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Comparing three types 
of data‑driven models for monthly 
evapotranspiration prediction 
under heterogeneous climatic 
conditions
Pouya Aghelpour 1, Vahid Varshavian 1, Mehraneh Khodamorad Pour 1* & 
Zahra Hamedi 2

Evapotranspiration is one of the most important hydro‑climatological components which directly 
affects agricultural productions. Therefore, its forecasting is critical for water managers and irrigation 
planners. In this study, adaptive neuro‑fuzzy inference system (ANFIS) model has been hybridized by 
differential evolution (DE) optimization algorithm as a novel approach to forecast monthly reference 
evapotranspiration (ET0). Furthermore, this model has been compared with the classic stochastic time 
series model. For this, the ET0 rates were calculated on a monthly scale during 1995–2018, based on 
FAO‑56 Penman–Monteith equation and meteorological data including minimum air temperature, 
maximum air temperature, mean air temperature, minimum relative humidity, maximum relative 
humidity & sunshine duration. The investigation was performed on 6 stations in different climates of 
Iran, including Bandar Anzali & Ramsar (per‑humid), Gharakhil (sub‑humid), Shiraz (semi‑arid), Ahwaz 
(arid), and Yazd (extra‑arid). The models’ performances were evaluated by the criteria percent bias 
(PB), root mean squared error (RMSE), normalized RMSE (NRMSE), and Nash‑Sutcliff (NS) coefficient. 
Surveys confirm the high capability of the hybrid ANFIS‑DE model in monthly ET0 forecasting; so 
that the DE algorithm was able to improve the accuracy of ANFIS, by 16% on average. Seasonal 
autoregressive integrated moving average (SARIMA) was the most suitable pattern among the time 
series stochastic models and superior to its competitors, ANFIS and ANFIS‑DE. Consequently, the 
SARIMA was suggested more appropriate for monthly ET0 forecasting in all the climates, due to its 
simplicity and parsimony. Comparison between the different climates confirmed that the climate type 
significantly affects the forecasting accuracies: it’s revealed that all the models work better in extra‑
arid, arid and semi‑arid climates, than the humid and per‑humid areas.

The process of water parting the surface of moist soil is called evaporation, whereas this phenomenon from leaves’ 
pores is called transpiration. Since recognizing these two phenomena on farms is not easy, they are considered 
one single integrated variable referred to as “evapotranspiration.” Since evapotranspiration is defined on the 
surface of an agricultural land, it also includes the water deposited by rain, irrigation, or dew drops on leaves. 
On the other hand, evapotranspiration is regarded as the water requirement of plants; thus, its measurement is 
essential in all agricultural and irrigation projects. The amount of evapotranspiration is measured by a lysimeter. 
Due to the sensitivity of the lysimeter, a technician expert is needed on-site to calibrate the lysimeter constantly. 
Consequently, if the recorded cases of lysimeter are not cared for carefully, they may have errors. As a remedy, the 
International Commission on Irrigation and Drainage (ICID) and World Meteorological Organization (WMO) 
have recognized that the FAO-56 Penman–Monteith equation (FAO-56 PM) should be an acceptable substitute 
for scarce lysimeter data (Allen et al.1).

In recent years, despite some well-known mathematical models such as Penman–Monteith, Thornthwaite, 
Hargreaves-Samani, Blaney-Criddle, etc., the black-box artificial intelligence (AI) models have shown accept-
able accuracy in estimating evapotranspiration. For example, Mohammadi and  Mehdizadeh2 and Ahmadi et al.3, 
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surveying the arid and semi-arid regions of Iran, found that the AI models can estimate evapotranspiration with 
reasonable accuracy and the least available meteorological variables in the complete absence of meteorological 
variables, which are required to use the Penman method. They also contended that integrating AI models with 
bio-inspired optimization algorithms can significantly increase the accuracy of evapotranspiration estimation. 
In Australia, AIs could accurately estimate evapotranspiration with only temperature and wind speed as available 
variables (Falamarzi et al.4) that can be considered a suitable alternative for the FAO-56 PM model when the 
meteorological variables are missing. Also, in cases such as Kumar et al.5, lysimeter measured evapotranspiration 
values were used for the validation of the estimated evapotranspiration from neural networks, and their compari-
son with the outputs of the FAO-56 PM model showed that AIs could be a better estimator for evapotranspiration.

Reference evapotranspiration (ET0) is one of the main components of the hydrological cycle associated with 
agricultural systems. Accurate estimation and prediction of ET0 are critical in water resources management, 
irrigation planning, and determining plants’ water needs. Forecasting the ET0 rates by providing information 
on the future status of evapotranspiration at different time scales can help make appropriate decisions, plan, and 
apply management methods of water resources. The information for the next day(s), for short-term decisions 
and planning will be provided on a daily scale prediction. On a monthly scale prediction of ET0, obtaining a 
longer-term perspective of ET0 changes in the future is possible, which will be especially useful for crops with 
a long-term growth period (several months). Also, evaluating the agricultural drought status, which is done by 
famous indicators such as standardized precipitation-evapotranspiration index (SPEI) and Palmer drought sever-
ity index (PDSI), directly requires the monthly scale ET0 rate of the region. Data-driven models like stochastic 
and artificial intelligence methods are efficient approaches that have shown good performance in modeling and 
predicting hydrometeorological variables in recent years (Essam et al.6; Dehghanisanij et al.7; Elbeltagi et al.8; 
Azad et al.9; Zhang et al.10; Zarei et al.11; Graf and  Aghelpour12; Chen et al.13). In ET0 cases,  Karbasi14 have used 
AIs for ET0 forecasting in 1, 2, 3, 7, 10, 14, 18, 24, and 30 days lead times.  Karbasi14 concluded that the accuracy 
of the predictions was desirable and showed that when the forecast horizon increases, the forecasting accuracy 
decreases. A comparison between stochastic and artificial intelligence methods in Spain revealed that both model 
types predicted weekly evapotranspiration effectively (Landeras et al.15). Lucas et al.16 compared the seasonal 
autoregressive integrated moving average (SARIMA) stochastic model with the convolutional neural network 
(CNN) model to predict daily evapotranspiration in Brazil. They concluded that the CNN model can provide 
a more accurate prediction of evapotranspiration than the SARIMA model. In contrast, in the Tamil Nadu of 
India, a comparison was made between artificial intelligence and stochastic methods, and then more appropriate 
stochastic models were introduced for predicting ET0 (Kishore and  Pushpalatha17).

Predicting evapotranspiration, especially in areas like Iran, which are facing limited water resources, is doubly 
crucial for determining the cultivation pattern and proper management of water and soil resources. In Iran, these 
two types of numerical models, i.e., stochastics and AIs, have been used to predict ET0. Ashrafzadeh et al.18 used 
the SARIMA, group method of data handling (GMDH), and support vector machine (SVM) models to predict 
ET0 in humid areas of the Caspian Sea’s southern margin (Guilan province). They evaluated the accuracy of 
the models and indicated that the mentioned models can predict the ET0 value for the next two years, with the 
same suitable accuracy as the train-test period. In the same region in Iran (Mazandaran province), Aghelpour 
and Norooz-Valashedi19 compared these two model types for the daily prediction of ET0 rates. They applied the 
models’ autoregressive (AR), moving average (MA), autoregressive moving average (ARMA) and autoregressive 
integrated moving average (ARIMA) as stochastic models, and compared them with three AIs including SVM, 
generalized regression neural network (GRNN), and adaptive neuro-fuzzy inference system (ANFIS). The results 
have shown the high capability of both model types in predicting daily ET0 rates for this humid region. Also 
another study has developed by Aghelpour et al.20 for the estimation (not prediction) of rice evapotranspiration 
in this region. They have found that the AIs like GMDH, GRNN, multilayer perceptron (MLP), and radial basis 
function neural network (GRNN) are capable of providing a high accuracy estimation for the daily evapotran-
spiration rates of rice crop, which is the most important agricultural crop of this region.

The combination of bio-inspired optimization algorithms has significantly improved the AI performance of 
AIs in most cases (Ahmadianfar et al.21; Mehdizadeh et al.22; Ahmadi et al.3; Babanezhad et al.23; Mohammadi 
et al.24; Aghelpour and  Varshavian25; Deo et al.26). These algorithms that use complex evolutionary methods can 
optimally enhance the parameters of AIs and significantly increase the accuracy of the estimations and predic-
tions. In the AIs, the parameter optimization process is commonly done by the linear least square or gradient 
decent algorithms, which may suffer from the local optimum problem. To dominate this problem, bio-inspired 
optimizers, which use nature-inspired search procedures rather than derivatives to find optimal solutions, are 
suggested in some studies to train AIs. Since there are many natural sources of inspiration, a host of bio-inspired 
optimizers can be found in the literature. However, just a few of these algorithms have been used in ET0 predic-
tion cases. For example, Mohammadi and  Mehdizadeh2 have shown that in daily evapotranspiration modeling, 
a bio-inspired algorithm like the whale optimization algorithm can improve the accuracy of AIs in modeling 
reference evapotranspiration rates. Genetic and firefly are two other well-known bio-inspired algorithms that 
have significantly increased the AIs’ accuracy in evapotranspiration modeling cases (Roy et al.27; Tao et al.28; 
Eslamian et al.29; Aghajanloo et al.30; Yin et al.31; Gocić et al.32). Differential evolution (DE) is another bio-inspired 
optimization algorithm that has been less used in this term. For example, it was well evaluated to improve the AIs’ 
accuracy in some cases, such as solar radiation estimation (Babatunde et al.33; Halabi et al.34), pan evaporation 
modeling (Wu et al.35), dust source modeling (Rahmati et al.36), or drought prediction (Aghelpour et al.37), but 
has been rarely evaluated in evapotranspiration modeling cases.

The ANFIS model is one of the most efficient AI methods that has been used in both simple and hybridized 
forms for hydrological and meteorological modeling. ANFIS model showed its acceptable performances in solar 
radiation estimation (Üstün et al.38; Halabi et al.34; Khosravi et al.39), pan evaporation estimation (Adnan et al.40; 
Guven and  Kisi41), drought forecasting (Aghelpour et al.42; Aghelpour et al.43; Aghelpour et al.44; Kisi et al.45), river 
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flow modeling (Mohammadi et al.46; Aghelpour et al.47), rainfall forecasting (Mekanik et al.48; Yaseen et al.49), 
and wind speed forecasting (Maroufpoor et al.50). However, they are less used in evapotranspiration prediction 
for the future (most of the studied cases have used the ANFIS model for ET0 “estimation,” not “prediction” for 
the future). The present study intends to use the ANFIS model to predict the reference evapotranspiration and 
compare it with the classical SARIMA stochastic model. Moreover, as a novelty, the DE algorithm is combined 
with the ANFIS model as ANFIS-DE in this study to optimize and improve the ANFIS’s prediction accuracy. 
This research studies stations from different climates (from extra-arid to per-humid). Moreover, investigating 
the effect of the climate type on the accuracy of the models predicting ET0 for the first time is another novelty 
aspect of the current research.

Materials and methods
Data and areas under investigation. Iran is located in the Middle East, on the dry belt of the earth. 
Consequently, it is facing limited water resources in human life’s different sectors, such as agriculture. According 
to De-Martonne climatic zoning, Iran has 28 different climatic classes (Rahimi et al.51). The majority of regions 
in Iran have arid (central desert, southwest, and southwest of the country) and semi-arid climates (the Zagros 
Mountains in the west and northwest of the country as well as northeastern regions), and only small areas of Iran 
have humid climates (the Southern shore of the Caspian Sea in the north). The evapotranspiration rate, which 
is affected by different meteorological factors, varies in different climatic zones. For example, in arid regions like 
Ahwaz, the range of ET0 is between 40 and 350 mm per month, while in humid climates like Ramsar, the ET0 
varies between 20 and 158 mm per month. This paper aims to investigate the effect of the climate type on the 
accuracy of models predicting evapotranspiration. For this, six synoptic stations from different climates of Iran 
are considered, which are illustrated as Fig. 1 (R packages “sf ”  [Pebesm52] and “ggplot2”  [Wickham53] were used 
to draw this figure).

Three stations were selected from the humid and sub-humid areas of northern Iran (on the southern margin 
of the Caspian Sea). The other three stations were from arid and semi-arid areas in central and southwestern 
parts of Iran. Most of the agricultural lands in the humid northern areas are under rice cultivation, and the hor-
ticultural lands in this area are often under citrus cultivation. In the arid and semi-arid regions of the southern 
parts of Iran, the main crops include wheat and maize, and the important horticultural crops are grapes and 
pistachios. A summary of the information about this study’s climatic zones, stations, and common products is 
shown in Table 1.

The data used in this paper include monthly meteorological data that belong to the period of 1995 to 2018. 
These data include minimum air temperature (Tmin), maximum air temperature (Tmax), mean air temperature 
(Tmean), minimum relative humidity (RHmin), maximum relative humidity (RHmax), and sunshine duration 
(SSD), which are prepared on a monthly scale of the Iranian Meteorological Organization (IRIMO). The tem-
perature and humidity variables (Tmin, Tmax, Tmean, RHmax and RHmin) are measured in Stevenson screen 
box at 1.35 m height from the land surface, and the SSD is measured by sunshine recorder at 1.5 m height. The 
quality control of these datasets have been checked. There were a few numbers of missings and outliers that 
were modified using averaging method. Using these data and the FAO-56 PM model, the amount of monthly 
evapotranspiration was calculated in the six mentioned stations. The reference evapotranspiration based on the 
FAO-56 PM method is calculated by Eq. (1):
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 at 2 m, and the difference between satura-
tion and actual vapor pressure ( kPa ), respectively (Allen et al.1). According to Allen et al.1,  �, γ were computed 
as a function of atmospheric pressure obtained from the local altitude (m), and the maximum and minimum 
relative humidity as well as maximum and minimum temperature values were used to compute ea and es . Net 
radiation is the difference between net incoming shortwave solar radiation and outgoing longwave terrestrial 
radiation. Due to the lack of measurement of the actual solar radiation in most synoptic stations like the one in 
this research, solar radiation can be estimated from the Angstrom formula based on the actual sunshine duration. 
Moreover, the net output longwave radiation was estimated according to the modified Stefan-Boltzmann law by 
considering the effect of cloudiness and atmospheric humidity (downward longwave from the sky). Interested 
readers can refer to Allen et al. 1. The “evapotranspiration” package in R software was used to estimate the evapo-
transpiration rates. For modeling, the period under study was divided into two parts of training and testing that 
include 75% (the first 18 years of 1995–2012) and 25% (the remaining six years of 2013–2018), respectively. In 
the training phase, the model is extracted, and the extracted model is applied for predicting ET0 during the 
testing phase. Then the models’ predictions will be validated by the actual (calculated) ET0. The characteristics 
of the meteorological data and the calculated evapotranspiration data are shown in Table 2.

Time series model. A time series is a set of recorded observations of a variable such as Xi Overtime in the 
form of X1 , X2 , X3 , …, XN, among which the time interval is equal (Gautam and  Sinha54). Time series models 
are stochastic models that work based on regression coefficients and use the time lags of the target variable as 
the model’s input variable. These models include autoregressive (AR), integrated (I), and moving average (MA) 
components. They are shown in an integrated state known as autoregressive integral moving average (ARIMA). 
The seasonal ARIMA (SARIMA) model is a model that can be used for numerical simulation of the stochastic 

(1)ET0 =
0.408�(Rn − G)+ γ 900

(Ta+273)u2(es − ea)

�+ γ (1+ 0.34u2)
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behavior of periodic time series. In other words, SARIMA is a linear parametric stochastic model that can be 
used to model and predict variables which have seasonal autocorrelations. The cross form of this model is shown 
as SARIMA(p, d, q) × (P, D, Q)ω, in which ω is the periodicity, p, d, and q are the non-seasonal degrees of autore-
gressive, differencing, and moving average, respectively, and P, D, and Q are the seasonal degrees of autoregres-
sive, differencing, and moving average, respectively. The general form of this model is shown below:  (Salas55):

In this formula Xt is a stochastic variable as the target, and εt is a normal random variable with mean μ and 
variance σ 2

ε  , as a residual. The parameters of B including Φ, ϕ, ∇D
ω  , ∇d , Θ, θ, represent the backward operators 

associated with seasonal autoregressive, non-seasonal autoregressive, seasonal differencing and non-seasonal dif-
ferencing, seasonal moving average, and non-seasonal moving average, respectively. Their equations are described 
in Eqs. 3–8  (Salas55).

(2)�P
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Bω
)
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D
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dXt = θq(B)�Q
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Bω
)

εt

(3)�P

(

Bω
)

=
(

1−�1B
ω×1 − . . .−�PB

ω×P
)

Figure 1.  Location of the stations under investigation on the country (the map is generated in R software by the 
authors).
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We used the Minitab software and the SARIMA model to simulate and predict evapotranspiration time series 
in this research.

Adaptive neuro‑fuzzy inference system (ANFIS). ANFIS model can make relationships between 
input and output data using fuzzy rules to learn from a neural network to generate input structure for a system. 
ANFIS model designs and creates nonlinear maps to define relationships between input and output spaces by 
employing the artificial neural network and fuzzy logic, which is known as a neuro-fuzzy system. fuzzy systems 
include three different parts: fuzzification, inference engine, and defuzzification. By utilizing fuzzy inference 
systems, fuzzy rules are achieved. A fuzzy inference system consists of two different inferences, namely Mam-
dani (Mamdani and  Assilian56) and Sugeno (Takagi and  Sugeno57). They both work great when combined with 
an optimization algorithm and adaptive techniques (Khosravi et al.39). In this paper, we use Sugeno inference. 
Figure 2 shows the structure of the ANFIS model.

