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Quantum correlations 
beyond entanglement 
in a classical‑channel model 
of gravity
Federico Roccati1*, Benedetto Militello2,3, Emilio Fiordilino2, Rosario Iaria2, 
Luciano Burderi4, Tiziana Di Salvo2 & Francesco Ciccarello2,5

A direct quantization of the Newtonian interaction between two masses is known to establish 
entanglement, which if detected would witness the quantum nature of the gravitational field. 
Gravitational interaction is yet compatible also with gravitational decoherence models relying on 
classical channels, hence unable to create entanglement. Here, we show in paradigmatic cases 
that, despite the absence of entanglement, a classical‑channel model of gravity can still establish 
quantum correlations in the form of quantum discord between two masses. This is demonstrated for 
the Kafri–Taylor–Milburn (KTM) model and a recently proposed dissipative extension of this. In both 
cases, starting from an uncorrelated state, a significant amount of discord is generally created. This 
eventually decays in the KTM model, while it converges to a small stationary value in its dissipative 
extension. We also find that initial local squeezing on the state of the masses can significanlty enhance 
the generated discord.

Among the four fundamental forces, gravity is the only one whose quantum nature was never demonstrated. 
Currently, there is growing confidence that the hindrances to testing the quantumness of the gravitional field due 
to Planck-scale limits could be overcome through table-top  experiments1. Some of these, in particular, propose 
that detecting entanglement between two masses would witness the quantum nature of the gravitational field 
mediating their mutual  interaction2–4.

To date, as no phenomena are yet known where quantum mechanics and gravity coexist, the possibility that 
gravity could be just classical cannot be ruled out. If so, however, as the quantum nature of matter is well-estab-
lished one should yet conceive a hybrid scenario where a classical channel mediates gravitational interactions 
between intrinsically quantum masses. Several models of this kind have been  proposed5–10. In these models, 
typically, the conjectured classical channel gives rise to the Newtonian potential, yet causing at the same time 
decoherence affecting the quantum  masses11. Decoherence plays against the entanglement that would arise 
from the Newtonian potential, the net result being that no entanglement can be generated in such models in 
agreement with their classical  nature5–10. More specifically, this follows from the fact that they rely only on local 
operations and classical communication (LOCC), namely operations unable to create entanglement (this being 
a distinctive property of entanglement itself)12.

Notwithstanding the above, classical channel models of gravity could be still compatible with establishment 
of quantum correlations (QCs). Indeed, entanglement is not the most general form in which correlations of a 
non-classical nature can manifest. This has been known since the early 2000s, when it was introduced a general 
quantifier of QCs usually going under the name of quantum discord or simply “discord”13,14. Notably, while any 
entangled state has non-vanishing discord, the converse does not hold: there are states which—although fully 
separable (non-entangled)—still feature non-local correlations incompatible with classical physics. Remarkably, 
these zero-entanglement QCs can be harnessed as a resource for a number of quantum information process-
ing tasks, which was confirmed in a number of  experiments15,16, including the possibility to  generate17–20 and 
 distribute21–24 entanglement. Remarkably, unlike entanglement, discord can be created through LOCC. For 
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instance, a local dissipative channel can turn a classically-correlated state into one with non-zero discord (but 
still disentangled)25,26.

With the above motivations, this work addresses the question as to whether or not quantum correlations 
according to this extended paradigm can be generated in a classical channel model of gravity and, if so, whether 
they are stable or eventually decay at large times. We carry out this task in the case study of the Kafri Taylor 
Milburn (KTM)  model6 and its recently proposed dissipative  version10. This allows to consider a relatively simple 
system made out of a pair of quantum harmonic oscillators for which effective techniques were developed to 
compute quantum  discord27,28 (calculation of discord is generally quite  challenging15,16,29). We will in particular 
show that, although entanglement never shows up, starting from a fully uncorrelated state QCs are indeed cre-
ated during the dynamics in a significant amount (compared to the total correlations). Such generated discord 
eventually undergoes a slow decay in the case of the KTM model, while it converges to a finite, although small, 
stationary value for its dissipative  extension10.

Results
Quantized Newtonian potential. Consider two suspended masses m1 and m2 (see Fig.  1) subject to 
mutual Newtonian attraction. In the usual regime of small oscillations, the masses are effectively modeled as a 
pair of independent quantum harmonic oscillators so that the Hamiltonian reads

with Ĥ0 the free Hamiltonian given by

where G is the gravitational constant while x̂21 = x̂2 − x̂1.
In the standard regime of small displacements from the equilibrium positions and redefining x̂j as the dis-

placement of mass mj from the equilibrium position (i.e., the one for G  = 0 ), Hamiltonian (1) is well-approxi-
mated by

where Ĥ ′
0 is obtained from Ĥ0 [cf. Eq. (2)] by replacing ω2

j  with ω2
j − K/mj , while V̂  embodies the (linearized) 

Netwon’s interaction Hamiltonian

with

where d is the distance between the equilibrium positions of the two masses [Eq. (3) is obtained by expanding 
the Newtonian potential to the 2nd order in the mass displacements as V̂ ≃ −G m1m2

d

(

1+ x̂21
d − x̂221

d2

)

 and 
eliminating next the linear terms through the aforementioned redefinition of each mass coordinate].

Potential (4) results from the mere quantization of the static Newtonian potential irrespective of what channel 
or charge carriers mediate the gravitational attraction. In this model, the two masses jointly embody a closed 
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Figure 1.  System: two suspended masses (pendula) m1 and m2 , where xj is the displacement of the jth mass 
from the respective equlibrium position and d the distance between the equilibrium positions.
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system (no decoherence). Accordingly, their dynamics is unitary and thus governed by the Liouville-von Neu-
mann equation (equivalent to the Schrödinger equation)

with ρ the joint density operator of the two masses and Ĥ given by (3). