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The impact of 1.5 °C and 2.0 °C 
global warming on global maize 
production and trade
Kuo Li1*, Jie Pan1, Wei Xiong2, Wei Xie3 & Tariq Ali3

Climate change is becoming more and more remarkable which has an obvious impact on crop yields 
all over the world. Future climate scenario data was simulated by 5 climate models recommended 
by ISI-MIP under 4 RCP scenarios, in which the approximate scenarios with global warming by 1.5 °C 
and 2 °C were selected. Applying DSSAT and GTAP models, the per unit yield changes of maize in the 
world under global warming by 1.5 °C and 2.0 °C were analyzed and the market prices of maize at 
national and global levels were simulated. The results showed that, the risk of maize yield reduction 
under 2.0 °C scenario was much more serious than 1.5 °C scenario; the ratios of yield changes were 
separately 0.18% and − 10.8% under 1.5 °C and 2.0 °C scenarios. The reduction trend of total maize 
production is obvious in the top five countries and the main producing regions of the world, especially 
under the 2.0 °C scenario. The market price of maize would increase by around 0.7% and 3.4% under 
1.5 °C and 2.0 °C scenarios. With the quickly increasing population in the world, it is urgent for all 
countries to pay enough attention to the risk of maize yield and take actions of mitigation and 
adaptation to climate change.

In the past hundred years, the global climate has experienced great changes1–4. According to the sixth assess-
ment report of IPCC, the global average surface temperature increased by 1.09 °C between 1850 and 2020, and 
almost all regions in the world experienced surface warming5. Due to global warming, the extreme climate events 
become more and more frequent, and the ecological environment problems caused by climate change are more 
and more serious, which restrict the sustainable development of human society and health6–10. Global warming 
has gradually changed from a scientific issue to a major social issue of common concern to governments and 
people of all countries11–13. In 2016, nearly 200 parties of the United Nations Framework Convention on climate 
change reached the Paris Agreement at the climate change conference in Paris14. Paris Agreement has indicated 
that it is urgent to hold the increase in global average temperature well below 2.0 °C above pre-industrial levels 
and pursue efforts to limit the temperature increase to 1.5 °C above pre-industrial levels.

Faced with climate change, agriculture is the most vulnerable sector, which will experience the largest negative 
impacts from climatic change and lead to more serious food security in the whole world15–20. Meanwhile, global 
production losses might lead to price shocks and trigger export restrictions21–24; an increasingly interconnected 
global food system25,26 and the projected fragility of the global food production system due to climatic change 
further exacerbate the threats to food security in the worldwide27–29. So, the impacts of climate changes on crop 
yields and prices have been of highly concerned. Numerous studies have revealed that the warming trend has 
negative impact on crop yields and global trade in most regions all over the world30–32. There are three main 
methods for impacts assessment of climate change on crops, including environment-controlled experiments, 
statistical regression analysis and model simulations17,33. Environment-controlled experiments are designed 
to observe the influence of climate factors on crops, such as drought, flood, heat stress, cold damage, elevated 
CO2 concentration, through which the impact mechanism of climate change on crops would be revealed and 
established23,34,35. Crop models and trade models are applied to simulate the response of crop yield and market 
price under climate change, based on process-based crop growth in daily time steps, either in selected field sites 
or in selected regions36–39. The statistical regression analysis usually explores the relationship between historical 
crop yields and meteorological records in different sites or counties to establish regression functions for crop 
responses predictions40–43. These researches have documented that crop yield and price would be threatened 
much more seriously by global warming, especially due to the increasing trend of frequency and intensity of 
climate extreme events in the future.
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Although, so far there are plenty of research on the impacts of global warming by 1.5 °C temperature, includ-
ing the impacts comparison of global warming by 1.5 °C versus 2.0 °C44. It is necessary to do more quantitative 
impacts assessments of global warming by 1.5 °C and 2.0 °C on crops yield and market price to address research 
gaps and support the requirement of the scientific community and governments. In this paper, the future climate 
situations were selected and analyzed which are the approximate scenarios with global warming by 1.5 °C and 
2.0 °C, based on the simulation results from 5 climate models recommended by ISI-MIP under 4 RCP scenarios. 
Then the per unit yield changes of maize all over the world under global warming by 1.5 °C and 2.0 °C were 
analyzed and the spatial distributions of changes in maize yield were revealed relative to the baseline from 
1985 to 2006, applying crop model DSSAT (Decision Support System for Agrotechnology Transfer). Next, we 
examine the effects of the resulting maize production shocks in different countries; the market price of maize is 
simulated using GTAP to reveal the impacts of climate change on global crop trade. Finally, the future trend of 
maize yield and market price in the main breadbasket is assessed and the adaptation suggestions are put forward 
for maize cultivation.

Materials and methods
Data processing.  In this study, historical daily weather data (1986–2005) are from the AgMERRA dataset. 
AgMERRA is a post-processing of the NASA Modern-Era Retrospective Analysis for Research and Applications 
(MERRA) data. The dataset is proved to be suitable for agricultural modelling and features consistent, daily 
time-series data45.

For future (2020–2099), the original climate scenario data (Table 1) were extracted from output archives of 
five ESMs (including GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM and NorESM1-M) 
under four RCPs (RCP2.6, RCP4.5, RCP6.0, RCP8.5) retrieved from the CMIP website. The climate scenario data 
was interpolated into 0.5° × 0.5° horizontal resolution and bias-corrected with respect to historical observations 
to remove systematic errors46. The data of maize-planting regions are from the gridded global dataset in 2000 
by combining two data products47,48.

Simulation of climate scenarios with global warming by 1.5 °C and 2.0 °C.  In this study, climate 
data of global warming by 1.5 °C and 2.0 °C are determined according to the results of global climate models 
driven by typical concentration paths (RCPs) of greenhouse gas emissions. Eligible data are selected from a 
total of 20 sets of data under four RCP scenarios of five ESMs (including GFDL-ESM2M, HadGEM2-ES, IPSL-
CM5A-LR, MIROC-ESM-CHEM and NorESM1-M), which estimate the temperature, precipitation and sun-
shine hours (Fig. 1).

Table 1.   Basic information of 5 ESMs in CMIP5. Horizontal resolution means the number of longitudinal 
grids × the number of latitudinal grids.

Model Research institute Country Horizontal resolution

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory The United States 144 × 90

HadGEM2-ES Hadley Center for Climate Prediction and Research The United Kingdom 192 × 145

IPSL-CM5A-LR L’ Institute Pierre-Simon Laplace France 96 × 96

NorESM1-M Norway Climate Center Norway 144 × 96

MIROC-ESM Center for Climate System Research, National Institute for Environmental Studies, and Frontier Research 
Center for Global Change Japan 128 × 64

Figure 1.   Changes of global temperature of 20 years moving average from 2020 to 2099 simulated by 5 ESMs 
under 4 RCP scenarios. Note: The black horizontal dashed lines: global warming by 1.5 °C and 2.0 °C; the black 
vertical solid line: the years when global warming reaches 1.5 °C and 2.0 °C simulated by the selected models 
and scenarios.
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Firstly, the period of 1986–2005 is defined as the baseline, of which the simulated average value is recog-
nized as 0.61 °C above pre-industrial (the period of 1850–1900) levels; the baseline is selected according to the 
accessibility and operability of data, which is used for the determination of the periods with global warming by 
1.5 °C and 2.0 °C and the comparison of maize yield between different periods. Secondly, the simulated values 
of global mean temperature in the future years are subtracted from the simulated average value of 1986–2005; 
then the values should be plus with 0.61 °C, which are the global warming results above pre-industrial levels; 
then 20 years moving average of the above results are calculated. Thirdly, the climate data of global warming by 
1.5 °C is defined according to the principles provided in the fifth IPCC Assessment Report, for which it should 
be within 1.5–2.0 °C above pre-industrial levels at the end of the twenty-first century; the climate data of global 
warming by 2.0 °C is defined according to the principles provided in the fifth IPCC Assessment Report, for which 
it should be within 2.0–2.5 °C above pre-industrial levels at the end of the twenty-first century and the period of 
global warming by 2.0 °C should not be earlier than 2050. Finally, the climate models, scenarios and periods of 
global warming by 1.5 °C and 2.0 °C are separately confirmed; the data of global warming by 1.5 °C, simulated 
by IPSL-CM5A-LR under RCP2.6 scenario during 2020–2039 and simulated by GFDL-ESM2M under RCP4.5 
scenario during 2041–2060; the data of global warming by 2.0 °C, simulated by NorESM1-M under RCP4.5 
scenario during 2060–2079 and simulated by GFDL-ESM2M under RCP6.0 scenario during 2065–2084.

Simulation of maize yield using DSSAT.  According to the data of global warming by 1.5 °C and 2.0 °C 
selected above, we simulated global maize yield changes compared with the average yield during 1986–2005 on 
grid level using CERES-Maize, which is part of DSSAT version 4.649.

The inputs for DSSAT simulation include daily weather data, soil parameters, crop calendar data and man-
agement information. All the inputs are formatted at a 0.5° × 0.5° grid resolution which are computed by high-
performance computers. Weather data is from the AgMERRA dataset, including maximum and minimum tem-
peratures, precipitation, total radiation and humidity. Crop calendar data were from the Center for Sustainability 
and Global Environment (SAGE), in which the existing observations of crop planting and harvesting dates are 
gridded formatted at a resolution of 5 min50. For management information, fertilizer applications, irrigation 
and other management practices are required. A crop-specific gridded dataset of nitrogen fertilizer application 
for the world was developed by integrating national and subnational fertilizer application data from a variety of 
sources, which is used to set up current fertilizer application rates for maize in each grid cell. Soil parameters 
are from the International Soil Profile Dataset (WISE), including soil texture, bulk density, pH, organic carbon 
content and fraction of calcium carbonate for each of five 20 cm thick soil layers51. All the soil data is allocated 
to be in accordance with the request of DSSAT simulation; the missing soil parameters for organic soils were 
adopted from FAO soil dataset.

First maize yields across the world during the historical period 1986–2005 were simulated at the 0.5° × 0.5° 
grid scale with two main production systems, including Spring maize and Summer maize. Historical national 
maize production is aggregated from simulated gridded yield and weighted by grid cell maize areas in 2000 from 
the gridded global dataset by combining two data products47. Second, genetic parameters of specific cultivars of 
maize from previous works were adopted for the initial parameters; model parameters related to crop genotype 
characteristics were calibrated and tuned following the method in Xiong et al.52, in which the simulated yields 
from 1986–2005 were comparable to the statistical data. Third, maize yields across the world were simulated 
under global warming by 1.5 °C and 2.0 °C. Finally, global and national maize yields were aggregated from grid-
ded values; changes in national and global yields under global warming by 1.5 °C and 2.0 °C were calculated, 
comparing maize yield average for 1986–2005.

Simulation of market price using GTAP.  The yield changes for maize from the DSSAT models under 
1.5 °C and 2.0 °C temperature increase are used to carry out simulations using competitive market for changes 
in production, market price, and self-sufficiency ratio of maize at national and global levels53,54. For this study, we 
use a comparative static analysis approach to simulate the impact of climate changes on the prices and trade of 
the major food crops under current economic conditions. Utilizing current economic conditions has the advan-
tage of minimizing assumptions and model uncertainties related to future economic conditions55,56.

The original GTAP database doesn’t include maize as a separate sector, rather it is combined with other coarse 
grains to form an “other coarse grain” sector. For this study, we updated the GTAP database by splitting maize 
from the original sector in the database, design an appropriate sectoral and regional aggregation scheme to the 
original database. The detailed method is given as follows:

First, we improved the database by splitting maize from the existing sector “other coarse grain”, following 
similar work using GTAP57–59 based on the routines from the Splitcom method60. In this procedure, the old flows 
of data both at national and trade levels are allocated between the new flows using weights. The national weights 
include the division of each unsplit user’s use of the original split commodity among the new commodities; the 
division of unsplit inputs to the original industry between the new industries; the splitting of new industry’s use 
of each new commodity. Maize use is mainly shared between feed, food, processing and others (seed, waste, etc.).

Trade shares allocate the original slice of the split commodity into the new commodity for all elements of 
basic price value, tax, and margin. Finally, we used the RAS method for balancing the newly created database. 
The values for the national shares matrix were obtained from FAOSTAT. The trade shares matrix was calculated 
based on the data from UN Comtrade Database.

Second, our sectoral aggregation scheme for GTAP ensures that all the competing and complimenting sectors 
for maize are present in the most disaggregated form. For example, for maize, other crops compete for inputs of 
production and both livestock and households are major users of maize. For regional aggregation, we kept the 
details for all the main producing, consuming, and trading regions, for maize.
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Third, yield shocks for maize were incorporated into the GTAP model via changes in land efficiency for the 
production of the respective in each region.

Results
Climate change under global warming by 1.5 °C and 2.0 °C.  There are apparent change trends of 
temperature and precipitation relative to the baseline (1986–2005) under global warming by 1.5 °C and 2.0 °C. 
The most remarkable characteristics is the rising of mean temperature in the worldwide (Fig. 2a, b); meanwhile, 
the rainfall would increase in most regions of the world. The distributions of temperature changes under global 
warming by 1.5 °C and 2.0 °C are similar (Fig. 2c, d). There are few regions in which the temperature would go 
down under the two scenarios; the temperature goes up more seriously in the Northern Hemisphere than the 
Southern regions; especially in the high-latitude area the temperature rises more quickly than the other regions. 
Under global warming by 1.5 °C the area is 54.4% in whole world in which the temperature would go up between 
1.0 and 1.5 °C than the baseline, located in the middle and low latitude regions; the area is 29.2% of the whole 
world in which the temperature would go up more than 1.5 °C, most located in the high latitude regions of 
Northern Hemisphere; the area is 16.4% of the whole world in which the temperature would go up between 0 
and 1.0 °C , mostly located in the Southern Hemisphere and the low latitude regions of Northern Hemisphere. 
Under global warming by 2.0 °C the area is 12.3% in which the temperature would go up between 1.0 and 1.5 °C 
than the baseline, located in the middle and low latitude regions; the area is 69.8% in which the temperature 
would go up between 1.5 and 3.0 °C than the baseline, located in the middle and high latitude regions; the area 

Figure 2.   Distribution of temperature and precipitation changes under global warming by 1.5 °C and 2.0 °C 
(a) temperature, 1.5 °C; (b) temperature, 2.0 °C; (c) precipitation, 1.5 °C; (d) precipitation, 2.0 °C. The figure 
has been generated using ArcGIS 10.2 and Natural Earth-Free vector and raster map data @ https://​natur​alear​
thdata.​com.

https://naturalearthdata.com
https://naturalearthdata.com
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is 16.9% in which the temperature would go up more than 3.0 °C, most located in the high latitude regions of 
Northern Hemisphere; the area is rarely in which the temperature would go up between 0 and 1.0 °C.

There are apparent trends of humidification in most regions under global warming by 1.5 °C and 2.0 °C; but 
the drought risk also should be taken seriously in the other regions. Under global warming by 1.5 °C the area is 
73.6% of the whole world in which the precipitation would increase, most located in the Northern Hemisphere; 
the area is 53.7% of the whole world in which the precipitation would increase by less than 50 mm; however, the 
area is 26.4% of whole world in which the rainfall would decrease, mainly located in the Southern Hemisphere 
and the middle regions of Northern Hemisphere. The distribution of precipitation under global warming by 
2.0 °C is similar with the situation under global warming by 1.5 °C. The drought-threatened area would increase 
by 28.5% under global warming by 2.0 °C, especially in the middle and low latitude of the Northern Hemisphere; 
the area would expand to 26%, in which the precipitation increases more than 50 mm. In other words, the 
extreme rainfall events (such as drought, rainstorm) under global warming by 2.0 °C would be more serious than 
those under global warming by 1.5 °C, which is what we should be pay more attention to.

Yield change of maize under global warming by 1.5 °C and 2.0 °C.  Maize production is affected 
by climate change apparently. According to the simulation results of CERES-maize, the yield of maize would 
decrease in the worldwide relative to 1986–2005 under global warming by 2.0 °C; it would increase little under 
global warming by 1.5 °C. The distributions of maize yield loss under the two scenarios are similar to each other, 
mostly located in the middle and low latitude, which are the main regions for maize planting in the world. The 
loss risk of maize under global warming by 2.0 °C is much more serious than that under global warming of 
1.5 °C. However, there are increasing potentials of maize yield in many regions, nearly half of the whole maize 
planting area in the world, in which the climate situation would become more proper for maize under global 

Figure 2.   (continued)
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warming by 1.5 °C and 2.0 °C. So, there are apparent challenges and opportunities for maize production in the 
whole world under climate change. We should grasp the opportunities and expand the yield increasing poten-
tials; meanwhile, the threat of maize yield loss should be controlled and compressed to the minimum in the 
high-risk regions.

