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Study on multi field coupling 
numerical simulation of nitrogen 
injection in goaf and fire‑fighting 
technology
Wei Wang1,4*, Yun Qi1,3,4* & Jiao Liu2,3*

In order to effectively prevent the spontaneous combustion of residual coal in goaf, taking the 
10,101 fully mechanized top coal caving face of Baozigou coal mine as research object, the multi‑
field coupling numerical model of nitrogen injection in goaf is established. The FLUENT software is 
used to study the variation law of spontaneous combustion zone in goaf under dynamic mining of 
working face with different nitrogen injection parameters, determining the range of spontaneous 
combustion zone in stable stage. The fitting curve between nitrogen injection parameters and 
width of spontaneous combustion zone in goaf is obtained. Results show that with the increase of 
nitrogen injection depth from 10 to 60 m, the width of spontaneous combustion zone in goaf begins 
to decrease gradually, yet the width of spontaneous combustion zone tends to expand after more 
than 40 m. When the nitrogen injection location is 40 m, the spontaneous combustion zone width 
decreases from 49 to 22 m as the nitrogen injection volume increases from 500 to 1000  m3/h. Nitrogen 
injection continuously reduces the area of high temperature zone and temperature extreme value. 
When the nitrogen injection parameter is set to (40 m–1000  m3/h), temperature extreme value 
decreases by 308.85 K compared with that without nitrogen injection. When the nitrogen injection 
parameter is (40 m–690  m3/h), it can meet the inert cooling requirements of goaf. The width of 
spontaneous combustion zone is 31 m and the temperature extreme value is 309.95 K at the moment. 
Finally, engineering application of the fire prevention technology combining shot‑off loss wind and 
nitrogen injection is used to test effect of spontaneous combustion prevention and verify accuracy 
of nitrogen injection simulation. CO concentration at the measuring point 1, 3 and 5 are reduced 
to 0 ×  10−3‰, 2 ×  10−3‰ and 1.2 ×  10−3‰, and temperature are reduced to 295.15 K, 296.15 K and 
295.65 K respectively. It shows that the spontaneous combustion of residual coal in goaf has been 
successfully controlled.