These two equations are the base rules of Sugeno inference:

ANFIS model contains different layers. Layer one, in this model, is the fuzzification layer. Each node receives 
a signal and then transfers it to the next layer. The following equation describes the cells’ outputs ( Oi

1 ) (Khosravi 
et al.39; Haznedar and  Kalinli58):

µAi is related to membership function (MF). Ai is linguistic variable and is related to node function. The fol-
lowing equation shows the standard formula for µAi

In this equation, x is the input, and ai , bi , ci are premise parameters. Layer 2 is called the rule layer which is 
obtained by membership degrees. All the output nodes establish the firing strength of a fuzzy rule.

(4)φp(B) =
(

1− φ1B
1 − . . .− φpB

p
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(5)∇D
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(8)θq(B) =
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q
)

(9)Rule 1 : if x is A1 and y is B1, then f1 = p1x + q1y + r1

(10)Rule 1 : if x is A2 and y is B2, then f2 = p2x + q2y + r2

(11)Oi
1 = µAi (x); i = 1, 2

(12)µAi (x) = exp







−

�

�

x − ci

ai

�2
�bi







(13)Oi
2 = wi = µAi (x) · µBi

(

y
)

; i = 1, 2

Table 1.  The studied stations’ location, climate (according to extended De-Martonne classification) and the 
main agricultural/horticultural products of their regions.

Province Station

Coordinates Climate (based on 
extended De-Martonne 
method)

Main products

Latitude–northern 
(degree)

Longitude–eastern 
(degree) Elevation (m) Agricultural Horticultural

Gilan Bandar Anzali 37.47 49.47 − 26.2 Per humid(B)—Mod-
erate

Rice cultivars; tobacco; 
watermelon

Tea; olive; citrus; kiwi; 
plum

Mazandaran
Ramsar 36.90 50.67 − 20.0 Per humid(A)—Mod-

erate Rice cultivars; wheat; 
soy; rapeseed

Citrus; kiwi; ornamen-
tal flower; plants

Gharakhil 36.45 52.77 14.7 Sub-humid—Moderate

Khuzestan Ahwaz 31.33 48.67 22.5 Arid—Warm Wheat; barley; maize; 
legumes; rapeseed

Vegetable; cucurbits; 
potato; onion

Fars Shiraz 29.53 52.60 1484.0 Semi-arid—Moderate Wheat; barley; sugar 
beet; maize

Almonds, grapes, 
pomegranates, damask 
rose; figs

Yazd Yazd 31.90 54.28 1237.2 Extra arid—Cold Sorghum, fodder maize, 
millet, legumes, alfalfa

Pistachios, pomegran-
ates, apricots, saffron
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Layer 3 is the normalization layer. In this layer, all the nodes are fixed and tagged with N. The rule’s firing 
strength to the sum of all rules’ firing strengths is the ratio calculated by the ith node in the normalization layer.

(14)Oi
3 = wi =

wi

w1 + w2
; i = 1, 2

Table 2.  Specifications of the meteorological data used and the calculated ET0 on the monthly scale. 
*Min. = Minimum; Max. = Maximum; STD = Standard deviation. **The rows bolded in this comment, show 
the extreme values of the variable. For example, the minimum values of Tmin and RHmin, belong to the 
Shiraz and Yazd stations, respectively. Or the maximum values of Tmax and RHmax, belong to the Ahwaz 
and Gharakhil stations, respectively. For the variables SSD and ET0, both minimum (Ramsar) and maximum 
values (Shiraz and Ahwaz) are bolded.

Station Variable

Training period (1995–2012) Testing Period (2013–2018)