From the results simulated by IPSL-CM5A-LR model under RCP 2.6 scenario, the gross yield of maize in 
the world between 2020 and 2039 would decrease by 6.8% relative to 1986–2005. The area is 37.7% of the whole 
maize planting regions in the world, in which the yield loss would be less than 50%, mainly located in the low 
and middle latitude of South America and Asia, and the middle latitude of Africa and North America. The area 
is 16.4% of the whole maize planting regions, in which the yield loss would be more than 50%, mainly located 
in the low latitude of South America and the middle latitude of Asia and Europe. The area is 45.8% of the whole 
maize planting regions, in which the yield would increase, mainly located in the low latitude of Africa, Asia and 
North America, the high latitude of Europe. From the results simulated by the GFDL-ESM2M model under 
RCP 4.5 scenario, the gross yield of maize in the world between 2041 and 2060 would increase by 7.2% relative 
to 1986–2005. There are opposite trends of maize yield under global warming by 1.5 °C, which are simulated 
by different global climate models. However, the spatial distributions of maize yield change are similar to each 
other. The difference is that the regions of high yield loss rate are decreasing, and the regions of yield increasing 
are going up. In a comprehensive perspective, under global warming by 1.5 °C, maize yield in the whole world 
would increase 0.18% relative to 1986–2005 (Fig. 3). According to Paris Agreement, all countries should do their 
best to limit the global warming by 1.5 °C until the end of 21 century. If that objective could be accomplished, 
gross maize production of the whole world would not be influenced so much by climate change, but the food 

Figure 3.   Distribution of yield loss rate on maize in the world under global warming by 1.5 °C (up: IPSL-
CM5A-LR model, RCP 2.6; down: GFDL-ESM2M model, RCP 4.5). The figure has been generated using ArcGIS 
10.2 and Natural Earth-Free vector and raster map data @ https://​natur​alear​thdata.​com.

https://naturalearthdata.com
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security of the whole world would still be attacked violently. There are huge differences among the continents; 
South America, Asia and the Middle East are threatened seriously by yield loss seriously under global warming 
by 1.5 °C. The changes in maize yield in different regions would influence the maize price and food trades. So, 
it should be cautious to cope with the maize changes under global warming by 1.5 °C.

From the results of simulated by the NorESM1-M model under RCP 4.5 scenario, the gross yield of maize in 
the world between 2060 and 2079 would decrease by 18.7% relative to 1986–2005. The area is 41.7% of the whole 
maize planting regions in the world, in which the yield loss would be less than 50%. The area is 15.6% of the whole 
maize planting regions, in which the yield loss would be more than 50%. The area is 42.7% of the whole maize 
planting regions, in which the yield would increase. The distribution of maize yield change is similar to that under 
global warming by 1.5 °C. From the results simulated by the GFDL-ESM2M model under RCP 6.0 scenario, the 
gross yield of maize in the world between 2065 and 2084 would decrease by 3% relative to 1986–2005. Comparing 
to the results of the NorESM1-M model, the regions of high yield loss rate are increasing, and the regions of yield 
increases are going down; but the per unit area yields are increasing quickly in the regions of yield increasing. So, 
the gross maize yield in the whole world simulated by the GFDL-ESM2M model is more than the NorESM1-M 
model. In a comprehensive perspective, under global warming by 2.0 °C, maize yield in the whole world would 
decrease 10.8% relative to 1986–2005 (Fig. 4). Compared to the results under global warming by 1.5 °C, the risk 
of yield loss is much higher. According to the new results from the Emission Gap Report in 2019, the target of 
global warming by 1.5 °C would not be implemented according to the reality of mitigation actions; the chance 
become much bigger for all countries in the world, who will be facing the severe challenge of global temperature 
rise of 2.0 °C or even higher (3.0 °C or 4.0 °C) in the future. So it is critical to cope with the serious condition 

Figure 4.   Distribution of yield loss rates on maize in the world under global warming by 2.0 °C (up: 
NorESM1-M model, RCP 4.5; down: GFDL-ESM2M model, RCP 6.0). The figure has been generated using 
ArcGIS 10.2 and Natural Earth-Free vector and raster map data @ https://​natur​alear​thdata.​com.

https://naturalearthdata.com
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that maize yield would decrease severely. For the whole world more mitigation and adaptation actions should 
be taken from now on. Food security would be a significant challenge in this century.