Spontaneous combustion of residual coal in goaf is a kind of mine fire caused by some complex factors, account-
ing for about 85% of the total underground  fires1,2. With the continuous improvement of coal mining technology, 
coal mine production takes on a trend of high yield, high efficiency and intelligence, and there are more and more 
high mining height coal mining faces. Although the production efficiency of mine has greatly increased, there 
are also some problems, such as serious coal residue in goaf, high caving height, large air demand in working 
face, higher air leakage and slower propulsion speed, resulting in further increase of the risk of coal spontaneous 
combustion in the  goaf3,4. Spontaneous combustion often occurs in the deep part of the goaf at a certain distance 
from the working face. However, most spontaneous combustion just smokes without open fire, so it’s difficult to 
determine the location of fire  source5. Spontaneous combustion in the goaf will release a large amount of toxic 
gas and cause disasters such as gas and coal dust explosion, which will endanger the life safety of personnel and 
even lead to the shutdown or closure of the working  face6,7. Therefore, the prevention and control of spontaneous 
combustion of residual coal in goaf is an urgent and significant topic.
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The spontaneous combustion of residual coal in goaf has traditionally been a major mine hazard concerning 
scholars in the field of coal mine safety, and key research has been carried out on spontaneous combustion pre-
vention and control techniques in  goaf8–10. Zhang Xiaoqiang et al.11 by injecting isolation material through the 
interval between the hydraulic support frames to form a row of discontinuous isolation blocking zones, a dynamic 
pressure injectionisolation technology for collaborative control of coupling thermodynamic disaster in goaf in 
special mining period was proposed and the isolation parameters of the field goaf were designed. Fan Cheng 
et al.12 took the 6306 working face of the Tangkou coal mine as an engineering example, used the discrete element 
method to quantitatively simulate the porosity distribution in goaf from a microscopic perspective. Magdalena 
 Tutak13 determined the critical values of seepage velocity and oxygen concentration in the goaf, established a 
mathematical model of coal spontaneous combustion, and simulated the distribution of spontaneous combustion 
zone in the goaf, which can be used to guide to resolve problem of coal spontaneous combustion in the goaf at the 
working face of U-shaped ventilation system in longwall mining. Yu Xu et al.14 established a coupled mathemati-
cal model of gas and coal spontaneous combustion, by which a composite hazard of gas and coal spontaneous 
combustion in the goaf was analyzed and the location of gas explosion and spontaneous combustion zone in the 
goaf was predicted by using multivariate functions. Hui Zhuo et al.15 established a numerical model of discrete 
fractures in porous media in the goaf of shallow buried coal seam, and introduced the model into FLUENT 
software to numerically simulate the  O2 concentration field, CO concentration field and air velocity field in the 
goaf of Bulianta coal mine, and the simulation results were in good agreement with the actual measured data. 
Wei Liu et al.16 established a multi-field coupled transient mathematical model to simulate the effect of external 
mining parameters on spontaneous combustion during the stopping period. It can be seen from the simulation 
that the time required for coal spontaneous combustion during the stopping period can be effectively increased by 
reasonable adjustment of mining parameters. Chu Tingxiang et al.17 proposed an improved dynamic simulation 
of spontaneous combustion in the goaf to simulate the change law of each physical field in the goaf during the 
mining process of the working face, which can realize the inversion of coal spontaneous combustion process from 
a dynamic perspective. Jian Zhang et al.18 established a three-dimensional transient CFD model to analyze the 
temperature field change law in the goaf and formulate a targeted inert gas injection fire-fighting plan. Dongjie 
Hu et al.19 took the 11,101 working face of Qipanjing mine as the research object to explore the dynamic change 
law of the spontaneous combustion of the residual coal in the gob-side entry retaining goaf area. The dynamic 
distribution of the flow field in the gob-side entry retaining goaf was simulated with different advancing positions 
and air leakage at the working face, and fire prevention measures via grouting in the return air lane side and 
nitrogen injection in the retaining lane side were put forward. Liming Yuan et al.20 used CFD simulations to opti-
mize the nitrogen injection scheme in goaf by establishing a mathematical model for nitrogen injection in goaf, 
which improved the inerting efficiency. Ma Dong et al.21 used COMSOL software to simulate nitrogen injection 
simulations and indicated an approximate power exponential relationship between the spontaneous combustion 
zone width and the amount of nitrogen injection. Luo Xinrong et al.22 used FLUENT software to simulate and 
study the effect of different extraction methods and nitrogen injection on spontaneous combustion of residual 
coal in goaf, pointing out that nitrogen injection process parameters had a significant impact on fire protection 
effect, and that nitrogen injection amount and nitrogen injection spacing should be properly controlled and 
adjusted. Jia Baoshan et al.23 took 1303 fully mechanized top coal caving face of Jinniu coal mine as the research 
object, and used numerical calculation software to study the distribution law of spontaneous combustion zone 
in goaf with different nitrogen injection parameters. The results showed that the most suitable nitrogen injection 
location was 30 m in goaf. It was concluded by Origin software that nitrogen injection amount was exponential 
relationship with the width of spontaneous combustion zone, thus obtaining optimal nitrogen injection amount. 
Guoqing Shi et al.24 took Liangbaosi coal mine working face as the research object, established a mathematical 
model of temperature field in goaf and verified its correctness. Then the model was used to simulate the variation 
law of temperature distribution in goaf changing with time when liquid nitrogen was injected at different loca-
tions, which provided a quantitative analysis method for preventing the coal spontaneous combustion in goaf 
with liquid nitrogen injection. Qi Yun et al.25 studied the influence of different nitrogen injection locations on 
the distribution of spontaneous combustion "three zones" in goaf by means of calculation software simulation. 
The results showed that gradually deepening nitrogen injection location had a significant impact on the lower 
limit of spontaneous combustion zone, but not on the upper limit of spontaneous combustion zone. Through 
optimization, the optimal nitrogen injection location reduces the width of spontaneous combustion zone to 28 m. 
However, above numerical simulations of nitrogen injection in goaf are static simulations or transient simulations 
of the model with a constant calculation area, which are static numerical and two-dimensional models of nitrogen 
injection in goaf. These simulations only analyze the change of single physical field in goaf without considering 
the coupling effect of multiple physical fields. It is difficult to comply with actual process of dynamic mining in 
working face. To further accurately understand inerting effect of nitrogen injection in goaf , it is necessary to 
study the influence law of nitrogen injection parameters on residual coal spontaneous combustion by dynamic 
numerical simulation methods from multi-field coupling perspective.

