of 
avoidance decisions to socio-emotional cues. Nonetheless, the parallel involvement of stimulus-response pro-
cesses in avoidance decisions cannot be ruled out, since threat-displays were, in every instance, being presented 
on the screen at the time as subjects made their choice. In contrast, in the present reinforcement learning task, 
we prevented any involvement of a stimulus-response effect by only displaying neutral individuals at the time of 
the choice, thereby isolating the instrumental component of avoidance. Past research has already evidenced that 
emotional facial displays can act as social reinforcers. For instance, it has been demonstrated that individuals can 
learn to choose actions that lead to the appearance of pleasant rather than unpleasant facial  displays65,66, or to the 
disappearance of angry, as opposed to neutral, facial  displays45. Here we went one step further, by establishing 
that individuals can learn instrumentally to choose actions that maximize the spatial distance from a threatening 
individual, while keeping the presence of an angry individual on scene constant across trials. Most importantly, 
we demonstrated that such learning instantiates spontaneously in a volatile environment, in the absence of any 
instruction regarding threat avoidance or the structure of the environment, lending greater credence to the pos-
sibility that instrumental avoidance learning plays a crucial role in real-life social interactions.

We observed inter-individual differences in instrumental CS-avoidance learning. The subjective value that 
subjects attributed to action outcomes (approach/avoidance) seemed crucial in accounting for such individual 
differences. On one hand, in exploratory RL models, not presented in the main text of this work, subjective values 
assigned in the subjective evaluation task to each possible outcome (approach/avoidance) were entered in the RL 
models as reward values, fitting quite well participants’ learning (see Supplementary Material, Fig. S4). On the 
other hand, the more subjects negatively evaluated the approach, but not the avoidance scenarios, the greater 
their instrumental learning, as indicated by correlations with both α (learning rate) and w (weighting between Q 
and H values) parameters of the counterfactual model. These results are consistent with the idea that the subjec-
tive motivational value associated with the action outcome is a crucial determinant of instrumental  avoidance6. 
In line with this, a recent study has shown that the more a stimulus predicting a CS + acquired negative valence 
throughout the task, the stronger the CS-avoidance67. We also observed that response repetition after avoidance 
feedback (often labelled win-stay) and switch after approach feedback (lose-shift) correlated with both the α 
and w parameters, confirming that win-stay and lose-switch are proxies of individual sensitivity to positive and 
negative feedback,  respectively52–55. Interestingly, the correlation between the subjective value for the approach 
scenarios and the instrumental learning parameters was subtended by the fact that the more subjects negatively 
evaluated approach scenarios, the more they tended to switch responses after approach feedback (lose-shift). This 
nicely parallels animal findings, where the more rats negatively valued punishment, the better their instrumental 
avoidance  learning47. Overall, these results indicate that individual differences in avoidance learning might be 
sourced to individual sensitivity to the negative approach scenarios, which specifically affects the capacity to 
learn from threat approach feedback.

Heightened negative subjective value might also relate to the development of an explicit avoidance strategy. 
That minority of participants who reported having used an explicit avoidance strategy throughout the task did 
have a more negative subjective evaluation of the proposed scenarios and showed better instrumental learning 
overall. However, most participants did not develop an explicit avoidance strategy, despite showing clear behavio-
ral signs of instrumental avoidance learning on average. In agreement with correlational results, we observed dif-
ferent sensitivity to positive (avoidance) and negative (approach) outcomes between these groups, as revealed by 
the proportion of response repetition. While both groups displayed higher than chance response repetition after 
successful avoidance trials (win-stay), only participants who developed an explicit avoidance strategy reduced 
their proportion of repetition after approach feedback (lose-switch). This confirms that better learners have a 
heightened capacity to take into account negative feedback to guide their decisions. This also opens the possibility 
that the group without an explicit avoidance strategy was driven mainly by an appetitive learning mechanism, 
given that they more often repeated the previous response after avoidance feedbacks, while being at chance level 
after approach feedbacks. Appetitive motivation facilitates behavior directed toward desirable outcomes, while 
aversive motivation pushes away from undesirable  ones68. Both negative reinforcement deriving from escaping 
threat and positive reinforcement from reaching safety are known to contribute to avoidance learning, but how 
to precisely disentangle these aversive and appetitive components is still a matter of  controversy1. In our task, 
sitting close to the individual that remained neutral might have been made attractive, due to the fact that the 
other individual turned angry, thus positively reinforcing behavior.