Yield change of maize in main countries.  There are huge differences in impacts on maize yield under 
climate change, which would influence the food crisis in different regions. There are 159 countries in the whole 
world which plant maize. The gross yield of maize the top 20 countries accounts for more than 90% of the total 
yield in the 159 countries. So, the changes in the top 20 countries under future scenarios would influence the 
food security of the whole world (Fig. 5). From the results of simulated by CRESE-maize under global warming 
by 1.5 °C, there would be 75 countries facing with yield loss of maize; the mean yield loss rate would become 
33.5%. There would be 84 countries experiencing yield increases. Overall, the global maize yield would slightly 
increase. Under global warming by 2.0 °C, there would be 82 countries facing with yield loss of maize, for which 
the mean yield loss rate is approximate to that under global warming by 1.5 °C. There would be 77 countries 
experiencing yield increase; however, the mean yield increase is apparently smaller than that under global warm-
ing by 1.5 °C. Generally, the global maize yield would decrease. The results show that the adverse effect of warm-
ing up 2.0 °C on global maize production is far greater than warming up 1.5 °C. It is important to take actions to 
develop forward-looking adaptation measures to cope with future climate change.

According to statistics in 2018, the gross maize yield in the top 5 countries is almost 80% of the total maize 
yield of the whole world. The United States accounts for more than 32%; China accounts for about 24%; Brazil, 
Argentina and Mexico account for about 23%. The fluctuation of maize production in these five top countries will 
have a significant impact on the global maize trade. Based on the simulation results, comparing to 1986–2005, 
the maize yield in China, Brazil and Argentina would decrease under global warming by 1.5 °C; the yield loss 
rate would reach more than 20% in Brazil; Argentina would decrease by 14.7%; China would decrease by 3.7%. 
However, there would be increasing trends in the United States and Mexico; the change in the United States 
would not be significant and the maize yield would increase by 0.5%; the yield increasing rate would exceed 50% 
in Mexico. Overall, the gross maize yield in the top 5 countries would decrease by 2% under global warming 

Figure 5.   Yield loss rates on maize in top 20 countries under global warming by 1.5 °C and 2.0 °C.
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by 1.5 °C. According to the simulation results, comparing to 1986–2005, the maize yield in the United States, 
China and Brazil would decrease under global warming by 2.0 °C; the yield loss rate would reach more than 24% 
in Brazil; the United States would decrease by 13.3%; China would decrease by 11.5%. However, there would 
be increasing trends in Argentina and Mexico; the maize yield would increase by 16.8% in Argentina; the yield 
increasing rate would exceed 40% in Mexico. Overall, the gross maize yield in the top 5 countries would decrease 
by 11.4% under global warming by 2.0 °C. By comparing the maize production in different countries, it can be 
found that the reduction trend of total maize production in the top five countries is more obvious, especially 
under the scenario of global warming by 2.0 °C, the global food trade and food security may face greater risks.

From the view of continents, there are different trends of maize yield changes in the 6 continents (except Ant-
arctica) under global warming by 1.5 °C and 2.0 °C (Fig. 6). From the results of simulated by CRESE-maize under 
global warming by 1.5 °C, the maize yield in 3 continents would decline apparently, including South America, 
Europe and Oceania; the average yield loss rates are respectively − 15.6%, − 12.4%, − 36.4%; in the other 3 con-
tinents the average maize yield would go up, especially in Africa more than 30%; the increasing trends are slight 
in Asia and North America, in which the yield increasing rates are separately 0.7% and 0.4%. However, the yield 
change trends simulated by IPSL-CM5A-LR and GFDL-ESM2M models are different in 2 continents, including 
Asia and North America. From the results of simulated by CRESE-maize under global warming by 2.0 °C, the 
maize yield in 5 continents would decline apparently, except Africa; the average yield loss rates are respectively 
− 7.9% (Asia), − 14.1% (North America), − 9.3% (South America), − 22.5% (Europe), − 25.5% (Oceania); only in 
Africa the average maize yield would go up also more than 30%; meanwhile the yield change trends simulated by 
IPSL-CM5A-LR and GFDL-ESM2M models are the same in each continent. Comparing the two global warming 
scenarios, there would be apparent variations in maize yield in Asia and North America, in which the annual 
maize yield accounts for a great proportion of the whole world, leading to a much more serious yield loss under 
global warming by 2.0 °C than that under global warming by 1.5 °C. There would be an obvious crisis of food 
supply under global warming by 2.0 °C with the increasing population in the future. So, it is important to make 
full preparation for adaptation to climate change in the whole world.