Min.* Max Average STD Min Max Average STD

Bandar Anzali

Tmin (°C) 0.80 25.40 14.41 6.85 3.10 26.10 14.80 6.84

Tmax (°C) 5.30 31.80 19.24 7.14 8.40 32.80 20.12 7.57

Tmean (°C) 3.00 28.40 16.82 6.99 5.80 29.30 17.46 7.18

RHmax (%) 81.20 96.90 92.21 3.09 81.50 96.50 91.68 3.73

RHmin (%) 54.80 84.10 73.11 5.72 53.90 84.40 71.76 7.04

SSD ( hr

month
) 28.50 337.60 161.74 73.68 40.40 339.70 163.78 82.92

ET0 ( mm

month
) 20.60 174.30 74.39 43.57 22.70 170.30 80.42 49.65

Ramsar

Tmin (°C) 0.90 24.90 13.77 6.82 2.90 25.40 14.34 6.85

Tmax (°C) 7.10 31.50 19.93 6.86 9.20 32.50 20.43 7.23

Tmean (°C) 4.00 28.20 16.86 6.82 6.10 28.90 17.39 7.03

RHmax (%) 80.60 97.30 89.85 3.33 80.30 95.10 90.18 3.80

RHmin (%) 56.50 84.20 69.07 4.83 56.70 82.70 69.61 5.82

SSD ( hr

month
) 39.00 289.20 139.53** 51.16 52.80 309.70 140.29 58.79

ET0 ( mm

month
) 20.90 158.50 71.52 37.90 23.20 151.70 72.77 42.10

Gharakhil

Tmin (°C) -1.30 23.80 12.76 7.14 1.50 24.20 13.03 7.20

Tmax (°C) 8.10 34.80 21.98 7.14 11.70 34.70 22.58 7.35

Tmean (°C) 3.40 28.80 17.37 7.11 6.60 29.20 17.80 7.26

RHmax (%) 89.40 98.90 95.40 2.04 89.20 97.00 94.16 2.07

RHmin (%) 46.50 76.90 62.45 5.59 47.60 73.50 62.27 5.41

SSD ( hr

month
) 40.30 310.20 170.11 49.43 73.30 317.60 169.54 53.09

ET0 ( mm

month
) 23.40 164.40 78.10 40.16 20.20 169.70 80.22 44.70

Ahwaz

Tmin (°C) 6.20 31.50 19.44 7.86 7.40 31.40 19.79 8.02

Tmax (°C) 14.70 48.10 33.60 10.59 17.40 48.90 34.15 10.24

Tmean (°C) 10.40 39.80 26.52 9.20 13.40 39.90 26.98 9.10

RHmax (%) 28.10 95.80 60.09 19.00 27.80 96.30 62.35 18.27

RHmin (%) 6.80 67.10 23.85 14.67 7.80 64.70 25.46 13.46

SSD ( hr

month
) 162.40 383.60 273.79 58.02 163.60 370.30 272.99 58.36

ET0 ( mm

month
) 40.20 354.50 169.06 93.21 44.80 310.50 161.89 85.55

Shiraz

Tmin (°C) -2.00 24.20 10.95 7.46 -1.10 22.30 10.46 7.29

Tmax (°C) 9.40 40.10 26.33 9.17 11.70 40.10 26.90 8.85

Tmean (°C) 4.80 32.10 18.64 8.26 5.60 31.10 18.68 8.04

RHmax (%) 30.00 91.90 58.33 17.96 27.80 90.90 58.51 18.24

RHmin (%) 6.60 54.50 20.86 11.01 4.30 49.50 17.51 10.04

SSD ( hr

month
) 208.50 372.30 296.88 40.68 222.70 370.30 294.97 40.10

ET0 ( mm

month
) 37.90 251.40 133.79 64.01 44.70 224.50 129.44 60.15

Yazd

Tmin (°C) -4.40 28.30 13.24 8.74 1.10 27.40 14.32 8.46

Tmax (°C) 4.80 42.60 27.33 9.62 12.40 41.80 27.87 9.05

Tmean (°C) 0.20 35.50 20.29 9.16 6.80 34.60 21.10 8.74

RHmax (%) 15.50 87.70 41.06 19.22 12.60 80.40 38.11 17.38

RHmin (%) 5.10 57.60 16.25 9.96 4.90 39.60 14.49 7.54

SSD ( hr

month
) 209.80 376.80 292.77 47.08 200.40 383.00 296.97 47.65

ET0 ( mm

month
) 34.00 289.10 156.13 73.86 55.30 273.50 155.87 70.35
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The defuzzification layer is layer 4 of the ANFIS model. Each rule uses the value of the previous layer to 
compute the output value.

In this equation, wi  comes from the previous layer, namely layer 3. wi  is a normalized firing strength and pi , 
qi , and ri are the consequent parameters. Layer 5 is called the sum layer. By summing the output values of the 
rules that come from the previous layer, the final output of the ANFIS model is calculated.

To implement the ANFIS model, we used MATLAB software in this study.
To summarize, the ANFIS model contains two sets of parameters: premise parameters and consequence 

parameters. Premise parameters are input parameters of MFs, and they aim to specify the shape and the location 
of the input MFs (parameters of input MFs). Consequence parameters are the output parameters of MFs (param-
eters of output MFs) (Jang 59). Classical ANFIS uses the least square (LS) methods to estimate these parameters. 
However, in the current research, we have developed a novel ANFIS-DE model, which uses the meta-heuristic 
DE algorithm to estimate ANFIS’s sets of parameters.

Differential evolution (DE) optimization algorithm. Although differential evolution (DE) uses basic 
optimized operations such as mutation, crossover, and selection, it is an impressive and powerful optimization 
algorithm. One of the privileges of this algorithm is that it has parallel search methods and uses NP, and also 
has D-dimensional vectors of parameters (Omidi and  Mazaheri60). The advantage of these vectors is that they 
do not change during the minimization procedure. DE performs a population process for each generation G. 
First, one population vector is randomly initialized, including the parameters, and this probability distribution 
is uniformed. When the preliminary solution is achieved, the DE algorithm calculates the difference between the 
weights of two population vectors and assigns it to the third vector in order to produce new parameter vectors, 
which is known as the mutation operation (Halabi et al.34):

According to vi,G+1 , these mutant vectors, xi , G and i = 1, 2, 3, . . . ,NP are created, while r1 , r2 , and r3 are 
randomly integers, and NP is selected from this distribution: integers ∈ [1, 2, 3, . . . ,NP]. Moreover, I and F are 
real values, and they are different ∈ [1, 2, 3, . . . ,NP].

During the mixing process, which is also called crossover operation, parameters of the mutated vector are 
mixed with other vector parameters to create the trial vector. The following equations describe this mixing 
process:

(15)Oi
4 = wifi = wi

(

pix + qiy + ri
)

; i = 1, 2

(16)Oi
5 = overall output =

∑

i

wifi =

∑

i wifi
∑

i wi
i = 1, 2

(17)vi,G+1 = xi,G + F
(

xr2,G − xr3,G
)

(18)ui,G+1 =
(

u1i,G+1, u2i,G+1, . . . , udi,G+1

)

(19)uji,G+1 =

{

vji,G+1; if randb
(

j
)

≤ CR or j = rnbr(i)
xji,G+1; if randb

(

j
)

> CR or j �= rnbr(i)

∏

∏

N

N

B1

B2

A1

A2

∑

y

x

x y

x y
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W1

W2

f

Figure 2.  The schematic structure of an ANFIS model with two inputs.
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In this equation, ui,G+1 is the trailer, and xi,G is the target vector, where ui,G+1 and xi,G are the trailer and tar-
get vectors, respectively. randb

(

j
)

 is the Jth uniform random evaluation ∈ [0.1] , rnbr(i) is a random value index 
∈ [1, 2, 3, . . . , d], and  CR is a crossover constant determined by users. The selection operation is the last step. The 
trial vector costs a lower cost function than the target vector. Therefore, the selection operation uses the trial vec-
tor as a target value for the next generation. NP competitions are assumed like one generation procedure as each 
population vector has to serve once as the target vector. Complementary descriptions about the DE optimization 
algorithm can be found in Storn and  Price61 and Halabi et al.34. The DE algorithm flowchart is illustrated in Fig. 3.

In this paper, the DE algorithm is implemented by coding in MATLAB software’s environment. The trial and 
error method is used to choose the best operators of DE to optimize the ANFIS model. They are illustrated in 
Table 3.

Evaluating the accuracy of the predictions. This study uses six criteria to evaluate the performance of 
the models: root mean square error (RMSE), normalized RMSE (NRMSE), mean absolute error (MAE), percent 
bias (PB), Pearson correlation coefficient (R), coefficient of determination (R2), and Nash- Sutcliff coefficient 
(NS). In general, these criteria are used to compare the accuracy of different models with one another. Further-
more, they are used to compare the accuracy of models in different climates. To calculate them, we need two 
series of predicted and observed evapotranspiration data. Their equations are as follows.

(20)RMSE =

√

√

√

√

1

n

n
∑

i=1

(ETOi − ETPi)
2; 0 < RMSE < +∞

Start
Generate mutant
vector for a new

population vectors

Apply selection and
Evaluation criteria

Update the lower cost
function values

The values meet the
proposed criteria EndYesNo

Figure 3.  Flowchart of the optimization process based on differential evolution algorithm.

Table 3.  The operators of differential evolution algorithm.

Operator Value

Population 100

Maximum number of iterations 200

Crossover probability 0.1

Scaling factor lower bound 0.2

Scaling factor upper bound 0.8
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ETOi shows the amount of the observed evapotranspiration (FAO-56 PM calculated ET0) of the ith month, 
ETPi is the amount of evapotranspiration predicted in the ith month, ETO shows the mean of observed evapo-
transpiration, ETP represents the average of the predictive evapotranspiration, ETOmax is the maximum of the 
observed evapotranspiration, and finally ETOmin is the minimum of the observed evapotranspiration. According 
to the defined range for these criteria, the closer the RMSE, NRMSE, MAE and PB are to zero, and the closer NS, 
R, and R2 are to one, the better the model performance is. Another point about NRMSE is that it has 4 intervals 
while evaluating the models’ quality: (1) NRMSE > 0.3 poor performance, (2) 0.2 < NRMSE < 0.3 average per-
formance (3) 0.1 < NRMSE < 0.2 good performance and (4) 0 < NRMSE < 0.1 excellent performance (Bahrami-
Pichaghchi and  Aghelpour62). From another point of view, the used criteria are divided into four categories: (I) 
Accuracy: these criteria can show the errors of the models in ET0 prediction, including RMSE, MAE; (II) preci-
sion: these criteria can show the quality of the models in ET0 prediction, including NRMSE and NS; (III) under 
or overestimation: this criterion can talk about the models’ under/overestimation in ET0 prediction, including 
PB; (IV) correlation: these criteria show the correlation intensity between the models’ predictions and their 
observed values, including R and R2. It should be noted that all these criteria will be applicable for comparing 
several models in a specific station.

The general process of modeling and predicting the evapotranspiration time series in this paper is shown as 
a flowchart in Fig. 4.

Results
Modeling and evaluating the predictions. In this study, the ET0 rates were first calculated by FAO-56 
PM method, and the meteorological variables, are represented in Table 1. Then the models were applied for ET0 
prediction. It’s worth mentioning that if the inputs are the meteorological variables, the modeling problem is 
applicable for an “estimation” case and is not usable for a “prediction” (for the future). For a time series predic-
tion problem, the model inputs must have time lag(s) and the output’s time lag must be equal to zero. Since the 
time series stochastic models are only able to consider the main variable’s time lags as input, the same inputs 
(time lags of ET0) are considered for the ANFIS and ANFIS-DE models too, for a fair comparison. Therefore, 
autocorrelation function (ACF) diagrams for different stations were considered (Fig. 5) that show the extent and 
significance of the correlation of the variable with its previous steps’ amounts.

As Fig. 5 indicates, the ET0 data in all six stations have a significant seasonal trend. The ET0 time series are 
periodic and have a 12 months periodicity. To moderate this seasonal trend, we considered several degrees of 
seasonal differentiations with a lag of 12 months (equal to the periodicity). Investigations showed that order “one” 
seasonal differentiation has the best consistency with ET0 data. As a result, the SARIMA model is modified as the 
SARIMA pattern SARIMA (p,0,q)(P,1,Q)12. Moreover, when the time lag increases, the significance threshold of 
correlation (dashed line) increases; with more than three return periods (36 months), it reaches a point that is 
practically logical not to use them as inputs. Therefore, a maximum lag of 36 months is considered as input for all 
models. In the SARIMA model, this includes seasonal autoregressive and moving average degrees (P & Q), which 
are equal to 1, 2, and 3. These degrees and also the non-seasonal degrees of autoregressive and moving average 
(p & q) were all tested, and their best performance was selected for each station and reported in Table 4. Simple 
and hybrid ANFIS models (ANFIS & ANFIS-DE) were implemented based on the fuzzy cluster means (FCM) 
clustering method. Lags of 1, 6, 12, 18, 24, 30, and 36 months were also considered as inputs to these AI models.

In Table 4, the predictions of all three models were evaluated by the mentioned evaluation metrics. Since the 
test section actually shows the validity of the models, the test section is also discussed in the interpretations of 
this section. At first, it can be seen that in all stations, the R coefficients are very high, which indicates the optimal 

(21)NRMSE =

√

1
n

∑n
i=1 (ETOi − ETPi)

2

ETOmax − ETOmin
; 0 < NRMSE < +∞
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n
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Figure 4.  General flowchart of the evapotranspiration modeling, prediction, and evaluation processes.
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Figure 5.  Autocorrelation plots for the monthly ET0 time series; the alphabets within the brackets refer to the 
stations: (a) Bandar Anzali, (b) Ramsar, (c) Gharakhil, (d) Ahwaz, (e) Shiraz, (f) Yazd.
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performance of the models in predicting monthly ET0 (the minimum value of R is equal to 0.949, which belongs 
to the simple ANFIS model in Ramsar station). Additionally, the amount of PB in all cases is very small (close to 
zero), which confirms the lack of significant under/overestimation and, consequently, the excellent performance 
of the models. According to Table 4, the SARIMA linear model has superior performance in all stations than 
the other two models, and the weakest performance among the models belongs to the simple ANFIS model. In 
combination with the ANFIS model (ANFIS-DE), the DE algorithm was able to increase the prediction accuracy 
for ANFIS by an average of 15.8%. The lowest prediction error belongs to the SARIMA model at Shiraz station 
with RMSE = 7.918 mm

month . The highest prediction error is reported in Ahwaz station with RMSE = 16.906 mm
month , 

which belongs to the simple ANFIS model.

Comparing the models. Scatter plots are used for graphical illustration of the correlation between the 
predicted and actual values of monthly ET0 (Fig. 6).

In Fig. 6, the horizontal axis of the graphs represents the observed ET0 data, and the vertical axis represents 
the predictions presented by the models. This figure shows that, at all stations, the slope of the fitted regression 
line between the observed-predicted data samples is very small, associated with the X = Y line. The points are well 
concentrated around their regression line, and this concentration is more on the diagrams related to the SARIMA 
model than the other two models. On the other hand, the R2 coefficient shows that the SARIMA linear model 
offers a better prediction than the other two nonlinear and complex models, i.e., ANFIS and ANFIS-DE. Also, 
ANFIS-DE predictions show better correlations compared to simple ANFIS. The diagrams in Fig. 6 show that 
the weakest performance belongs to the predictions of ANFIS in Ramsar (R2 = 0.901), and the best performance 
belongs to the predictions of SARIMA at Yazd station (R2 = 0.984). The Taylor diagram is also represented for 
each station to compare the models (Fig. 7).

This diagram (Fig. 7) can simultaneously check the correlation and the error and also compare the standard 
deviations of the outputs of several models and their observed values. In these diagrams, point O is an indicator 
of observed data, and points A, B, and C are the indicators of the SARIMA, ANFIS, and ANFIS-DE models, 
respectively. At all stations, point A is located closest to point O, confirming the superiority of the SARIMA 
model. After that, ANFIS-DE (point C) and ANFIS (point B) models are located in the second and third places, 
respectively. The best position of points A, B, and C belongs to Shiraz station, where these points are placed 
between two circles RMSE = 5 mm

month and RMSE = 10 mm
month , and around the radius R = 0.99. At Yazd station, a 

situation similar to Shiraz station is observed. The weakest points’ position can belong to Bandar Anzali station, 
where points A, B, and C are farthest from point O, between circles of RMSE = 10 mm

month and RMSE = 15 mm
month , 

and between two radii of R = 0.99 and R = 0.95. Furthermore, a comparison of the standard deviations between 
outputs and the observations reveals that the points of the models, especially point A, are in a favorable position 
relative to the quadrant close to point O. This shows that the models, especially SARIMA, can favorably estimate 
the standard deviation of actual ET0 values.

Comparing ET0 prediction accuracy in different climates. In general, the comparison between the 
stations in Fig. 7 indicates that the humid stations are in weaker ranges of error and correlation than the arid 

Table 4.  Evaluating the models’ predictions by evaluation criteria. *Bold rows specify the best-fitted model in 
each station.

Station Model

Train Test

RMSE ( mm

month
) PB R RMSE ( mm

month
) PB R

Bandar Anzali

SARIMA(1,0,0)(2,1,2)12* 9.436 − 0.026 0.977 10.078 − 0.042 0.982

ANFIS 8.177 − 0.014 0.983 12.767 0.035 0.970

ANFIS-DE 10.492 − 0.019 0.971 10.532 − 0.018 0.977

Ramsar

SARIMA(1,0,2)(3,1,3)12 8.973 − 0.011 0.973 9.711 − 0.028 0.975

ANFIS 8.130 − 0.011 0.977 13.257 − 0.013 0.949

ANFIS-DE 11.171 − 0.015 0.957 10.998 − 0.013 0.965

Gharakhil

SARIMA(1,0,0)(3,1,1)12 10.909 − 0.013 0.963 9.713 − 0.041 0.979

ANFIS 9.624 − 0.014 0.971 12.569 − 0.018 0.960

ANFIS-DE 12.300 − 0.018 0.953 10.711 − 0.005 0.970

Ahwaz

SARIMA(1,0,1)(2,1,3)12 14.844 − 0.003 0.987 12.789 0.020 0.990

ANFIS 12.597 − 0.008 0.991 16.906 − 0.021 0.983

ANFIS-DE 16.134 − 0.008 0.984 14.533 − 0.020 0.985

Shiraz

SARIMA(1,0,1)(2,1,2)12 8.364 − 0.004 0.991 7.918 0.013 0.992

ANFIS 6.281 − 0.004 0.995 9.920 − 0.007 0.986

ANFIS-DE 10.408 − 0.009 0.987 9.077 − 0.014 0.988

Yazd

SARIMA(2,0,0)(3,1,3)12 10.142 − 0.007 0.991 8.897 0.005 0.994

ANFIS 8.858 − 0.008 0.993 10.537 0.007 0.989

ANFIS-DE 11.224 − 0.011 0.989 9.548 0.000 0.991
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stations. Also, according to Fig. 6, the  R2 value resulting from the SARIMA model in humid and sub-humid 
climates is in the range of 0.95–0.96, while it is in the range of 0.97–0.98 in arid and semi-arid regions. Therefore, 
it is evident that ET0 is predicted slightly better in arid areas. However, due to the different range of ET0 data 
in different climates (Table 2), it is better to consider the normalized RMSE (NRMSE) criterion at stations for 
evaluation (Fig. 8).
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Figure 6.  Scatter plots to investigate the models’ predictions against their simultaneous observed values; the 
alphabets within the brackets refer to the stations: (a) Bandar Anzali, (b) Ramsar, (c) Gharakhil, (d) Ahwaz, (e) 
Shiraz, (f) Yazd.
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In Fig. 8, the NRMSE and NS criteria for the test period were plotted together as a combo-graph. This dia-
gram is drawn separately for all models at all stations. At first, we can observe that all models have an NS value 
greater than 0.9, which confirms the models’ favorable prediction of ET0. Moreover, the NRMSE value in all 
stations is less than 0.1. According to the quality classes defined for NRMSE, the predictions for all climates in 
this study are considered very reasonable. The visible trend of NS and NRMSE is similar across stations. Both 
criteria indicate a better prediction of ET0 in arid and semi-arid climates. In other words, if the NS level increases 
at a station, the NRMSE level will decrease at the same station (which is well illustrated in the combo-graph). 
Therefore, we can state that both criteria achieved similar results in comparing the accuracy of ET0 prediction 
among the climates. For example, in the ANFIS-DE model for humid and sub-humid stations, the NRMSE is 
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between 0.07 and 0.09 and the NS is between 0.93 and 0.95, while for arid and semi-arid stations, NRMSE is 
between 0.04 and 0.06 and NS is between 0.97 and 0.98. In the combo-graph belonging to the SARIMA model, 
the NRMSE value for humid and sub-humid areas is between 0.06 and 0.08, and the NS value is between 0.94 
and 0.96, while for arid and semi-arid areas, the NRMSE is between 0.04 and 0.05, and the NS is between 0.98 
and 0.99. The comparison of the models is similar to the previous diagrams and tables, which reported that the 
SARIMA model is more appropriate. The predictions provided by the models can also be seen graphically in 
time-series plots (Fig. 9) to observe the overlaps.

Discussion
For ET0 modeling, the simple and hybridized AIs have been examined in several studies (as mentioned in the 
introduction section). Mohammadi and  Mehdizadeh2, Roy et al.27, Tao et al.28, Eslamian et al.29, Aghajanloo 
et al.30, Yin et al.31, and Gocić et al.32 are such these studies that have shown the combination of AIs with bio-
inspired algorithms, can significantly improve the accuracy of simple AIs in ET0 modeling; which is similar to 
the current study’s results. However, in these mentioned studies the modeling was only applicable in the “esti-
mation” of ET0 and is not examined for future “prediction” of ET0 rates; which distinguishes the mentioned 
studies from the current study. The desirability of the prediction accuracy of time series models in the current 
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Figure 7.  Taylor diagrams to compare the models in the stations; the diagram of each station is specified by its 
own name.



15

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17363  | https://doi.org/10.1038/s41598-022-22272-3

www.nature.com/scientificreports/

study is similar to the research of Gautam and  Sinha54, Landeras et al.15, Psilovikos and  Elhag63, Mossad and 
 Alazba64, and Bouznad et al.65, that have been conducted in different climatic regions. The superiority of time 
series models over AIs in ET0 forecasting in Iran has also been reported in Ashrafzadeh et al.18 and Aghelpour 
and Norooz-Valashedi19. However, their studies only addressed the humid northern climate of Iran. Additionally, 
Ashrafzadeh et al.18 and Aghelpour and Norooz-Valashedi19 used non-hybridized artificial intelligence models, 
while the current research showed that the novel hybrid ANFIS-DE model can significantly increase the accuracy 
of the simple ANFIS model. In Brazil, however, AIs provided a relatively more accurate prediction of ET0 than 
time series models did (Lucas et al.16), which contradicts the results of the current study. This contradiction could 
be due to the differences between the climatic conditions of the studies’ regions.

Comparing the climates of the present study showed that the geographical location and the physical sys-
tems involved can be factors influencing the accuracy of ET0 prediction. For example, the humid regions of 
northern Iran are affected by Caspian atmospheric systems and various western systems, such as the Black Sea 
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and the Mediterranean Sea, whereas the western and southwestern regions of Iran (like Shiraz and Ahwaz) are 
only weakly affected by the Saudi Arabia’s high-pressure and Sudan’s low-pressure systems. Susceptibility to a 
large number of systems can disrupt the order of time series, reduce autocorrelation, and consequently lead to 
poor prediction. This difference in the order of the ET0 series in different climates is depicted in the diagrams 
of Fig. 9. On the other hand, these three stations of Shiraz, Ahwaz, and Yazd, are located near the subtropical 
high-pressure belt (SHPB) (latitude 30 degrees), which can stabilize the weather regime in these areas, and thus 
make the ET0 series more regular. By moving away from the SHPB and approaching the latitudes of the humid 
northern regions, the effects of the irregularity of the annual regime become more obvious. This irregularity 
can decrease the autocorrelation of ET0 series (it is almost distinguishable in ACF plots of Fig. 5), and since 
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the predictions are directly affected by ET0 time lags and autocorrelation within them, it can eventually cause a 
relative increase in the prediction errors in these humid areas.

Conclusion
Studies have shown that the water requirement of plants can be predicted with outstanding accuracy by using the 
time lags of the evapotranspiration variable. The currently used data-driven approaches could provide accept-
able predictions of ET0, regardless of the various atmospheric and physical factors that affect it. This result is 
similar in all currently studied climates. Despite the significant improvement of the ANFIS model combined with 
the differential evolution optimization algorithm (about 16%), it still fails to compete with the SARIMA linear 
model. According to Ashrafzadeh et al.18,66, the reason is that the linear autocorrelation is stronger than non-
linear autocorrelation in the ET0 time series. Finally, the present study proposes time series models for a better 
prediction of ET0 for two reasons: (1) higher accuracy and (2) the simplicity of use. Another important conclu-
sion of this paper is that the climate type of a region significantly affects the accuracy of the models predicting 
ET0. ET0 was predicted more accurately in the arid and semi-arid climates of southern Iran than the humid and 
sub-humid regions of its north. Due to the high accuracy and promising results of the present study, using these 
data-driven models to predict plants’ water needs in other geographical areas is recommended. As a practical 
aspect of the current results, to predict the actual water requirement of a specific crop, the predicted ET0 rate can 
be obtained by multiplying the crop’s coefficient (FAO coefficients or the local reported coefficient). Moreover, 
utilizing the current models, especially SARIMA and the hybrid ANFIS-DE, has research value for long-term and 
multi-ahead years prediction of monthly ET0. The use and comparison of stochastic, artificial intelligence, and 
metaheuristic models in predicting ET0 on a daily scale can be an interesting topic of study, which we suggest to 
future researchers in this field. It’s worth mentioning that due to the limitations of the SARIMA model (which 
cannot consider other options as input to the model except the time lags of the evaporation variable itself), the 
machine learning models were applied by the inputs of ET0 time lags, to make a logicalcomparison. Therefore, 
it is suggested that future studies investigate the impacts of other hydro-meteorological factors’ time lags, such 
as droughts, heat waves, solar radiation, temperaturte, humidity, wind speed, etc. for ET0 prediction, which can 
only be applied by machine learning algorithms.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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