In view of this, taking the 10,101 fully mechanized top coal caving face of Baozigou coal mine as the research 
background, the author determines the distribution area of coal spontaneous combustion "three zones" through 
the bundle tube monitoring in goaf. The FLUENT software is used to establish a three-dimensional dynamic 
nitrogen injection multi-field coupling numerical model in goaf to simulate and study the changes of air leakage 
flow field, oxygen concentration field and temperature field in goaf with different nitrogen injection parameters. It 
analyses influence law of nitrogen injection on distribution of spontaneous combustion "three zones" in dynamic 
scale and verifies the correctness of simulation with measured data in goaf. The combination of shot-off loss wind 
and nitrogen injection is proposed as a fire-fighting technique to achieve scientific treatment of coal spontaneous 
combustion in goaf of 10,101 fully mechanized top coal caving face.
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Bundle tube monitoring of “three zones” in goaf
Overview of working face. The 10,101 fully mechanized top coal caving face of Baozigou coal mine, 
located in mining coal seam 9 + 10 + 11 of the first mining area, is the first working face of the mine. The ven-
tilation mode of the working face is U-shaped ventilation. The actual air supply capacity of the working face 
reaches 1300  m3/min. The inclined length of the working face is 150 m, with a strike length of 1205 m for the 
inlet airway and 1235 m for the return airway. Mining method of the working face is fully mechanized top coal 
caving technology. Maximum mining height of the working face shearer is 2.5 m. Height of the top coal caving is 
2.97 m. Mining and caving ratio is 1:1.2. Advancing speed is 3.6 m/d. The coal seam has a slope of 6–13°, Grade 
I spontaneous combustion coal seam, with shortest coal spontaneous combustion period of 27 d. Its coal dust 
explosion index is 46.84%, indicating the possibility of explosion.

Distribution of spontaneous combustion "three zones" in goaf. The "three zones" of residual coal 
spontaneous combustion in goaf is objective. However, due to lack of technical means to measure “three zones” 
and complex characteristics of fully mechanized mining face in goaf, it is difficult to achieve precise delineation 
when monitoring the  site26. Spontaneous combustion of residual coal in goaf is the result of the combination of 
continuous oxygen supply due to air leakage from working face and heat storage from coal  oxidation27,28. Main 
methods for classifying the "three zones" of spontaneous combustion in goaf are oxygen concentration method, 
air leakage velocity method and temperature rise rate method, which corresponds to classification indexes for 
classifying the spontaneous combustion zones of oxygen concentration in the range of 7% to 18%, air leakage 
velocity in the range of 0.1 m/min to 0.24 m/min and the temperature rise rate ΔT ≥ 1 ℃/d in  goaf29.

The bundle tube and temperature measurement system were installed at the 10,101 fully mechanized top coal 
caving face, inlet and return air roadway, respectively, to measure and count the gas content and temperature 
data in the goaf during forward mining. The bundle tube and temperature measurement system were installed 
along the working face behind the hydraulic support 5 measuring points were arranged from air inlet roadway 
to air return roadway in turn. Observation stations were arranged at the 200 m outside the measurement points, 
with measurement point numbers 1 ~ 5 and a spacing of 38 m. The specific layout of measuring point is shown 
in Fig. 1. Through continuous testing, variation curve of oxygen concentration at every measuring point with 
the advancement of the working face is shown in Fig. 2. It is known from Fig. 2 that the oxygen concentration 
on side of air inlet roadway is higher than that on side of air return roadway, which is affected by the air leakage 
from the U-shaped ventilation system of the working face to the goaf. According to the division standard of 
oxygen concentration in the range of 7% ~ 18%, division results of coal spontaneous combustion "three zones" 
in goaf are shown in Table 1. From Table 1, the width of spontaneous combustion zone is 70 m on the inlet side, 
55 m in the middle and 52 m on the return side, which shows a reduction in the width of the zone along the 
inclination of the working face.

The change curve of temperature in goaf with advancement of the working face is shown in Fig. 3. Accord-
ing to Fig. 3, the temperature in goaf is similar to the distribution characteristics of oxygen concentration, 
which shows that temperature of the inlet air side is higher than the return air side. Obviously, the change of 
temperature is greatly affected by the oxygen concentration, because the oxidation and heating of residual coal 
requires a suitable oxygen supply environment. Temperature rise rate method is used to divide the “three zones” 
by statistical temperature data. Its distribution range is slightly lagging behind that of the oxygen concentration, 
but is basically identical with the results, which fully verify the above analysis.