Despite the concordance of both behavioral and subjective data in suggesting that the appetitive component 
is the main source of learning in the group without an explicit strategy, stronger evidence would be needed to 
reach a firm conclusion on the nature of the motivational drives (appetitive/aversive) for learning in the two 
groups. On the one hand, it is questionable that one action option could have been interpreted as absolutely 
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“safe” or “dangerous”, as throughout the task, similarly to two-way shuttling box tasks e.g.,12,69, both responses 
are associated to negative/positive consequences, thanks to probability reversals. On the other hand, differently 
from two-way shuttling box tasks, within each block there is indeed the possibility for the subject to learn which 
is the “safe” and the “dangerous” option, opening for the contribution of both appetitive and aversive motivation 
to learning, which might shift as a function of the development of an explicit avoidance strategy. Still, at least 
another mechanism could explain learning. The response that leads to threat approach may be perceived as being 
“punished” by the sudden appearance of the angry individual, thus reducing its frequency at the advantage of 
the complementary response e.g.,70. Thus, we cannot completely exclude that neither positive nor negative rein-
forcement learning are at place, and that instead a different instrumental mechanism, i.e., social punishment, is 
involved. One way in which future studies could shed some light on these different possible motivational influ-
ences on learning in the present task, would be to measure facial electromyographic activity from the zygomatic 
and the corrugator muscles, to have a trial-by-trial measure of the perceived valence during feedback  phase71. This 
might provide a somehow more direct measure of feedback valuation, to complement post-hoc subjective ratings.

RL model comparisons shed light on another important source of individual difference in learning; the model 
incorporating a counterfactual learning module best accounted for CS-avoidance behaviors in all subjects, but 
more clearly for the group who developed an explicit avoidance strategy. Counterfactual learning, which refers to 
the ability to learn both from the outcomes of the chosen option as well as from forgone  outcomes39, has proven 
to be of importance in avoidance learning e.g.,40, as well as in value contextualization, enabling symmetrical 
reward and punishment  learning72. Counterfactual learning has been compared to model-based (as opposed 
to model-free) learning, due to the fact that the subject monitors all different possible action possibilities and 
updates option values according to their predicted  outcomes73. Interestingly, explicit task structural knowledge 
has been shown to increase participants use of model-based, rather than model-free, reinforcement  learning74. 
In the present task, subjects with an explicit strategy did efficiently integrate counterfactual information, thus 
behaving more similarly to what would be expected from an instructed group. We can speculate that, as the 
group with an explicit strategy rated more negatively all social threat scenarios, the overall choice context may 
have been evaluated as more negative for this group as compared to the other group of subjects, triggering value 
contextualization and symmetrical learning from both approach and avoidance feedback. It has to be noted that, 
compared to the simple model, the counterfactual model was slightly better at explaining the data of the group 
without an explicit strategy as well (small effect size), indicating that, at least for some participants, a representa-
tion of the model of the environment was present, even in absence of an explicit goal to avoid or of a reportable 
representation of the probabilistic structure of the task.