Figure 5.   (continued)
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Market price of maize in main countries.  In this study, we elaborate on the endogenous response of our 
economic models. This response can be theoretically elaborated as: due to the effect of climate change on yield 
reduction (improvement), the supply curve moves leftward (rightward), reducing (increasing) production and 
raising (lowering) prices. In response, the consumers decrease (increase) their consumption of more expensive 
(cheaper) crops and shifting to other (increase the use of the same) crops. Producers, at the same time, respond 
by changing farm-level management practices and increasing (decreasing) the amount of acreage under these 
crops. At a global scale, the reallocation of production and consumption through international trade further 
alters climate change impacts on global agriculture. This also alters the self-sufficiency ratios of each country/
region due to climate change.

In response to production changes, the price of each commodity changes under both scenarios. At the global 
level, the market price for maize would increase by 0.7% and 3.4% under 1.5 °C scenario and 2.0 °C scenario, 
respectively, which would vary quite largely among different countries and regions under both climate change 
scenarios (Fig. 7). Particularly, the market price would increase by around 22% and 27% in Iran under 2.0 °C 
scenario and 1.5 °C scenario, respectively. Iran is also the region where the highest yield reduction is observed 
due to climate change. Market prices for maize in India, Mexico, Russia, South Africa and the Rest of Africa 
would decrease significantly under both scenarios, as their yields improve due to climate effects. Along with the 
domestic production, the climate change will also induce changes in international trade of maize, resulting in 
changing levels of self-sufficiency ratios (SSR) for each country/region. By SSR, we mean the ratio of domestically 
produced commodity, to the sum of net imports and domestic production. In our scenario analysis, generally, 
the countries that face positive effects on yields and/or are relatively less dependent on imports, are positively 
(less negatively) affected by climate change. For example, maize SSR for Ukraine, India, Russia and Mexico would 
improve under both scenarios (Fig. 8). Whereas the self-sufficiency ratios of maize for Southeast Asia, Bangladesh 
and Iran will worsen under both scenarios. China’s SSR for maize stays almost similar to the level as the baseline.

Discussion and conclusion
Discussion.  Our analysis highlights the effects of climate change on global- and regional-specific maize 
yields and the associated economic consequences in 1.5 °C and 2.0 °C -warming scenarios. We find that the 
reduction risk of maize yield under global warming by 2.0 °C is much more serious than that under global warm-
ing by 1.5 °C. On the one hand, the larger the temperature rise, the greater the evapotranspiration would be. 
Although the precipitation is also increasing, the evapotranspiration would become more intense. The limitation 
of water supply for maize growth leads to the decline of yield. On the other hand, relative to global warming by 
1.5 °C, maize production would be faced with more serious and frequent extreme climate events, such as drought 
and heat waves, which would increase the risk of corn yield reduction under global warming by 2.0 °C. In the 

Figure 6.   Yield loss rates on maize in 6 continents under global warming by 1.5 °C and 2.0 °C.
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meantime, the huge differences in yield changes in different regions provide a small chance for the world, espe-
cially under global warming by 1.5 °C. In the near future, if the global temperature can be effectively controlled 
under 1.5 °C warming scenario, there would be an increase in the potential for maize yield in the worldwide. 
All regions and countries should take actions to reduce the yield loss risk. For the yield-increasing regions, the 
potentials of climate resources should be fully utilized to guarantee maize yield under future scenarios; for the 
yield-reducing regions, the targeted adaptation actions should be taken in advance under global warming by 
1.5 °C and 2.0 °C.

Meanwhile, the risk of price fluctuations caused by global corn trade due to future climate change should be 
paid more attention to, especially for developing and undeveloped countries. In the view of supply and demand, 
the population would go up quickly in the next 30 years; the demand for maize would increase hugely; however, 
the supply of maize would go down in the future, especially under global warming by 2.0 °C; it would intensify 
the contradiction between supply and demand, which would threaten the food security and sustainable develop-
ment in the whole world.

In this study, 5 climate models are selected, which are recommended by ISI-MIP (The Inter-Sectoral Impact 
Model Intercomparison Project); compared with other climate models, the five models could more effectively 
support impact assessment in different sectors and provide more reliable results. Based on the simulation results 
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Figure 7.   Price change on maize in main continents under global warming by 1.5 °C and 2.0 °C.