Model establishment and solution conditions
Three‑dimensional dynamic goaf geometric model. The size of the geometric model is determined 
by the actual situation of 10,101 fully mechanized top coal caving face of Baozigou coal mine. The length of 
working face is 150 m, and the height is the total height of caving zone and fracture zone of 50 m. The length of 
goaf is taken to be 400 m as an illustration. In order to reflect the actual situation of the ventilation resistance of 
the working face and simplify the model, the section of working face is 6 m × 3.2 m and the section of air return 
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Figure 1.  Layout of beam tube and temperature sensor.
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roadway is 3.6 m × 3.2 m and the section of air inlet roadway is 4.5 m × 3.2 m, with the length of 25 m. The three-
dimensional geometric model is shown in Fig. 4.

Boundary conditions and calculation parameters setting. The solution is based on a unit time step 
of 1 d, with an average daily advance speed of 3.6 m/d as the increasing rate of goaf length. With the advance-
ment of working face, the goaf is gradually extended. The grid is automatically updated by the FLUENT soft-
ware’s dynamic grid model, thus reflecting the continuous advance of working face. Space moving coordinate 
system forms a new grid at a 3.6 m/d advance rate. According to the characteristics of dynamic grid model, the 
boundary conditions move as the working face advances dynamically. The temperature of the newly emerged 
coal rock is set as the initial temperature, after which the temperature continues to rise with the compound 
action of coal-oxygen. The functions of porosity of the goaf and the advancing speed of the working face is estab-
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Figure 2.  Change law of oxygen concentration with working face advancing.

Table 1.  Range of spontaneous combustion "three zones" in goaf of different measuring point.

measuring point cooled zone/m spontaneous combustion zone/m suffocating zone/m

1 0 ~ 62 62 ~ 132  > 132

2 0 ~ 52 52 ~ 112  > 112

3 0 ~ 40 40 ~ 95  > 95

4 0 ~ 38 38 ~ 93  > 93

5 0 ~ 38 38 ~ 90  > 90
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Figure 3.  Law of temperature change of each measuring point.
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lished and imported into FLUENT software to start the non-stationary calculation, thus presenting the variation 
of the goaf in space and time.

The dynamic advancement of the working face causes continuous spatial expansion of the goaf. The porosity 
of the extraction zone is variable in both time and space, although there is a general pattern. Supported by the 
coal wall of the inlet and return tunnel, the porosity of the goaf is greater than the porosity of the central location. 
In the meantime, due to the continuous compaction of the coal rock, the porosity is smaller as it goes deeper 
into the goaf. The porosity distribution function of the goaf is the  following30:

where nx, ny, nz refer to porosity along Y-axis, X-axis and Z-axis respectively, %; L is the length of the working 
surface, m.

When selecting the main calculation conditions and parameters, it is necessary to follow the actual situation 
on site. The air inlet roadway of the working face is set as the inlet boundary. The air return roadway is set as 
outflow. The nitrogen injection port is set as the velocity inlet and the concentration of nitrogen is taken to be 
97%. The temperature of the working face boundary can be obtained by actual measurement and belongs to the 
first type of boundary conditions. The amount of heat exchange between the gas in the goaf and the coal wall is 
very small. Assuming that the heat flux on the boundary is 0, it can be treated as an adiabatic  boundary31. The 
initial temperature of the goaf is 300.05 K. The actual measured airflow temperature in the air inlet roadway 
is 291.75 K. The oxygen concentration is 20.9% and the actual wind speed at the working face is 1.62 m/s. The 
average air density is 1.225 kg/m3. The air viscosity coefficient is taken to be 1.7894 ×  10−5 kg/(ms). The diffusion 
coefficient of gas is 2.88 ×  10−5  m2/s and the loosening coefficient is set to 1.5, The thickness of the residual coal 
in the goaf is 0.86 m.

The basic assumptions are proposed as the following:

(1) Since the goaf caving band is random, the porous media in the goaf is isotropic and continuous.
(2) The influence of periodic weighting on the goaf is ignored, that the seepage characteristics of air in the goaf 

are only related to its depth, and that the overlying rock body is not involved in the reaction, only existing 
seepage and heat transfer.

(3) As the working face area is in an open tunnel, the air flow is in a steady turbulent state. The flow of mixed 
gases in the goaf is considered to be unsteady, incompressible, and with heat transfer.

(4) The gas leaking into the goaf is considered to be the same temperature as the working face, and the gas 
temperature at the same coordinate position node in the goaf is equal to the solid temperature, which 
satisfies the thermal equilibrium between the risen coal rock and the gas.

