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A multicohort geometric deep 
learning study of age dependent 
cortical and subcortical 
morphologic interactions for fluid 
intelligence prediction
Yunan Wu1*, Pierre Besson2, Emanuel A. Azcona1, S. Kathleen Bandt3, Todd B. Parrish2, 
Hans C. Breiter4,5 & Aggelos K. Katsaggelos1,2,6

The relationship of human brain structure to cognitive function is complex, and how this relationship 
differs between childhood and adulthood is poorly understood. One strong hypothesis suggests the 
cognitive function of Fluid Intelligence (Gf) is dependent on prefrontal cortex and parietal cortex. 
In this work, we developed a novel graph convolutional neural networks (gCNNs) for the analysis 
of localized anatomic shape and prediction of Gf. Morphologic information of the cortical ribbons 
and subcortical structures was extracted from T1-weighted MRIs within two independent cohorts, 
the Adolescent Brain Cognitive Development Study (ABCD; age: 9.93 ± 0.62 years) of children and 
the Human Connectome Project (HCP; age: 28.81 ± 3.70 years). Prediction combining cortical and 
subcortical surfaces together yielded the highest accuracy of Gf for both ABCD (R = 0.314) and 
HCP datasets (R = 0.454), outperforming the state-of-the-art prediction of Gf from any other brain 
measures in the literature. Across both datasets, the morphology of the amygdala, hippocampus, 
and nucleus accumbens, along with temporal, parietal and cingulate cortex consistently drove the 
prediction of Gf, suggesting a significant reframing of the relationship between brain morphology 
and Gf to include systems involved with reward/aversion processing, judgment and decision-making, 
motivation, and emotion.

Understanding the neural basis of intelligence is a longstanding research domain which has historically aimed at 
identifying the brain regions involved in various human behaviors, in particular, cognitive tasks. Pioneering work 
by Binet and Simon found that humans always behaved differently across a broad array of tasks, from naming 
objects to defining words, drawing pictures, and solving  analogies1. Spearman synthesized these observations 
into the hypothesis of a generalized intelligence factor, g, thus linking human behaviors to brain functions, 
which reflects abstract thinking and includes the ability to acquire knowledge, adapt to novelty, develop abstract 
models, and benefit from schooling and learning  experiences2. Further work by  Cattell3 split g into fluid intel-
ligence (Gf), which is the capacity to solve novel problems and abstract reasoning, and crystallized intelligence 
(Gc) which relates to accumulated  knowledge4. Although Gc and Gf are related and rapidly develop in child-
hood until adolescence, Gf reaches its steady state during the third decade of life prior to a delayed declination 
whereas Gc continues developing throughout the  lifespan5. Of these, Gf has been shown to positively correlate 
with a vast number of cognitive activities, and to be an important predictor of both educational and professional 
 success6. These high-stakes effects of Gf call for an improved understanding of its neural substrate, beginning 
with an understanding of its neuroanatomical underpinnings. However, how to find the relationship between 
brain morphology and Gf remains unclear.
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Previous work seeking to understand the neural substrates of Gf have focused on a broad array of neuroimag-
ing modalities and lesion models, each of which has its limitations. For example, studies with functional imaging 
of cognitive tasks, or of synchrony between resting state oscillations in blood-oxygen level dependent (BOLD) 
signal, have focused on fronto-parietal networks responsible for integrating sensory and executive functions in 
the form of the parieto-frontal integration theory (P-FIT)7. Alternatively, the work combining analysis of brain 
lesions and imaging have explored how multiple demand (MD) systems might contribute to  Gf8. Moreover, 
structural imaging (i.e., morphometry) independent of brain lesions has also evaluated the correlation between 
brain size and  Gf9 or evaluated the contribution of specific cortical areas and white matter fiber bundles to  Gf10, 
without a theoretical framework. Using these imaging methods, previous studies have identified associations 
between Gf and cortical morphology such as cortical thickness, cortical area, cortical volume, gyrification and 
gray matter  density10,11. However the relative contribution of subcortical structures was not investigated, nor 
was the relationship between subcortical and cortical brain regions outside of fronto-parietal networks, such as 
the temporal cortex, which has been implicated in some adaptive processes of insight-based problem  solving12.

How neural changes are associated with Gf throughout early life is important because it provides valuable 
information about brain maturation and aging processes, as well as provides insight into the physiological causes 
of cognitive impairment. Researchers found a strong age-related decline in Gf, which has been recently attributed 
to white matter differences in the frontal  cortex13. Furthermore, Kievit et al. suggested that these age-related 
changes were mediated by both gray matter volume and the anterior  forceps14. However, due to individual differ-
ences in the nervous system and complex age-related brain changes, there is no consensus on this issue. Recently, 
shape  analysis15 has shown promise in detecting structural differences across age and behavioral trait groups by 
analyzing surface geometrical properties. Crucially, these differences are not often detectable through volume 
changes or gray matter alterations. Thus, surface-based methods may be more sensitive to subtle brain changes 
related to human behavior and cognition  functions16. Moreover, neocortical enlargement depends primarily on 
growth of surface  area17, which makes cortical and subcortical surface measures important when considering sim-
ilarities across cohorts with significant age differences. Therefore, this study is going to develop a surface-based 
method to identify consistent and unique features of brain morphometry related to Gf in different age groups.

Given these considerations, and the dearth of research on both subcortical and cortical contributions to Gf 
as well as what is common across disparate age groups, the focus of our work was three-fold. First, we aimed to 
identify which brain regions and their morphometric measures were most predictive of Gf. Due to the challenges 
inherent in modeling all the relevant cortical morphologic features and the limited predictive power of these fea-
tures, we used a data-driven approach capable of identifying complex non-linear relationships, potentially across 
remote brain regions, and implicitly encompassing multiple morphometric features such as cortical thickness, 
cortical area and gyrification, as well as the shape of subcortical structures. The second aim of our study was to 
assess the contribution of the subcortical structures to Gf either alone or combined with cortical morphology. 
The third aim specifically focused on investigating how age, as a surrogate for developmental stage, might be 
involved in the prediction of Gf. For these purposes, we developed a novel geometric deep learning method 
capable of extracting relevant cortical and subcortical morphological features. Our method was data-driven and 
relied on cortical and subcortical surface mesh models, extracted from automated MRI-to-mesh preprocess-
ing pipelines, as an input to graph convolutional neural networks (gCNNs) for inferring Gf. Using a six-fold 
cross-validation scheme on two large independent datasets of different age groups, we evaluated the robustness 
of our method and the reproducibility of the predictions across two cohorts with distinct age ranges. Finally, a 
gradient-based backpropagation method allowed us to map the most predictive cortical and subcortical regions 
involved in the prediction of Gf.

Results
This study proposed a new deep learning model using residual gCNNs to predict Gf from cortical and subcorti-
cal surface meshes on two large datasets of two different age groups. The performances of three types of gCNNs 
were evaluated for each dataset, using either: (1) only the inner and outer cortical surface nodes (i.e., Cor), (2) 
only the subcortical surface nodes (i.e., Sub), or (3) both inner and outer cortical surface and subcortical surface 
nodes together (i.e., All). Specifically, the inner and outer cortical surfaces refer to the white and pial surfaces 
derived from FreeSurfer. The mean squared error (MSE) and the correlation coefficient (R) were calculated to 
assess model performances, which refer to the average squared difference between the predicted Gf and the 
true Gf, and the strength of a linear relationship between these two values respectively. In addition, to provide 
interpretability to our model performance, we applied a gradient backpropagation-based visualization method 
(grad-CAM)18 to visualize the brain areas most relevant to Gf prediction and furthermore, calculated spatial 
correlations between these maps generated by different models.

ABCD dataset fluid intelligence predictions. Three models were used based on cortical morphom-
etry, subcortical morphometry, and their combination to predict Gf on the ABCD testing dataset, across six 
folds. Their comparative performance is shown in Table 1, and Fig. 1A–C show the distribution of predictions 
for each model. The predictions of all three models were able to significantly correlate with the true fluid intel-
ligence scores. From the result, performance was significantly improved when combining surface data from 
both cortical and subcortical surfaces (Fig. 1D), which produced an MSE = 0.919 and R = 0.314 [95% confidence 
interval (CI) 0.308–0.326], followed by using only cortical surface data with an MSE = 0.927 and R = 0.303 (95% 
CI 0.290–0.309), and only subcortical surface data with an MSE = 0.947 and R = 0.265 (95% CI 0.263–0.281).

HCP dataset fluid intelligence predictions. The predictive performance for Gf using the HCP testing 
dataset (Table 2, Fig. 2A–C) has closely approximated findings from the ABCD dataset). Specifically, use of both 
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Table 1.  Model performance on ABCD dataset. The models were trained with six-fold nested cross-validation 
and the predictions were evaluated on the outer testing set of each fold (N = 1345). Time represents the training 
time of each fold. a All: use both cortical and subcortical nodes. bCor: cortical nodes only. cSub: subcortical 
nodes only. dR: the correlation coefficient measures the linear relationship between the predicted score and 
the ground truth. eMSE: mean squared error between the predicted score and the ground truth. fSd: Standard 
deviation.

ABCD 
dataset

Testing set

Alla Corb Subc

Rd MSEe Time(s) R MSE Time(s) R MSE Time(s)

Fold 1 0.316 0.913 8143 0.300 0.872 3900 0.265 0.917 1389

Fold 2 0.324 0.911 8290 0.306 0.964 4638 0.281 0.894 1897

Fold 3 0.328 0.946 8452 0.306 0.957 4589 0.279 0.989 1693

Fold 4 0.310 0.913 8340 0.299 0.872 4203 0.275 0.948 1520

Fold 5 0.320 0.908 8502 0.301 0.959 4739 0.259 0.969 1741

Fold 6 0.306 0.957 8601 0.283 0.880 4667 0.271 0.962 1642

Mean ±  Sdf 0.314 ± 0.008 0.919 ± 0.211 8388 ± 164 0.303 ± 0.008 0.927 ± 0.047 4456 ± 331 0.265 ± 0.008 0.947 ± 0.035 1647 ± 177

Figure 1.  The statistical model performance of predicting fluid intelligence score on ABCD testing dataset. (A) 
All: training with all cortical and subcortical structures. (B) Cortical: training with only cortical structures. (C) 
Subcortical: training with only subcortical structures. Significant correlations are found between the predicted 
Gf score and the ground truth among testing dataset using all structures (A), cortical only (B) and subcortical 
only (C) respectively. The correlation (R) and p-value of the predicted score vs. the ground truth scores are 
given. The dashed line shows 95% prediction intervals for a new observation and the shaded regions imply the 
95% confidence intervals for the prediction population. (D) Boxplots compare R scores over all three different 
datasets across all five folds. The red dots correspond to the mean R score generated from all five folds. (n.s.) 
Non significant, *p < 0.05, **p < 0.01, ***p < 0.001.
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Table 2.  Model performance on HCP dataset. The models were trained with six-fold nested cross-validation 
and the predictions were evaluated on the outer testing set of each fold (N = 183). Time represents the training 
time of each fold. a All: use both cortical and subcortical nodes. bCor: cortical nodes only. cSub: subcortical 
nodes only. dR: the correlation coefficient measures the linear relationship between the predicted score and 
the ground truth. eMSE: mean squared error between the predicted score and the ground truth. fSd: Standard 
deviation.

HCP dataset

Testing set

Alla Corb Subc

Rd MSEe Time(s) R MSE Time(s) R MSE Time(s)

Fold 1 0.507 0.809 1969 0.445 0.870 1084 0.197 1.071 540

Fold 2 0.465 0.915 1763 0.405 0.933 997 0.122 1.055 552

Fold 3 0.463 0.889 1856 0.364 0.921 1165 0.105 1.140 531

Fold 4 0.382 0.811 2041 0.343 1.033 1132 0.081 0.852 490

Fold 5 0.404 0.906 1974 0.333 0.774 1057 0.098 0.938 558

Fold 6 0.488 0.677 2845 0.444 0.786 1135 0.207 1.030 533

Mean ± Sd f 0.454 ± 0.049 0.834 ± 0.090 1908 ± 390 0.381 ± 0.050 0.886 ± 0.098 1095 ± 62 0.155 ± 0.054 1.014 ± 0.103 534 ± 24

Figure 2.  The statistical model performance of predicting fluid intelligence score on HCP testing dataset. (A) 
All: training with all cortical and subcortical structures. (B) Cortical: training with only cortical structures. (C) 
Subcortical: training with only subcortical structures. Significant correlations are found between the predicted 
Gf score and the ground truth among testing dataset using all structures (A), cortical only (B) and subcortical 
only (C) respectively. The correlation (R) and p-value of the predicted score vs. the ground truth scores are 
given. The dashed line shows 95% prediction intervals for a new observation and the shaded regions imply the 
95% confidence intervals for the prediction population. (D) Boxplots compare R scores over all three different 
datasets across all five folds. The red dots correspond to the mean R score generated from all five folds. (n.s.) 
Non significant, *p < 0.05, **p < 0.01, ***p < 0.001.
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cortical and subcortical surfaces together in the HCP dataset achieved the best performance with an MSE = 0.834 
[95% confidence interval (CI) 0.740–0.929] and R = 0.454 (95% CI 0.400–0.503), significantly outperformed the 
other two (Fig. 2D). This performance was followed by using only the cortical surface data for an MSE = 0.886 
(95% CI 0.784–0.989) and R = 0.381 (95% CI 0.337–0.441) and using only the subcortical surface data alone for 
an MSE = 1.014 (95% CI 0.906–1.122) and R = 0.155 (95% CI 0.098–0.192). Notably, the overall performance 
for Gf prediction using both cortical and subcortical structures was better on the HCP dataset compared to the 
ABCD dataset, whereas the opposite result was obtained if only subcortical structures were used.