Figure 8.   Changes in Self-sufficiency ratio of maize in main countries under global warming by 1.5 °C and 
2.0 °C.
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from 5 climate models under 4 RCP scenarios, the future climate situations were selected which are the approxi-
mate scenarios with global warming by 1.5 °C and 2.0 °C at the end of 21 century relative to pre-industrial 
levels; it could minimize the uncertainties of future climate data. The inputs for DSSAT simulation include soil 
parameters, crop calendar data and management information are coped with carefully to improve the effective-
ness and reliability of maize yield simulation.

There are also several uncertainties and limitations. Firstly, there is no unified understanding of how to cal-
culate the temperature rise of 1.5 °C and 2.0 °C relative to pre-industrial levels in the worldwide. At present the 
research on climate prediction and impact assessment under global warming 1.5 °C and 2.0 °C usually adopts 
multi-mode ensemble average methods61,62, which could obtain the warming response under the condition of 
instantaneous change, rather than the warming process under the stable state expected by the long-term goal. If 
we expect to obtain the accurate results, the model prediction test should be estimated to form proprietary sce-
narios for global warming by 1.5 °C and 2.0 °C63,64, which could support for the impacts assessment on different 
sectors. Some institutions are carrying out climate change predictions under the lower emission scenarios (global 
warming 1.5 °C or 2.0 °C). At the same time, in order to achieve the goal of controlling temperature by 1.5 °C at 
the end of the twenty-first century, it is urgent to take actions to reduce emissions and develop along the track 
of low energy consumption65,66; but it is a great challenge for human society to achieve this goal.

Secondly, our methodological approach in this study also has some important limitations, including our use 
of a single crop model to estimate maize yields. There are some limitations for the DSSAT model to simulate 
yield loss caused by climate extreme events67, in which the impacts of pests and diseases are also ignored68. 
However, the DSSAT model has been applied in a lot of researches to simulate historical maize yield69–71, in 
which the results are reliable and credible72. The results of this research could be an important reference to the 
other studies which simulate global maize yield in the future, applying crop models such as APSIM, WOFOST, 
ORYZA and so on.

Thirdly, there are relatively more researches on the prediction of climate change trend under the background 
of 1.5 °C and 2.0 °C; but the research on the impact assessment of the main grain crops including global trade in 
worldwide is few. In the meantime, we do not assess the effect of future changes on agriculture, such as increases 
in farm productivity due to new technology. The maize planting area in the future is assumed to be the same as 
the current situation of maize cultivation in the world.

Conclusion.  According to the simulation results, the yield of maize under global warming by 2.0 °C would 
decrease between 3.0 and 18.7% in the worldwide relative to 1986–2005; the maize yield would fluctuate between 
− 6.8 and 7.2% under global warming by 1.5 °C. From the spatial distribution, the gross maize yield in the top 5 
high-yield countries (including the United States, China, Brazil, Argentina and Mexico) would decrease by 2% 
under global warming by 1.5 °C and 11.4% under global warming by 2.0 °C. At the global level, the market price 
for maize would increase by 0.7% and 3.4% under 1.5 °C scenario and 2.0 °C scenario, respectively, which would 
vary quite largely among different countries and regions. So, it is urgent for all countries to pay enough attention 
to the loss risk of maize yield and take actions of mitigation and adaptation to climate change. The time left for 
changing our minds and actions is becoming less and less.

Data availability
The historical weather data (1986–2005) that support the analysis with ESMs in this study are publicly available 
online at https://​data.​giss.​nasa.​gov/​impac​ts/​agmip​cf/; the future climate scenario data (2006–2099) that support 
the analysis with ESMs in this study are publicly available online at https://​pcmdi.​llnl.​gov/?​cmip5 and https://​
esgf-​node.​llnl.​gov/​proje​cts/​esgf-​llnl/. The spatial data of harvest area, yield, crop calendar, irrigation portion 
and chemical N input for maize that support the simulation with crop model (DSSAT) in this study are publicly 
available at http://​mapsp​am.​info/ (SPAM) and http://​www.​sage.​wisc.​edu (SAGE); the soil data that support the 
simulation with crop model (DSSAT) in this study are publicly available from the WISE database (https://​www.​
isric.​online/​index.​php/) and the Digital Soil Map of the World (DSMW) (http://​www.​fao.​org/​land-​water/​land/​
land-​gover​nance/​land-​resou​rces-​plann​ing-​toolb​ox/​categ​ory/​detai​ls/​en/c/​10265​64/). All other relevant data are 
available from the corresponding authors.
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