(5) The effect of convection and heat conduction on heat transfer is just considered, ignoring thermal radiation 
and other phenomena and the effect of water phrase change on the heat and mass transfer process of coal 
spontaneous combustion in the process of coal spontaneous combustion.

When using the numerical simulation results to divide the spontaneous combustion "three zones" in the goaf 
of a fully mechanized top coal caving face, it is necessary to consider the distribution of the oxygen concentra-
tion field and the air leakage velocity field in the goaf at the same time. If the oxygen concentration C can be 
combined with the distribution of the air leakage velocity v, it will be more in line with the actual distribution 
of the coal leftover spontaneous combustion area in the goaf of the fully mechanized caving  face32,33. In order to 
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Figure 4.  3D dynamic geometric model of goaf.
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reasonably divide the "three zones" of spontaneous combustion in the goaf of 10,101 fully mechanized top coal 
caving face, the combination method of air leakage velocity and oxygen concentration (v ≤ vmax ∩ C ≥ Cmin) is 
used. Among the method, vmax is the upper air leakage velocity that satisfies the oxidative heat storage condition 
of the residual coal in the goaf, and Cmin is the lower oxygen concentration that causes oxidative spontaneous 
combustion of the residual  coal34.

Effect of nitrogen injection parameters on distribution of "three zones" in goaf
Effect of nitrogen injection location on the "three zones". With the change of nitrogen injection 
location, the distribution of spontaneous combustion "three zones" in the goaf will also change. In order to ana-
lyze the effect of nitrogen injection location, FLUENT software was used to simulate the distribution changes of 
oxygen concentration field distribution in the goaf at the locations of 10 m, 20 m, 30 m, 40 m, 50 m and 60 m 
when the nitrogen injection volume was 700  m3/h (calculated from daily coal production at the working face), 
and the results are shown in Fig. 5. From Fig. 5, the location change of nitrogen injection will change the oxygen 
concentration distribution in the goaf. Since nitrogen is injected into the goaf from the air inlet side, the oxygen 
in the inlet air is displaced by nitrogen and has a good inerting effect, resulting in a lower oxygen concentration 
on the air inlet side than that in the middle and return air side and the rate of decline is fast. With the increasing 
depth of nitrogen injection, the 18% and 7% oxygen concentration contours in the goaf will also change. At the 
same time, the distance between the two keeps shrinking, but when the nitrogen injection depth exceeds 40 m, 
the distance increases again.

Combined with the simulation results of the air leakage velocity distribution in the goaf at nitrogen injection 
locations of 10 m, 20 m, 30 m, 40 m, 50 m and 60 m, the Origin software was used to obtain the width of the 
spontaneous combustion zone and the location of nitrogen injection curve on the basis of the standard divi-
sion (v ≤ vmax = 0.24 m/min ∩ C ≥ Cmin = 7%), as is shown in Fig. 6. From Fig. 6, the corresponding spontaneous 
combustion zone widths are 43 m, 37 m, 34 m, 31 m, 31.8 m and 33 m respectively when nitrogen injection 
locations are 10 m, 20 m, 30 m, 40 m, 50 m and 60 m. The spontaneous combustion zone widths are reduced to 
59%, 51%, 47%, 42%, 43.6% and 45% of those in the uninjected nitrogen condition. As the nitrogen injection port 
moves toward the depth of the goaf, the width of the spontaneous combustion zone in the goaf begins to shrink 
gradually. The width of the spontaneous combustion zone does not continue to decrease but increases when the 
nitrogen injection port penetrates deeper than 40 m into the goaf. This is because the nitrogen injection port go 
excessively deep into the goaf, and the inerting effect of nitrogen injection on the shallow part of the goaf is not 
obvious. Through the above analysis, the depth of nitrogen injection in the goaf should be 40 m ~ 50 m, taking 
40 m as the most suitable nitrogen injection location.

Effect of nitrogen injection volume on the “three zones”. When the nitrogen injection depth is 
40 m, the FLUENT software is used to simulate the distribution change of the oxygen concentration field in the 
goaf under the conditions of 0  m3/h, 500  m3/h, 600 m3/h, 700  m3/h, 800  m3/h, 900 m3/h, and 1000 m3/h. The 
results are shown in Fig. 7. From Fig. 7 to know, the change in nitrogen injection volume causes the distribution 
change of oxygen concentration in the goaf. With the continuous increase of nitrogen injection volume, the 
distribution range of oxygen concentration in the goaf gradually narrows, the 18% and 7% oxygen concentration 
contour moves to the working face, and the distance between the two is continuously reduced.