The current study is not without its limitations. First, most participants (n = 145, 119 without explicit strategy, 
26 with explicit strategy; see Figs. 2, 3) had a non-significant binomial test against chance level on the mean 
proportion of hits. This suggested that a large proportion of individuals did not exhibit a clear behavioral sign of 
learning on average throughout the task, which might somehow limit generalizability of the conclusions concern-
ing spontaneous avoidance learning in social contexts. However, as showed in supplementary analyses (Fig. S5 
and Table S6), this group of seemingly non-learners took in to account the previous feedback to adjust behavior. 
Accordingly, they repeated the response given at the previous trial significantly more often after avoidance than 
approach feedbacks on average. Such feedback-driven response repetition proves that they were sensitive to the 
most recent action outcome, as the rest of the group. This of course does not eliminate the fact that their average 
performance remained at chance level, replicating in a social context the well-known strong inter-individual 
variability in instrumental avoidance learning. The sources of individual differences in learning also relate to the 
second limitation of the study, which is the absence of strong correlations between questionnaires of affective/
personality measures and behavior or model parameters—there was indeed a small correlation between the 
Behavioral Inhibition System and the w parameter  (see75 for similar findings). This constrains, for the moment, 
the generalizability of our conclusions to pathological social avoidance, such as that seen in anxiety disorders or 
autism. A possible reason for this result might reside in the nature of our sample, which was selected from the 
general population, without targeting any specific clinical group, where variability in anxiety or autism scores 
are likely to be reduced. Another possible explanation resides in the very nature of the task, which consists of 
what is called “low-cost” avoidance, in that it only requires a button press, without, for example, either a physi-
cal effort, or a cost in terms of reward loss. While “low-cost” avoidance tasks have proven effective for studying 
CS-avoidance in humans e.g.,76, their capacity to account for pathological avoidance has been  criticized5,6,77, due 
to the fact that they do not take into account that pathological avoidance is often accompanied by an omission 
of reward (e.g., not attending a concert in order to avoid being surrounded by people), which renders it costly. 
We hope to have provided some insight on some of the sources of inter-individual variability and encourage 
future research to explore it further. Moreover, testing the present task on clinical groups to evaluate whether the 
inclusion of action costs is needed to tap into pathological mechanisms of active CS-avoidance.

Conclusion
The present experiment has demonstrated that the negative motivational value associated with anger expres-
sions suffices to drive the emergence of spontaneous instrumental defensive actions, aimed at CS-avoidance. In 
most subjects, instrumental active avoidance was independent from any form of explicit understanding of the 
action-outcome contingencies, suggesting that spontaneous instrumental defensive strategies might play a role 
in our ability to navigate our ever changing and complex social environment. In line with  Amodio78, the classical 
dual-process view in social cognition, which advocates that non-declarative (implicit) behaviors consist solely of 
automatic stimulus-stimulus or stimulus-response associations, and that instrumental processes only intervene 
to exert cognitive control, is probably too simplistic. Implicit behavioral tendencies, biases, and attitudes toward 
others are more likely the product of a multitude of learning processes, including instrumental learning, which 
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guarantee flexibility and adaptation to volatile  environments78. Our results further support that individual differ-
ences in active instrumental avoidance in social settings are strongly dependent on the subjective value attributed 
to threatening expressions, and in particular, to how we feel when we find ourselves in proximity of threatening 
individuals. The construction throughout life, for instance via direct experience or observation, of our unique 
representation of what others’ emotional expressions mean to us likely plays a role in shaping what we expect 
from those others, and ultimately drives the way we spontaneously navigate our social worlds.