Mapping interpretation. Figures  3A–D and 4A–D show the average Grad-CAM maps of the test sets 
from both the ABCD and HCP datasets that highlight the brain regions involved in the accurate prediction 
of Gf within each dataset. Figures 3A,C and 4A,C demonstrate that cortical structures play a significant role 
along with subcortical structures in the prediction of Gf score, which is in keeping with our statistical results. 
The topographic distribution of relevant brain structures is largely conserved with particular weight placed on 
the left temporal and parietal lobes in the prediction of Gf across both datasets. Interestingly, the morphology 
of the left temporal lobe was weighted more heavily in the prediction using the HCP dataset whereas the left 
parietal lobe was weighted more heavily in the prediction using the ABCD dataset. Other cortical structures 
including the bilateral paracentral lobules and posterior cingulate gyri were also relevant to the prediction but 
to a lesser degree. Subcortical structures were more salient in the prediction of Gf from the ABCD dataset and 
less contributory for the HCP dataset (Tables 1, 2). These subcortical data (Figs. 3B,D, 4B,D) strongly implicate 
the nucleus accumbens (NAc) and ventral striatum with multiple foci in the pallidum and basal ganglia, along 
with the amygdala-hippocampus in both datasets. Results from the models using only cortical surface data or 
only subcortical surface data were similar in distribution but variable in degree when compared to results from 
the model using both cortical and subcortical surface data together as shown in Supplementary Table S1. Specifi-
cally, for the ABCD dataset, the spatial correlation between the cortical maps generated from models using both 
structures and using only cortical structure was 0.785 (95% CI 0.775–0.794) and the correlation of the subcorti-

Figure 3.  Grad-CAM visualizations to map the brain regions involved in the predictions of fluid intelligence 
on the ABCD dataset. (A,B) All: training with all cortical and subcortical structures. (C) Only-cortical: training 
with only cortical structures. (D) Only-subcortical: training with only subcortical structures. The red region 
corresponds to more informative for the Gf prediction. d1, d2: the intensity range of the color map, (A) and (B) 
share the same range.
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cal maps was 0.601 (95% CI 0.588–0.614), while for the HCP dataset, the correlation for its cortical maps was 
higher (0.814, 0.802–0.825) but the correlation of the subcortical maps was lower (0.553, 0.509–0.596).

Robustness of mappings. Using a six-fold cross-validation, six Grad-CAM maps were generated for 
each input on the testing datasets. Spatial correlations were calculated within-cohort and across-cohort on the 
ABCD dataset and HCP dataset to show the robustness of the brain areas involved in the prediction of Gf as 
shown in Supplementary Table S2. More details of the spatial mapping correlations can be found in Supplemen-
tary Fig. S1. Within-cohort mapping correlations ranged from 0.809 to 0.996, where cortical structures in the 
within-cohort showed higher correlations than subcortical structures on both HCP (Cortex: R = 0.957; 95% CI 
0.932–0.965, Subcortical structures: R = 0.809; 95% CI 0.748–0.869) and ABCD datasets (Cortex: R = 0.970; 95% 
CI 0.961–0.980, Subcortical structures: R = 0.952; 95% CI 0.940–0.964). The across-cohort mapping correlations 
ranged from 0.721 to 0.814 showing a highly overlapping distribution of important brain areas in prediction of 
Gf across both datasets.

Discussion
This study utilized a novel deep learning model using gCNNs with residual connections to infer Gf from cortical 
and subcortical surface meshes that integrated multiple morphometric features such as cortical thickness, corti-
cal area and gyrification, as well the shape of subcortical structures. It had three aims, to (1) identify the most 
predictive brain regions involved in predicting Gf, (2) assess the contribution of the subcortical structures to Gf 
either alone or combined with cortical morphology, and (3) investigate how age, as a surrogate for developmental 
stage, might be involved in the prediction of Gf. Using two large and independent datasets of pre-adolescent 
(ABCD project) and young adults (HCP dataset), and a nested six-fold cross-validation scheme, this analysis 
predicted Gf with significant correlations (R = 0.31–0.45). Across both datasets, as shown in Figs. 3 and 4, the 
morphology of the left NAc, amygdala and hippocampus, left temporal and parietal cortex as well as the bilateral 

Figure 4.  Grad-CAM visualizations to map the brain regions involved in the predictions of fluid intelligence 
on the HCP dataset. (A,B) All: training with all cortical and subcortical structures. (C) Only-cortical: training 
with only cortical structures. (D) Only-subcortical: training with only subcortical structures. The red region 
corresponds to more informative for the Gf prediction. d1, d2: the intensity range of the color map, (A) and (B) 
share the same range.
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cingulate cortices consistently drove the prediction of Gf. Given the novelty of these findings, particularly related 
to the involvement of the NAc, amygdala and temporal cortex, localization was confirmed using grad-CAM to 
confirm reproducibility across subcortical surfaces and gyral folds.

Divergence between the datasets was observed whereby the left hippocampus and amygdala, left NAc, and 
multiple foci in the bilateral basal ganglia also played a salient role in the prediction of Gf in the pre-adolescent 
ABCD cohort. In this dataset, the subcortical structures alone produced an R = 0.27, achieving comparable results 
with cortical structures alone of an R = 0.3, which indicates the important role of subcortical structures for Gf 
predictions in ABCD cohorts Together, subcortical and cortical structures produced an R = 0.31. Conversely 
for the young adult HCP cohort, cortical structures alone produced an R = 0.4, which outperformed subcortical 
structures alone of an R = 0.1, indicating a major role cortical structures played for adult HCP cohorts when 
predicted Gf. Likewise, using subcortical and cortical structures together yielded the best performance with 
R = 0.45. Analysis of the HCP cohort alone identified involvement of the right rectus gyrus in the prediction of 
Gf which was not seen in the ABCD cohort. In both datasets, significantly better predictions were obtained by 
combining the cortical and subcortical surfaces suggesting complex, non-linear relationships across remote brain 
regions at play in Gf prediction. In addition, a substantially larger contribution from subcortical brain structures 
was identified in the pre-adolescent ABCD cohort compared to the young adult HCP cohort. The finding was in 
consistent with the results in Supplementary Table S1 that the spatial correlation between subcortical structures 
was higher on the ABCD dataset (R = 0.60) than on the HCP dataset (0.55), indicating the model trained on 
subcortical structures alone was more robust for the pre-adolescent ABCD cohort, and therefore more depend-
ent on subcortical structures than the HCP cohort.