By combining with the simulation results of air leakage velocity distribution in the goaf under the cases of 
0  m3/h, 500 m3/h, 600 m3/h, 700  m3/h, 800  m3/h, 900  m3/h and 1000  m3/h of nitrogen injection volume, the 
width of spontaneous combustion zone based on the standard division (v ≤ vmax = 0.24 m/min ∩ C ≥ Cmin = 7%) is 
obtained as shown in Table 2. As can be seen from Table 2, the 0.24 m/min air leakage velocity contour is not very 
significantly affected by the nitrogen injection volume, and only moves 9 m along the recovery direction. While 
the 7% oxygen concentration contour is relatively more significantly affected by the nitrogen injection volume, 
moving about 36 m along the recovery direction. As the nitrogen injection volume increases from 500  m3/h to 
1000  m3/h, the width of the spontaneous combustion zone in the goaf is reduced from 49 to 22 m. When the 
nitrogen injection volume is 1000  m3/h, the width of the spontaneous combustion zone in goaf is reduced by 
about 51 m compared with that without nitrogen injection measures.

According to the data in Table 2, Origin software is used to fit the data. The fitted curve of the width of the 
spontaneous combustion zone in the goaf with the variation of nitrogen injection volume was obtained, as 
is shown in Fig. 8. As known from Fig. 8, the width of the spontaneous combustion zone showed a negative 
exponential decreasing trend with the increase of the nitrogen injection volume. The following formula is the 
obtained fitting formula:

where v1 is the actual advancing speed of working face, m/d; τ is the shortest coal spontaneous combustion 
period, d; L1 is the width of spontaneous combustion zone, m; QN is the nitrogen injection volume,  m3/h. The 
optimal nitrogen injection volume is 690  m3/h by calculation. The fitting equation can predict the required 
nitrogen injection volume at different propulsion speeds and the width of the spontaneous combustion zone in 
the goaf at different nitrogen injection volume.

(2)L1 = 230.20 · exp (−QN/253.34)+ 17.35

(3)v1τ ≥ L1
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Figure 5.  Distribution of oxygen concentration in goaf under different injection nitrogen location.
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Temperature field distribution in goaf after nitrogen injection
Effect of nitrogen injection location on temperature field in goaf. FLUENT software was used to 
simulate the distribution of the temperature field in the goaf at the nitrogen injection locations of 10 m, 20 m, 
30 m, 40 m, 50 m and 60 m when the nitrogen injection volume was 700  m3/h, and the results are shown in Fig. 9.

It is known from Fig. 9 that the high temperature zone in the goaf is obviously reduced after nitrogen injec-
tion, and temperature extreme value are significantly decreased. The temperature is reduced from 342.05 K to 
309.95 K at nitrogen injection location of 40 m, which has the best effect on temperature rise suppression and 
greatly reduces the risk of spontaneous combustion in the goaf. The high temperature zone migrates to the middle 
of the goaf and the return air side. The oxygen in the inlet air side is significantly diluted by the nitrogen injec-
tion drive so that the heat production from coal oxygen in the area is reduced. The influence of the central and 
return wind side is relatively small. While the oxygen concentration of the central and return air side is higher 
than that of the inlet air side, and the heat production from the coal oxygen is relatively large. The temperature 
is higher than that of the inlet air side.

Figure 5.  (continued)
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Figure 6.  Goaf spontaneous combustion zone width with injection nitrogen location change.
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Figure 7.  Distribution of oxygen concentration in goaf under different injection nitrogen volume.
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Effect of nitrogen injection volume on temperature field in goaf. FLUENT software was used to 
simulate the distribution of temperature field in the goaf at nitrogen injection location of 40 m and nitrogen 
injection volume of 500  m3/h ~ 1000  m3/h. The simulation results of temperature contour distribution of 0.5 m 
section from the bottom plate are shown in Fig. 10. It is known from Fig. 10 that increasing the nitrogen injection 
volume in the goaf has an obvious inerting cooling effect. Both the area of high temperature zone and tempera-

Figure 7.  (continued)

Table 2.  Distribution of spontaneous combustion zone in goaf with different nitrogen injection volume.

nitrogen injection volume/(m3∙h−1) vmax = 0.24 m/min Cmin = 7% width/m

0 55 m 128 m 73

500 22 m 71 m 49

600 20 m 60 m 40

700 20 m 51 m 31

800 16 m 43 m 27

900 15 m 39 m 24

1000 13 m 35 m 22
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ture extreme value are decreasing. The temperature extreme value decreases from 316.75 K to 306.35 K when the 
nitrogen injection volume increases from 500 m3/h to 1000 m3/h.

Comprehensive analysis of the above study shows that due to the large thickness of residual coal and more 
serious air leakage in the goaf of 10,101 fully mechanized top coal caving face in Baozigou coal mine, the tem-
perature extreme value in goaf approaching 343.15 K during advancement of the working face. Nitrogen injec-
tion in the inlet air side of the goaf can play a good inerting and cooling effect on the goaf. When the nitrogen 
injection parameter is set to (40 m–1000  m3/h), the temperature extreme value of the goaf decreases by 308.85 K 
compared with that without nitrogen injection, which greatly reduces the risk of residual coal spontaneous 
combustion in the goaf.

Fire‑fighting technology of nitrogen injection and shot‑off loss wind in goaf
Nitrogen injection fire‑fighting technology in goaf. FLUENT software was used to simulate and 
research the effects of nitrogen injection location and nitrogen injection volume on oxygen concentration, air 
leakage velocity and temperature in the goaf to optimize the nitrogen injection and fire prevention parameters. 
When the nitrogen injection location is 40 m and the nitrogen injection volume is 690  m3/h, it can meet the 
requirements of inerting and cooling in the goaf of 10,101 fully mechanized top coal caving face. When apply-
ing it, the nitrogen injection pipeline is buried in the goaf on the air inlet side of fully mechanized top coal 
caving face to inject nitrogen with reference to the parameter. The nitrogen production equipment is DT-700 
type underground mobile molecular sieve nitrogen production device with nitrogen flow rate of 700  m3/h and 
nitrogen purity not less than 97%. The mobile nitrogen unit is arranged in the track roadway of a mining area. 
A 6-inch seamless steel pipe is selected as the nitrogen pipeline to transport nitrogen, with the steel pipes being 
connected to each other by flanges. The nitrogen transport pipeline is set up close to the outer coal wall of the 
air inlet roadway. The nitrogen injection pipe is buried at the back of the lower corner of the working face and 
the nitrogen is injected by buried pipe. When the nitrogen injection pipe enters the goaf 40 m, the valve can be 
opened for nitrogen injection, while the next nitrogen injection pipe is laid. When the first trip of the pipeline 
into the goaf 80 m can no longer inject nitrogen, and the second trip of nitrogen injection pipeline valve is 
opened for nitrogen injection.

Fire‑fighting technology of shot‑off loss wind in goaf. The large width of the spontaneous combus-
tion zone in the goaf indicates that there are more serious air leakage. The seal wall is built at the corner of the 
inlet and return air roadways of the 10,101 working face to reduce the amount of air leakage in the goaf and the 
risk of spontaneous combustion. When nitrogen injection in the goaf is combined with construction of seal 
walls under the circumstances of changing the air leakage flow field, the effectiveness of nitrogen injection can 
be significantly improved. The air proof seal wall is arranged at the corner of inlet and return air roadways in the 
10,101 working face, as is shown in Fig. 11. The seal wall is constructed by solid foam injection. The masonry 
height is the same as the mining height. The actual thickness of each seal wall is not less than 1.5 m to ensure 
tight sealing and no air leakage. The two seal walls are separated by 20 m. The seal wall built in the inlet and 
return air roadways is combined with the injection of gel in the goaf to achieve good effect on plugging air leak-
age in the goaf and controlling the air leakage from working face to goaf. Combined with the actual situation of 
the working face and the inlet and return air roadways, it is more difficult to build a seal wall over 8 m, so the 
length of the seal wall is set at 8 m.

Effect analysis of spontaneous combustion prevention. To investigate the accuracy of the numeri-
cal simulation of nitrogen injection in the goaf and the application effect of nitrogen injection for fire prevention, 
the distribution of spontaneous combustion "three zones" in the goaf was monitored during the period when 
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Figure 8.  Fitting curve between nitrogen injection volume and width of spontaneous combustion zone.
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Figure 9.  Effect of nitrogen injection location on temperature field in goaf.