Methods
Participants. 278 participants participated in the experiment. 64 participants were not included in the final 
sample after the application of the following exclusion criteria: (1) not having completed the task (n = 3); (2) hav-
ing reported problems with the task display on screen, in particular concerning a time delay between the display 
of the two halves of the main task scene (n = 43) or the fact that the green tick was not properly displayed on the 
chosen chair (n = 10) (see task section), or both problems together (n = 3); (3) declaring having been diagnosed 
with a neurological or psychiatric disease (n = 1); (4) having responded to less than 90% of trials in the allotted 
time (n = 1); (5) having anticipated more than 15% of the total of valid responses (response anticipation was 
defined as a response time inferior to 100 ms) (n = 3). The final sample included 214 participants (140 declared 
females, declared age: m = 34.9, sd = 13.2, min/max = 18/75, declared handedness: 191 right, 21 left, 2 ambidex-
trous) who had normal or corrected-to-normal vision and no history of neurological or psychiatric disorders. 
The experimental protocol was approved by the Comité d’Evaluation Ethique de Institut National de la Santé et 
de la Recherche Médicale (INSERM - IRB00003888 - N° 120-689bis) and was carried out in accordance with 
the Declaration of Helsinki. Participants provided informed consent and received a compensation for their par-
ticipation to the study. The mean payment was £11.13 per hour (average experiment duration was 37.2 min).

General procedure. Participants were recruited online via the Prolific platform (www. proli fic. ac). The 
experiment was coded in JavaScript, using the library jsPsych 6.1.079 and was hosted on Pavlovia’s servers (www. 
pavlo via. org). After providing their consent, participants filled in a short survey collecting their demographic 
information (gender, age, handedness and level of education) as well as the short version of the State Trait Anxi-
ety questionnaire (STAI-S)80. Following this initial phase, participants performed the reinforcement learning 
task (from now on “main task”), which lasted approximately 15 min, and was preceded by task instructions, and 
by a 1 min training session. At the end of the main task, participants answered several task-related questions (see 
Supplementary Material). The main task was followed by the subjective evaluation task, which began with task 
instructions and a 1 min training session. Participants were then debriefed regarding the post-test difficulty, the 
realistic aspect of the scene and the quality of the display. Finally, they filled in the trait scale of the short version 
of the State Trait Anxiety questionnaire (STAI-T)80, the Broad Autism Phenotype Questionnaire (BAP-Q)81 and 
the Behavioral Activation/Inhibition Scales (BAS/BIS)82.

Reinforcement learning task. The main task (Fig. 1) was adapted from previous  studies30–32.

Stimuli. Subjects were presented with a scene representing a waiting room with four chairs, where the two 
middle chairs were occupied by two individuals and the two outer chairs were empty (See Fig. 1). Each scene 
was the composite of one template female or male hemi-scene (photograph depicting either one female or one 
male sitting next to an empty chair) juxtaposed to its mirrored version, on which faces were superimposed. Ten 
(five males, five females) fixed pairs of identities (RadBound Faces  Database83) that were matched for gender as 
well as perceived trustworthiness and threat traits were  used32. Both neutral and angry expressions were used for 
the task, with angry expressions corresponding to the strongest level of intensity used in previous studies from 
our  lab31,32. The fixed pairs of identities as well as the identities’ position in the scene were counterbalanced and 
each specific scene was presented 15 times in a random order (with the constraint that one stimulus could not be 
presented more than twice in a raw). This resulted in 300 trials (2 sexes × 5 pairs × 2 positions × 15 repetitions).

Experimental procedure. Participants were instructed that the experiment consisted of a series of decisions, 
and that they had to indicate where they would prefer to sit in the waiting room, while maintaining fixation 
on the fixation cross throughout the trial. Participants were invited to make spontaneous free choices and were 
informed that there were no wrong choices. Each trial started with a grey screen, displayed for 500 ms, then a fix-
ation cross appeared for a time varying between 500 and 700 ms. Fixation’s position was in the middle of the two 
(to be presented) individuals’ faces, at the level of the eyes. After the fixation, the scene appeared and remained 
on the screen until a valid response (consisting in a left or right button press within the given time) was regis-
tered, or until a maximum time of 1500 ms, in the case of no response. If no response was registered, a message 
saying ‘TOO SLOW’ was displayed. To respond, participants used their keyboard, pressing “S” for sitting on the 
left chair or “L” for the right chair. After participant response, a visual mask consisting of a random permutation 
of the pixels of the previously presented scene was displayed for 200 ms, and feedback was given immediately 
after (500 ms). This feedback represented the same scene, with a green tick symbol superimposed on the chosen 
chair, indicating the participant’s position in the scene. Importantly, either the individual close to or far from the 
chosen chair changed expression from neutral to angry. Therefore, the feedback for the participant consisted in 
finding themselves seated far from (avoidance) or close to (approach) the angry individual. At each trial, one 
response (e.g., sit on the right chair) was associated with an 80% probability of avoidance in the feedback phase 
and to a 20% probability of approach. The other response (e.g., sitting on the left chair) was associated with the 
complementary probability (20% avoidance, 80% approach). Importantly, action-outcome probabilities were 
reversed on average every 25 trials, to ensure continuous goal-directed learning and to discourage habit forma-

http://www.prolific.ac
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tion. Accordingly, the 300 trials were divided into 12 blocks of different trial length, presented in a randomised 
order for each participant, sampling from the same uniform distribution (three blocks of 20 trials, three blocks 
of 24 trials, three blocks of 26 trials and three blocks of 30 trials). It should be noted that all action-outcome con-
tingencies were hidden to participants, who were never given the impression they were to learn anything and to 
whom neither emotions, nor approach/avoidance were ever mentioned. Pauses to allow participants to rest were 
introduced at the beginning of the 5th and 9th blocks. A training session was performed before the main experi-
ment to familiarize participants with the task. The training consisted of 2 separated sequences of 10 trials, using 
4 pairs of individuals (2 pairs of females), which were different from those used in the main experiment. During 
feedback, both individuals remained neutral. After the first 10 trials, participants were informed of their per-
centage of valid responses and were asked to do their best to maximize it if their score was below 80% accuracy.

Subjective evaluation task. Stimuli. In the reinforcement learning task, at each trial, participants re-
ceived feedback contingent upon their chosen action, consisting of either an avoidance scenario (i.e., green tick 
indicating their position in the scene far from the individual displaying anger) or an approach scenario (i.e., 
green tick close to the individual displaying anger). In the subjective evaluation task, we aimed at obtaining an 
explicit subjective evaluation of all possible feedback scenarios. We therefore presented stimuli consisting of the 
same waiting room scenes, with all the possible pairs of individuals, each displaying either a neutral or angry 
expression, with the green tick indicating participant’s position either far from (avoidance scenario) or close to 
(approach scenario) the angry individual. This resulted in 40 trials (10 pairs × 2 anger position × 2 participant’s 
position). While in the reinforcement learning task the respective position (i.e., left vs. right) of each actor in the 
scene was also randomized, here, as we were not interested in obtaining different subjective judgements depend-
ent upon actor position, we randomly assigned actors’ positions.

Experimental procedure. Each trial started with a grey screen displayed for 500 ms, then a fixation cross was 
superimposed on the upper center of the grey screen for a time varying between 800 and 1200 ms. Once the 
fixation cross disappeared, the scene was presented for 1000 ms, followed by a screen with a visual analog scale. 
Contrary to the main task, the fixation cross was not maintained during the presentation of the scene, in order 
to allow for free visual exploration. Participants were subsequently requested to indicate the degree to which they 
would have liked to find themselves in the situation depicted in the scene on a visual analog scale ranging from 
‘NOT AT ALL’ to ‘EXTREMELY’. To respond, participants had to click on their cursor and move it along the 
scale before validating their response using the “continue” button that appeared after they had moved the cursor. 
By clicking on the “continue” button, the participant ended the trial. A quick training session was performed 
before the post-test to familiarize participants with the task. The training session consisted of 4 trials, using 2 
pairs of individuals (1 pair of females), which were different from those used in the main experiment. The green 
tick was superimposed twice on the right chair and twice on the left chair. The orders of stimuli presentation and 
tick side were randomized.

Statistical analyses. Concerning the reinforcement learning task, the main dependent variable was the 
probability of “hits”, namely the proportion of trials in which participants choose to sit on the chair which 
maximized the probability of avoidance in the feedback phase over the total number of trials. The probability of 
response repetition, namely the proportion of trials in which participants repeated the same response given in 
the previous trial (trial n − 1), was also analyzed to further characterize learning.

Concerning the subjective evaluation task, the main dependent variable was the subjective evaluation of each 
scenario as indicated by participants’ response on a scale coded on a continuum between 0 and 100, correspond-
ing respectively to ‘NOT AT ALL’ and to ‘EXTREMELY’.

General mixed models (GLMs). All GLMs were run on R 4.0.4 (2021–02-15)84, using RStudio 1.3.109385 using 
the “glmer” function from the lme4 packag 86. We also used other R packages for handling  data87–89,89,90, for gen-
erating  plots91–93 and  tables94,95.

For all mixed models presented below, we took subjects as a random variable and kept a maximal random 
effect  structure96, by including all by-subject random intercepts and random slopes (where present) in the model. 
Where present, main effects and interactions including between-subjects variables where only included as fixed 
 effects96.

Reinforcement learning task: hits. To evaluate whether participants displayed any evidence of learning over the 
course of the entire task, we compared the probability of hits to a chance level of 0.5, by conducting a mixed 
logistic regression, with the probability of hits as a dependent variable and the intercept as a predictor measuring 
difference from  chance48.

To test learning in time within each block after a reversal of the action-outcome probability, we conducted 
a mixed logistic regression, with the probability of hits as a dependent variable and the hyperbole of the trial 
number as a within-subject independent variable (hyperbolic function: y = 1− 1/(1+ x) ). This analysis was 
restricted to the first 20 trials after each reversal since block lengths differed. Trial numbers were re-coded as 
ranging from 0 to 19, to have a meaningful intercept estimate (corresponding to the moment of probability 
reversal) and facilitate model fitting.

Reinforcement learning task: repetition. To investigate whether participants learned differently after approach or 
avoidance feedback, for each trial after the first trial of the experiment, we conducted a mixed logistic regression, 
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with the probability of repetition as a dependent variable and the feedback obtained at trial n − 1 (0 = approach, 
1 = avoidance) as a within-subject independent variable.

We also wanted to account for possible differences in the subjective evaluation of feedback scenes. As the 
subjective evaluation task provided us with an estimate of the subjective value that each subject attributed to 
each possible feedback seen in the main task, we paired real feedbacks obtained at each trial of the reinforcement 
learning task with the corresponding subjective value estimate given in the subjective evaluation task. Of note, 
we acknowledge that these subjective value estimates could not take into account possible variation of subjec-
tive value throughout the main task, as they were collected in a separate task, as explained in the methods. As 
of the second trial, we conducted a mixed logistic regression, with the probability of repetition as a dependent 
variable and the estimate of the subjective evaluation of the feedback obtained at trial n − 1 as a within-subject 
independent variable. Subjective ratings were re-coded as ranging from 0 to 1, by dividing them by 100, to 
facilitate model fit.

Subjective evaluation task. We conducted a mixed linear regression, with the subjective evaluation (0–100) as 
a dependent variable and the scenario (0 = approach, 1 = avoidance) as a within-subject independent variable.

Explicit versus non‑explicit avoidance strategy. Finally, to account for the presence of an explicit avoidance 
strategy, all previous models were also run with the addition of the main effect of strategy (0 = non-explicit, 
1 = explicit) as a between-subject variable as well as of the interaction of strategy with the other variables.

Reinforcement learning (RL) models. To further characterize learning, we ran variations of simple reinforce-
ment learning models, which try to estimate each action option’s expected reward (Q), in each choice context, in 
order to choose the action that maximizes  Q49,50.

In our task the context (or state) is always the same, thus the value for the chosen option (c) at trial t is updated 
with the following delta rule

where α is the learning rate and δc is the prediction error term for the chosen option, calculated as

where  Rc is the obtained reward. Reward coding was 1 for avoidance feedback, and 0 for approach feedback.
Due to the peculiarity of this task, where the action choice which maximizes reward (i.e., threat avoidance) 

remained the same over the course of an entire block before probability reversal, we chose to slightly complexify 
the base RL model, to account for the tendency to repeat actions previously performed (i.e., perseveration). To 
do so we adapted a model proposed by Miller and  colleagues51 and added, for each action option, a habit value 
H updated at each trial as follows

We acknowledge that, in our task, a true habit would probably not have the time to develop over the course 
of a block, therefore the αhab parameter can be considered as a measure of response perseverance, i.e., the simple 
tendency to repeat previously performed responses.

Q value and H value were then merged in a global action value (D) through the following formula

where w is a weighting parameter which tends to 1 when the D value is predominantly determined by response 
perseverance and tends to 0 when it is driven by goal-directed processes. In the model, Q and D values were 
initialized at 0.5 and H value at 0.

Subject choice behavior, i.e., the probability to choose one action a over the other action b, was modeled via 
a softmax function

with β being the inverse temperature parameter. β values tending to infinite make actions that differ in value to 
be selected with greater difference in probability. β values tending to zero render the action selection more and 
more equiprobable.

We were interested in knowing whether the learning was counterfactual, i.e., whether or not subjects updated 
both the value of the chosen and the unchosen options at each trial. We therefore compared a simple model, 
which did not update the value of the unchosen option after each choice

to counterfactual models, which we did in the following way

where δu,t is based on Ru,t = 1− Rc,t.

(1)Qt+1(c) = Qt(c)+ αδc,t

(2)δc,t = Rc,t −Qt(c)

(3)
{

Ht+1(c) = Ht(c)+ αhab(1−Ht(c))
Ht+1(u) = Ht(u)+ αhab(0−Ht(u))

(4)Dt(c, u) = wHt(c, u)+ (1− w) Qt(c, u)

(5)Pt(a) =
1

1+ e(Dt(b)−Dt(a))∗β

(6)Qt+1(u) = Qt(u)

(7)Qt+1(u) = Qt(u)+ αδu,t
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Model fitting, comparison, and simulation. Parameter optimization was conducted by minimizing the negative 
log-likelihood using Matlab’s fmincon  function97, initialized at starting points of 1 for the inverse temperature 
and 0.5 for the other parameters. To constrain parameter fitting toward plausible values, the following prior 
distribution were used to weight the negative log-likelihood during model fitting: (1) a gamma distribution 
with a shape parameter k = 1.2 and a scale parameter θ = 5, for the inverse temperature parameter and (2) a beta 
distribution with shape parameters α = 1.1 and β = 1.1 for all the other parameters. Using the optimal individual 
parameters, model estimates of action choice were generated, trial-by-trial, 100 times and averaged.

To check that models fit the data better than chance, we ran a Friedman  test98 on model log-likelihood to 
compare a random model, giving random choices (50% probability of choosing right or left), to the simple and 
the counterfactual models. We used Wilcoxon paired tests to further compare models and determine whether 
the simple or the counterfactual model best fit the data. We also tested the ability of each model to reproduce 
the real data, by running Spearman correlations between the mean proportion of hits in real and simulated data. 
Finally, for the winning model, we ran unpaired Wilcoxon tests to compare parameters between subjects with 
and without an explicit avoidance strategy.

Correlations between model parameters and subjective measures. Finally, we computed Spearman correlation 
between subject’s best fitting parameters for the winning model and questionnaire measures, to test whether 
instrumental avoidance learning was associated with affective or personality features. We also correlated model 
parameters with the mean subjective value attributed by each subject to approach and avoidance scenarios in the 
subjective evaluation task.

Data and code availability
All data and code are available at the https:// osf. io/ 7usfe/ online repository. For any further information, please 
contact Rocco Mennella.
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