Predictive models of fluid intelligence. Gf refers to the ability to solve novel reasoning problems, which 
is believed to be independent of experience and education and, as such, believed to be biologically grounded 
in  neurodevelopment19. Previous findings have reported an age-related performance in Gf, peaking in late ado-
lescence and declining in  adulthood20. In this study, we included two datasets of subjects at distinct phases of 
cognitive maturation. A younger pre-adolescent cohort, the ABCD dataset, included children from 9 to 11 years, 
an age at which fluid intelligence has not yet reached its putative maximum. In this cohort, we predicted Gf with 
R = 0.328, which, to our knowledge, improves the prediction accuracy so far reported using this  dataset21–24. It 
is challenging to predict Gf on children because their brains are not yet mature. As shown in Table 3, previous 
ABCD studies reported very weak model performances in Gf predictions (R = 0.01–0.18). Most previous stud-
ies manually extracted features on MRIs and applied machine learning methods to make the Gf prediction. For 
example, using Kernel Ridge Regression classifiers and CNNs, Mihalik et al. used manually extracted voxel-wise 
brain features (as opposed to automated morphometric analysis) on the ABCD dataset and predicted residual-
ized Gf with an R = 0.03121, while Li et al. used XGBoost classifiers on brain volumes and cortical curvatures to 
predict Gf with an R = 0.1822. A recent study developed a fusion deep learning model trained directly on images 
to predict Gf that combined the slicing features from a 2D CNN with volumetric features from a 3D CNN, 
achieving an R = 0.125. Our work substantially builds on these ground-breaking reports, while also identifying 
brain regions, specifically the amygdala and NAc, which has not previously been reported to be involved in Gf.

A larger number of studies have attempted to predict fluid intelligence using the young adult HCP dataset. It is 
also challenging because the age of subjects in the HCP dataset ranges from 22 to 35 years old, which corresponds 
to a different maturational phase when fluid intelligence is close to its full  potential26. To our knowledge, all 
previous studies predicting fluid intelligence in the HCP dataset have done so using functional MRI (fMRI)27–31. 
Using functional connectivity analysis of task-based fMRI (FC), Greene et al. reached an R = 0.1727. Combining 
FC with resting-state fMRI (rs-fMRI), Elliott et al. obtained an R = 0.32528. Jiang et al. integrated multi-task FC 
features, applying partial least square regression method to improve the accuracy to an R = 0.40929. Our cur-
rent work is the first to predict Gf on T1 weighted anatomic MRI data alone using HCP dataset, without any 
behavioral or functional imaging data and it compares favorably with these previously reported state-of-the-art 

Table 3.  Comparisons of the model with the state of the art. a R: the correlation coefficient measures a linear 
relationship between the predicted score and the ground truth.

Method Model Dataset Size (n) Results

Jiang et al.29 Task-induced functional connectivity (FC) features + partial least square (PLS) 
regression HCP S500 463 Ra = 0.409

Greene et al.27 Task-induced FC + connectome-based predictive modeling (CPM) HCP S500 515 R = 0.325

Elliott et al.28 General functional connectivity + global signal regression (GSR) HCP S1200 1043 R = 0.40

He et al.30 FC + fully-connected NN HCP S1200 419 R = 0.31

He et al.30 FC features + GNNs HCP S1200 419 R = 0.15

Pervaiz et al.31 Correlation-based FC using Riemannian geometry + data driven parcellation HCP S1200 1093 R = 0.20

Mihalik et al.21 Extracted brain features + kernel ridge regression/CNN ABCD 8669 R = 0.031

Li et al.22 Extracted brain features + XGBoost ABCD 8669 R = 0.18

Saha et al.25 2D/3D Fusion CNN ABCD 8669 R = 0.1

Our method Surface information on cortical and subcortical structures + gCNNs
ABCD 8070 R = 0.314

HCP S1200 1097 R = 0.454
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functional imaging methods, by achieving an R = 0.454. Although most of the studies did not share their codes 
making it hard to have direct comparisons with them, by comparing results using the same metric on the same 
problem, we were able to show our method was competitive and prominent. Particularly, it suggests there may 
be advantages from shape mesh representations specific to brain morphometric analysis, boosting performance 
relative to traditional methods. Our results strongly support an association between brain morphometry and 
 Gf11. Moreover, we found that this association was strengthened when both cortical and subcortical structures’ 
shapes informed our gCNNs, underpinning the interdependencies across remote brain regions that in our review 
of the literature has not previously been reported.

Overall, our surface-based gCNNs used in this study have several implications for future research. First, 
modeling brain surfaces as input data for gCNNs training reduces the sensitivity of MRI data to different scanner 
manufacturers, offering good generalizability to other MRI datasets. Second, using the coordinates of the surfaces 
as input features for training massively reduces the input dimension, which saves training time and computa-
tions. Third, using a surface-based approach to CNN learning offers the potential to map identified relationships 
between neurocognition and brain anatomy using grad-CAM for visualization. Finally, we made our codes and 
model weights available so that future researchers can easily compare the performance of their models with ours.

Cortical and subcortical regions involved in the prediction of fluid intelligence. As shown in 
Figs. 3A–D and 4A–D, the degree of involvement from the temporal, parietal, and cingulate cortices, as revealed 
by Grad-CAMs, was highly reproducible across folds and displayed remarkable similarities between the two 
independent datasets, this finding was further supported by the strong spatial correlations calculated across-
cohortly between two datasets in Supplementary Table S2. Specific cortical regions for both datasets included 
the left posterior middle and inferior temporal gyri as well as left basal temporal cortex, left temporo-parietal 
junction at the posterior aspect of the Sylvian fissure, left posterior cingulate, left interhemispheric paracentral 
lobule and the right cingulate region. At the cortical level, the only differentiating region between the two data-
sets was the right rectus gyrus, in which morphometry predicted Gf in the HCP dataset but not in the ABCD 
dataset. These morphometric findings regarding the temporal, parietal, and cingulate cortices adds complexity 
to the current framework for understanding Gf, which has mainly focused on involvement of the fronto-parietal 
networks’ role in combining sensory and executive  information32 as well as parieto-frontal integration theory 
(P-FIT)7,8. The fact that the temporal, parietal, and cingulate cortices were observed to drive Gf prediction across 
two independent cohorts raises many questions regarding the strong emphasis placed on the role of the fronto-
parietal cortices in Gf by prior studies.

Prior work investigating the neuroanatomic substrate of Gf has identified associations between widespread 
cortical areas, but relatively few relationships have been reported with subcortical structures. The subcortical 
structure that has previously been reported to have the strongest association with Gf is the hippocampus. Raz 
et al. reported smaller hippocampal volume being associated with  Gf33 while Amat et al. reported smaller hip-
pocampal volume being associated with full-scale intelligence quotient (IQ) and IQ  subscales34. Others reported 
hippocampal volume predicting Gf only in musically trained  people35, and the volumes of hippocampal subfields 
being more relevant for Gf than working  memory36, even though working memory has been linked to  Gf6. Our 
current findings add to this prior work, particularly in the context of improved Gf prediction resulting from 
combination of subcortical regions, including the hippocampus, with cortical regions. This work reflects but 
does not replicate previous reports of an association between Gf and rs-fMRI connectivity between the right 

Figure 5.  The model architecture. The model contains a pre-convolutional layer, four residual blocks, and a 
post residual block, followed by a fully connected layer. Each residual block has two subblocks, each with a batch 
normalization layer, a ReLU activation function, and a convolutional layer. Each residual block is followed by a 
maxpooling layer to downsample the features. Here, N is the batch size, |V | is the number of vertices, and F is 
the number of features.
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hippocampus and medial prefrontal  cortex37. Our study further indicates how important it is to consider hip-
pocampus morphometry in the context of the morphometry of other subcortical regions, particularly those 
with minimal association to Gf in the literature, that also have been linked to other aspects of cognitive sci-
ence, such as reward processing in judgment and decision-making as well as emotion regulation (e.g., NAc and 
amygdala)11,38–41.

A relatively small number of studies have linked Gf to morphometric measures of the basal ganglia, including 
the caudate and  NAc41, or suggested that Gf can be segregated from Gc based on NAc  volume42. Our study adds 
to these studies by identifying involvement of the bilateral NAc in the prediction of Gf in the pre-adolescent 
ABCD cohort, and, to a lesser degree, the young adult HCP cohort. The NAc has been a fundamental target of 
social reward studies and neuroeconomics, with a consensus sentiment that it is a core region for the judgment 
of value that is fundamental for decision-making43. In this context, the NAc has also been considered important 
for allocation of effort, as with effortful cognitive tasks and  motivation44, and has been implicated in “grit” or the 
ability to persevere in a motivated fashion under  adversity39. The NAc is a critical target of dopaminergic cells in 
the  brainstem43, that make it important for motivated behavior, and suggest it would be important for allocating 
effort to the solution of novel reasoning problems that define Gf.

Related to the function of motivation, and heavily interconnected with the  NAc44 the amygdala has been 
considered a core region for emotion regulation, such as the experience and control of  fear40. To date, we cannot 
find any studies in the literature that implicate the amygdala with Gf, despite multiple studies implicating other 
regions with Gf that are contiguous with the amygdala (e.g., hippocampus) or significantly interconnected with 
it (e.g., NAc). Gf has been implicated with connectivity related to the uncinate fasciculus, a white matter bundle 
that connects the amygdala and anterior temporal cortex with frontal  regions45, but not directly connected to 
amygdala morphometry. Our current findings across two independent cohorts of amygdala morphometry pre-
dicting Gf, might be consistent with a role in emotion regulation facilitating the solution of novel problems and 
adapting learning to new circumstances.

In parallel with considering the location of morphometric changes observed in this study, it is important to 
consider the complexity involved with morphometry as a field, including the number of independent features 
measured by voxel-based morphometry, cortical thickness, and  volumetrics10,46,47. The analysis of the specific 
contributions of cortical thickness, cortical area and gyrification to Gf can reveal large topological variations 
depending on the cortical morphometry employed and resulting in sometimes contradictory results that sug-
gest limitations to the specificity of each measurement  individually11,48. Using a data-driven approach which is 
agnostic to the individual morphologic features of the brain’s shape, the approach used in this study identified 
robust and well-localized involvement of both cortical and subcortical regions. The high spatial correlations of 
the within-cohort and across-cohort mappings in Supplementary Table S2 show the robustness of our models 
across different datasets. Although the exact nature of the inferred morphometric features is not known using this 
approach, the network has the ability to identify interactions across individual morphologic features including 
cortical thickness, cortical area and gyrification, as well as to integrate features related to the shape of subcortical 
structures in its learning process. It can also take into account subtle and non-linear inter-regional interactions 
that contribute significantly to an individual’s Gf. Multiple brain regions previously reported in the literature 
using individual morphologic feature analysis were not revealed to play a role in the prediction of Gf using the 
current approach. One explanation for this is that our method integrates multi-dimensional interactions across 
individual morphologic features into its prediction, and the mapped results identified the most relevant brain 
regions taking these interactions into account.

Differences in topographic prediction of Gf across age groups. Gf increases rapidly from birth 
through late adolescence, when it reaches a plateau which is sustained through the third decade of life, followed 
by a slow decay over the remaining  lifespan26. This trajectory parallels that of gray matter pruning in the cortex, 
which is much more pronounced in pre-adolescent children (e.g., ABCD cohort) relative to young adults (HCP 
cohort). Throughout adolescence, a strong relationship between cortical and subcortical development has been 
noted with cognitive  performance49. Stress and emotional strain from adverse familial, educational, and social 
events over childhood and adolescence can also modulate the rate of growth in  Gf50. One might thus expect 
larger inter-subject variability in a younger population when Gf is still in its developmental phase rather than in 
a young adult population. Our results could be consistent with this interpretation in that we achieved a higher 
R in predicting Gf for young adults (HCP cohort) relative to pre-adolescent children (ABCD cohort). At the 
same time, the cortical brain regions involved in the prediction of Gf remained consistent across age groups as 
revealed by grad-CAM visualization, despite the differences in predictive accuracy. Two other issues also should 
be noted. Namely, that neurodevelopment impacts the capacity to modulate cognitive behaviors important for 
 Gf51,52. Furthermore, subjects from the HCP dataset were all healthy adults while the ABCD dataset included 
a cross-section of children including those with a broad array of risk factors for developing mental health and 
addictive disorders, which can impact Gf. Differences in the discrepancy in accuracy across datasets likely rep-
resents contributions from a combination of the brain’s developmental trajectory as well as potential cognitive 
vulnerabilities across the health  spectrum53,54.

Between these two cohorts, our results showed that subcortical structures played a more prominent role in 
the prediction of Gf in pre-adolescent children than in young adults. Across both cohorts, only the head of the 
left hippocampus and the left amygdala consistently contributed to the prediction of Gf. For the younger subjects 
(ABCD cohort), the right hippocampus and amygdala were also important for the prediction of Gf, along with the 
left caudate, NAc, and pallidum. The observation of bilateral hippocampi with the ABCD cohort is consistent with 
suggestions that working memory may be particularly important for Gf in  children55. In the developing brain, 
associations between fluid reasoning and subcortical shape have been reported to be widespread, encompassing 
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the bilateral putamen, pallidum and caudate, consistent with our  findings56. However, our findings involving the 
left NAc and bilateral striatum are not consistent with other reports of asymmetric right-sided striatal dominance 
in younger individuals compared to older  individuals57. Lastly, it warrants noting that medial temporal structures 
including the amygdala and hippocampus together with the striatum have strong connections to frontal and 
cingulate  cortices58, as well as corticostriatal  circuits59. Through such connections, medial temporal structures 
and the striatum have been implicated with classically frontal and parietal tasks including executive  function60 
and context  coding61, which are important processes for adaptation to novelty at play in Gf.

Our study has some limitations. First, while training time is greatly reduced using surface-based gCNNs, it 
takes now more time to preprocess and convert brain images to graphs using FreeSurfer than before. Some auto-
matic mesh-generation pipelines have been  developed62, so it would be interesting to apply them to our model 
in the future to have an end-to-end workflow. Second, we predicted the raw fluid intelligence scores without 
adjusting for any confounding factors, such as gender, education, and scanner platform. However, although the 
cross-validation method was used to avoid bias in the dataset, the predictions could still be affected by potential 
confounding factors. Future work to train models on residualized Gf scores and test the model on additional 
dataset would better demonstrate the generalization of our model. Finally, although Grad-CAM offers a pos-
sibility to inspect relevant brain regions for our model’s prediction of Gf, it is challenging to validate this result 
without adequate human  verification63. Despite that, we found that the within-cohort and across-cohort Grad-
CAM maps were highly correlated, demonstrating the robustness of the model to rely on the same brain areas 
to predict Gf. Future work could consider retraining the model on data with artificial ’lesions’ to validate our 
findings. Specifically, we expect that if our model depends on the information from specific brain regions, we 
should observe a deterioration in the new model’s performance in their absence. Furthermore, given our work’s 
focus on brain shape, it will be important to consider how to reconcile our findings with previously reported 
analyses of brain function in future investigations, e.g., as defined by functional connectivity analysis. One 
alternative would be using spatial gradients of functional connectivity to predict Gf, such as spatial independent 
component maps of resting-state activity. Another possibility is combining spatial maps of brain function and 
 structure64 to predict behavior.

In conclusion, this study shows significant accuracy in the prediction of Gf across two independent datasets 
using a surface-based gCNN approach on T1 weighted brain MRI data. Across two independent datasets, this 
study observed that the left NAc, amygdala and hippocampus, left temporal and parietal cortex, and bilateral 
cingulate morphometry consistently drove the prediction of Gf. Subcortical contributions appeared to be more 
important for the younger cohort of the two studies, which involved latency stage children (i.e., ABCD cohort) 
as opposed to late adolescent/young adult subjects (i.e., HCP cohort). The novelty of the amygdala finding and 
the extensive involvement of subcortical regions that have traditionally been considered reward circuits points 
to a broader framework for the function of Gf.

Materials and methods
HCP and ABCD dataset. Brain MRI and neurocognitive data from two publicly available datasets were 
used independently in this work: the Human Connectome Project (HCP) S1200 data release and the Adoles-
cent Brain Cognitive Development Study (ABCD) 2.0  release54,65. The HCP dataset consists of neurobehavioral 
measurements and MRI scans from 1097 healthy subjects aged between 22 to 35 years. Subjects were defined 
as healthy in the absence of diagnosed neurological or psychological conditions. All subjects were scanned on 
a custom Siemens 3 T Connectome Skyra at Washington University using a standard 32-channel Siemens head 
coil. The ABCD dataset consists of neurobehavioral measurements and MRI scans from children aged between 9 
and 11 years. Subjects from across the United States with diverse health, socioeconomic and ethnic backgrounds 
were included. Brain MRI data were acquired from three different 3 T scanner platforms: Siemens Prisma, Gen-
eral Electric 750 and Phillips. Further details pertaining to the included subjects, data collection parameters 
and preprocessing steps can be found on the HCP  website54 and the ABCD  website65. Minimally preprocessed 
T1-weighted MRI scans were obtained from both databases.

In addition to brain MRI data, Gf scores, measured by the NIH Toolbox Neurocognition battery were col-
lected. Specifically, the “nihtbx_fluidcomp_uncorrected” variable was included from the ABCD dataset and the 
“CogFluidComp_Unadj” variable was included from the HCP dataset. We chose the raw Gf scores because previ-
ous studies have proved that the residualized scores are actually a weakened predictor of intelligence that hinders 
modeling the covariance between the residual factors and the image-based  features21,66. This Toolbox Fluid 
Cognition Composite score was computed by the average of the raw scores from six measures of fluid abilities 
(the Toolbox Dimensional Change Card Sort Test, the Toolbox Flanker Inhibitory Control and Attention Test, 
the Toolbox Picture Sequence Memory Test, the Toolbox List Sorting Working Memory Test, and the Toolbox 
Pattern Comparison Processing Speed Test). The raw Gf scores from two datasets were quantile normalized at 
first in order to assume the Gaussian distribution of each dataset. Quantile normalization was realized by sorting 
the scores of each subject from low to high and replacing them with a random standard Gaussian distribution 
(i.e., mean = 0 and a standard deviation = 1), which was also sorted from low to high. The characteristics of two 
datasets are summarized in Table 4.

MRI data preprocessing. For each subject, inner cortical surfaces (i.e., modeling the interface between 
gray and white matter) and outer cortical surfaces (i.e., modeling the cerebrospinal fluid/gray matter interface) 
were extracted using Freesurfer v6.0. Seven subcortical structures per hemisphere were automatically segmented 
using Freesurfer (i.e., amygdala, nucleus accumbens, caudate, hippocampus, pallidum, putamen, thalamus) and 
then modeled into surface meshes using SPHARM-PDM. All surfaces were inflated, parameterized and regis-
tered to a corresponding surface template using a rigid-body registration to preserve the anatomy of the cortex 
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and subcortical  structures67. No morphometric evaluation of subcortical structures, re-segmentation, or use of 
multiple atlases was performed; this study sought to minimize variance from analysis of the feature set used for 
prediction.

Surface templates were converted to meshes based on their triangulation scheme. Nodes of the meshes were 
vertices along the surface, and the corresponding edges of the meshes were segments connecting vertices in a 
triangulation scheme. Overall, the meshes including all structures had 47,616 vertices, 32,768 for the cortical 
surfaces and 14,848 for the subcortical surfaces. Input features of the network were defined as the Cartesian 
coordinates of surface vertices in the subjects’ native space resampled into the surface templates. As a conse-
quence, cortical nodes were assigned 6 features (X, Y, Z coordinates of both the inner and outer cortical surface 
vertices) and subcortical nodes had 3 features (X, Y, Z coordinates of subcortical surface vertices) when they 
were used for separate training. Therefore, a 9-dimensional vector was assigned to each node of the graph as 
shown in Supplementary Fig. S4. For nodes of the subcortical structures, the first 3 elements of the input were 
Cartesian coordinates of the nodes, and the last 6 were zeros while for cortical nodes, the first 3 elements of the 
vector were zeros, and the last 6 the Cartesian coordinates of the inner and outer cortical surfaces. All coordinate 
features were normalized into the range of 0–1.

More details about the conversion of the meshes to graphs with hierarchical decomposition and the organi-
zation of input features are provided in the Supplemental Material, Figs. S2–S4, and Table S3. All subjects were 
represented using the same underlying meshes, the features assigned to the vertices were unique to each subject 
and served as the input to our gCNNs.

To improve the generalizability of our model, we added two data augmentation techniques before inference 
based on the ad-hoc preliminary analysis: randomized rotations within ± 20 degrees and random Gaussian noise 
standardized with mean µ = 0 and a standard deviation of σ = 0.02 . The augmentation parameter, pa , denotes 
the probability of data augmentation occurring for a single sample. In this study, both datasets used probability 
of augmentation, pa = 0.5 , indicating that data augmentation was applied with a 50% probability per sample 
for each iteration of training.

Spectral convolution on graphs. Convolution operations on meshes can be generalized in the spectral 
domain, by using the duality property of the Fourier transform for  graphs68. Specifically, this involves the mul-
tiplication of the Fourier transform of a signal on the graph (the vertex features) with the frequency response 
of the graph, as expressed by the spectrum of the graph’s Laplacian matrix. An undirected graph is defined 
as G = {V , ǫ,A} , with a set of |V | = n vertices, V  , and a set of corresponding edges, ǫ ⊆ V × V  , where edge, 
eij ∈ ǫ , connects vertex vi to vertex vj . The weighted adjacency matrix, A ∈ Rn×n , contains the edge weights for 
each of the edges in ǫ , specifically, Aij = eij . Since we are considering undirected graphs, A is a square symmetric 
matrix. The graph Laplacian is defined as L = D − A and its normalized form as L = In − D− 1

2AD− 1
2 , where 

Dii =
∑

j Aij , is the graph’s corresponding diagonal degree matrix, containing the “degree” of each vertex on the 
graph and In is an n× n identity matrix. L is diagonalizable via the eigen-decomposition L = U�UT , where 
� = diag

([
�0,�1, . . . , �n−1

])
∈ Rn×n is the diagonal matrix of eigenvalues and U =

[
u0,u1, . . . , un−1

]
∈ Rn×n 

is formed by the corresponding orthogonal eigenvectors ui.
Let us consider the input feature matrix X ∈ Rn×f  , where each column vector xi ∈ Rn, i = 1, . . . , f  represents 

a vector of the i − th feature across all vertices and f = 3, 6, or9 is the number of input features when using 
subcortical vertices only, cortical vertices only, and both surfaces, respectively. We transform an x ∈ Rn to the 
spectral domain by x̃ = UTx and define its inverse transform by x = Ux̃ . Therefore, we can define the convolu-
tion of any two signals x and z , denoted by ∗ in the original space, as the multiplication of their corresponding 
spectral representations, according to

A filter can be defined in the spectral domain of the graph Laplacian as a polynomial of order K of the Lapla-
cian, that is, gθ (L) =

∑K−1
k=0 θkL

k , with θ = (θ1 . . . θk)
T ∈ RK . Then the filtering of a signal x by such a filter is 

given by

where L = U�UT . In order to reduce the computational complexity due to the spectral decomposition of L , 
the forward and inverse graph spectral transforms, and matrix multiplications, we approximate the filter gθ (L) , 

(1)y = x × z = U
(
UTx • UTz

)
.

(2)y = gθ (L)x = gθ (U�UT )x = Ugθ (�)UTx = Ugθ (�)x̃,

Table 4.  The characteristics of HCP and ABCD datasets. a Sd Standard deviation.

HCP (N = 1097) ABCD (N = 8070)

Age (mean ±  Sda) 28.81 ± 3.70 9.93 ± 0.62

Sex (female/male) 596/501 3861/4209

Fluid intelligence (mean ± Sd) 115.07 ± 11.58 92.25 ± 10.43

Health status In good health In different conditions

Scanner Siemens 3 T Connectome Skyra Siemens Prisma, General Electric 750 and Phillips
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using truncated expansions of Chebyshev polynomials of the first  kind60. That is, the K-localized filtering opera-
tion is defined as

where L̃ = 2L
�max

− In , denotes the scaled Laplacian, �max the largest eigenvalue of � , K the kernel size (typi-
cally K = 3 ), and θk the k-th Chebyshev coefficient. The Laplacian is scaled for stability in Chebyshev polynomial 
operations reliant on L , as Chebyshev polynomials for the analogous scalar scenario are defined for stability with 
inputs in the range [−  1, 1]. Tk

(
L̃
)
 is the Chebyshev polynomial of order k , which is calculated by 

Tk

(
L̃
)
= 2

(
L̃
)
Tk−1

(
L̃
)
− Tk−2

(
L̃
)
 , where T0(L̃) = I and T1(L̃) = L̃ . Finally, the number of trainable param-

eters per layer is reduced to Fin × Fout × K , where Fin , Fout are the number of corresponding input and output 
features. This is analogous to traditional convolutional neural networks (CNNs) where convolutional kernels are 
used with predefined size (i.e., K × K kernels for 2D CNNs).

Network architecture. Figure 5 shows the details of the proposed gCNN architecture. Within our network 
architecture, we used residual blocks to facilitate the training of deeper networks inspired by Ref.69. Using this 
approach, the output of the previous block is added to the output of the current block to avoid the “vanishing 
gradient problem” that is likely to occur for deep neural network architectures. Our model contains a pre-con-
volutional layer (Pre-Conv), four residual blocks (ResBlock), and a post residual block, followed by a single fully 
connected (Fc) layer with one output that reflects the estimated Gf score. Each residual block has two subblocks, 
including a batch normalization layer (BN), a non-linear rectified linear unit (ReLU) activation function, and 
a convolutional layer (Conv). Max pooling layers are used after each residual block to downsample the number 
of vertices.

Loss function. The loss function optimized to train our model is composed of three parts: a mean squared 
error (MSE) term to measure the error between the network’s estimates and ground-truth values, a Pearson’s 
coefficient of correlation term, corr , and an additional regularization term reg which is the l2 norm of the 
unknown network weights. Therefore, Lall is defined as

where corr = cov(y
p ,yt )

σyp•σ yt
 , with the regularization parameters �1 , �2 which are adjusted experimentally,yp is the pre-

dicted label, yt  the ground truth label, cov represents the covariance function of its arguments, and σx  the 
standard deviation of x . This correlation term is added in order to alleviate the “regression towards or to the 
mean (RTM)” bias, where the higher the correlation, the lower the  loss70.

Grad-CAM visualization. To visualize the most relevant brain areas involved in the network’s decision-
making process and to provide some interpretability to our network results, a graphical Gradient-weighted Class 
Activation Map (Grad-CAM) method was applied to generate a color-coded heat map M18. Grad-CAM uses 

(3)gθ (L) =
∑K−1

k=0
θkTk

(
L̃
)
,

(4)Lall = MSE + �1 • reg − �2 • corr,

Figure 6.  Illustration of the training and evaluation process in six-fold nested cross-validation. The whole 
process contains an outer loop of six folds and an inner loop of five folds. The model is trained on inner training 
sets, finetuned on inner validation sets and evaluated on the outer test sets.
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gradient information flowing back to the last convolutional layer of the model to generate heatmaps highlight-
ing important regions upon which the model focuses and then performs a global average pooling operation to 
produce the importance weights αk ∈ Rk of each neuron, that is,

where yp refers to the predicted value and Ak
n represents the value at each node n for feature map Ak at the last 

convolutional layer. After calculating the weights, M ∈ Rn is calculated using a weighted combination of feature 
maps followed by a ReLU  activation function, which is applied to only keep the positive weights and ignore 
the negative ones, since we are only interested in the features with positive influence on the predicted value of 
interest. That is,

Grad-CAM maps were obtained for Gf prediction from each testing set in all six folds. As four pooling layers 
were used in the model, reducing the number of nodes by a factor  24, we unsampled the generated grad-CAM 
maps back to the original size using spherical linear interpolation on the cortical and subcortical surfaces in order 
to overlay the maps back to the original graphs. To compare the distribution of Grad-CAM maps generated by 
the model using both cortical and subcortical data (All) and the model using cortical only (Cor) or subcortical 
only data (Sub), we calculated the spatial correlation of these maps across vertices. More details are included in 
the Supplementary materials.

Network implementation. A nested cross-validation was used in this work to assess model performance 
and generalizability, as shown in Fig. 6. The cross-validation contained an outer loop of six folds and an inner 
loop of five folds. Both datasets were split into six folds, randomly selecting one set as the outer test set and 
concatenating the rest of the five sets as the outer training set. This whole process repeats six times for each fold. 
The outer training set, consisting of five folds, was further divided into a validation set (one fold) and an inner 
training set (the other four folds). This inner process repeated five times and the outer test set was evaluated by 
an ensembled model averaged from those five trained models. For the HCP dataset, we included 1097 subjects, 
i.e., in each fold, 914 inner training sets and 183 outer test sets and for the ABCD dataset, we included 8070 
subjects, i.e., 6725 inner training sets and 1345 outer test set.

Model performance was evaluated using this nested cross-validation, with the datasets split into six folds each, 
where each fold was randomly chosen for testing and the remaining five folds were used for training. In each 
fold, the outer test dataset was evaluated by an averaged model ensembled from all five inner-folds models, and 
the Grad-CAMs were generated using the average weighted sum on each of the testing subjects. For the ABCD 
dataset, the networks were trained using a batch size of 32, and a maximum number of 100 epochs. We used the 
Adam optimizer with a learning rate of 5× 10−4 and a learning rate decay 0.99 every 10 steps. The parameters 
�1 and �2 were both set to 1× 10−4 and the dropout rate of the fully connected layer was set to 0.5. For the HCP 
dataset, the batch size was set to 50 and the parameter �1 was set to 0.0005. Due to the smaller dataset size, the 
maximum number of epochs for the HCP dataset was set to 80. The different network parameters were optimized 
using our cross-validation and network training was halted when the generalization error increased with the 
patience factor of 5. The networks were implemented in Python 3.6 using TensorFlow 1.14 and trained using a 
single Nvidia GeForce 2080Ti GPU.

Statistical analysis. The mean squared error (MSE), Pearson correlation coefficient score (R), and training 
time required for each testing fold and for each complete dataset were calculated. The prediction intervals and 
the confidence intervals were calculated to quantify uncertainty of predictions. A paired t-test was performed to 
compare the performance of each of the three input types and the p-values were adjusted for multiple compari-
sons using false discovery rate (FDR), which was considered as statistically significant if the p-values < 0.05. To 
show the model’s robustness, a spatial correlation (0–1) was calculated on the mapping results ( Mc ) generated 
from each fold to compare the within-cohort similarity and across-cohort similarity on the HCP and ABCD 
datasets. More details are included in Supplementary materials. Statistical analyses were performed using scikit-
sklearn and NumPy in Python 3.6, figures were generated using Matplotlib and Paraview.

Data availability
The raw data set analyzed for the current study is directly downloaded from the Human Connectome Project 
(HCP) S1200 data (https:// www. human conne ctome. org/ study/ hcp- young- adult/ data- relea ses). Participant 
recruitment and data collection were provided by Washington University and the University of Minnesota. The 
raw dataset can be downloaded from their website. We confirmed that all these experiments were performed in 
accordance with their relevant guidelines and regulations. The pre-processed dataset can be downloaded by the 
link in https:// drive. google. com/ drive/ folde rs/ 1V2Ht h1TRt bY3Mc GU38V fKDtQ_ du7- nMQ and more informa-
tion can be found by the link in https:// github. com/ Yunan Wu2168/ Fluid Intel ligen ce_ graph CNN.

Code availability
The code used in the study is publicly available from the GitHub repository (https:// github. com/ Yunan Wu2168/ 
Fluid Intel ligen ce_ graph CNN).
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