13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17399  | https://doi.org/10.1038/s41598-022-22296-9

www.nature.com/scientificreports/

only nitrogen injection for fire prevention was used in the goaf of 10,101 fully mechanized top coal caving face. 
It is shown from Fig. 12 that the width of the spontaneous combustion zone at measuring point 1 is 22 m, that at 
measuring point 3 is 30.9 m, and that at measuring point 5 is 19 m. The measured results are basically consist-
ent with the maximum width 31 m of the spontaneous combustion zone from the simulation, which verifies the 
reliability of the simulation results of nitrogen injection in the goaf.

To grasp the application effect of comprehensive fire prevention and suppression technology in the goaf of 
10,101 working face, the measured data of CO concentration and temperature at every measuring point during 
the engineering application of comprehensive fire control measures are shown in Fig. 13 and Fig. 14 respec-
tively. From Fig. 13 and Fig. 14, at the beginning of application of comprehensive fire control measures, the CO 
concentration at the location of measuring point 1, 3 and 5 are 40 ×  10−3‰, 32 ×  10−3‰ and 28 ×  10−3‰ respec-
tively. After 5 days, there is significant reduction trend in the CO concentration and the effect of spontaneous 
combustion prevention in the goaf begins to appear. After 30 days, CO concentration of 0 ×  10–3‰, 2 ×  10−3‰ 
and 1.2 ×  10−3‰ are detected at measuring point 1, 3 and 5 respectively. At the same time, a significant decrease 
in temperature also occurs at each measuring point, with temperature at measuring point 1, 3 and 5 decreasing 
from 329.15 K, 322.15 K and 316.15 K to 295.15 K, 296.15 K and 295.65 K. Temperature stabilization time at 
measuring point 1 is significantly earlier than that at measuring points 3 and 5. After that, the CO concentration 
remains at 0 during recovery time, and no further significant high temperature points are monitored in the goaf. 
The engineering application results show that using comprehensive measures has achieved successful control of 
residual coal spontaneous combustion in the goaf of 10,101 working face.

Conclusions

(1) A three-dimensional dynamic nitrogen injection multi-field coupled numerical model of the goaf was 
established. The effect of the nitrogen injection position, nitrogen injection flow and other parameters 
on the oxygen concentration of the goaf and the velocity of air leakage was stimulated through FLUENT 
software to obtain the distribution range of the "three zones" of spontaneous combustion in the stable stage 
and optimize the nitrogen injection fire prevention and control parameters. The inerting requirements of 
the goaf could be met when the nitrogen injection depth was 40 m and the nitrogen injection volume was 
690  m3/h. The width of the spontaneous combustion zone was 31 m.

(2) After nitrogen injection in the goaf, the high temperature zone and the temperature extreme value was 
significantly reduced. The best suppression of temperature rise in the goaf was achieved at a nitrogen 
injection depth of 40 m, reducing from 342.05 K without nitrogen injection to 309.95 K. The temperature 
extreme value decreased from 316.75 to 306.35 K when nitrogen injection volume increased from 500 to 
1000  m3/h. Compared with that without nitrogen injection, the temperature extreme value of goaf was 
reduced by 308.85 K when the nitrogen injection parameter was set to (40 m–1000  m3/h).

Figure 9.  (continued)
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Figure 10.  Effect of nitrogen injection volume on temperature field in goaf.
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(3) The comprehensive prevention and control measures of spontaneous combustion in goaf were applied in 
the goaf of 10,101 fully mechanized work face. After 30 days, the CO concentration of measuring point 
1, 3 and 5 decreased from 40 ×  10–3‰, 32 ×  10–3‰, 28 ×  10–3‰ to 0 ×  10–3‰, 2 ×  10–3‰ and 1.2 ×  10–3‰, 
the temperature of the corresponding measuring point decreased from 329.15 K, 322.15 K, 316.15 K to 
295.15 K, 296.15 K and 295.65 K. The spontaneous combustion of residual coal in the goaf has been suc-
cessfully managed.

Figure 10.  (continued)
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Figure 11.  10,101 fully mechanized top coal caving face goaf seal wall layout location.



16

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17399  | https://doi.org/10.1038/s41598-022-22296-9

www.nature.com/scientificreports/

6 7 8 9 10 11 12 13 14 15 16 17 18 19
15

20

25

30

35

40

45

50

55

A
dv

an
ce

 d
is

ta
nc

e/
m

Oxygen concentration/%

1
3
5

Figure 12.  Change curve of oxygen concentration in goaf after nitrogen injection.
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Figure 13.  Change of CO concentration at each measuring point.
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Figure 14.  Temperature change curve of each measuring point.
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Data availability
All data generated or analysed during this study are included in this published article and its supplementary 
information files.
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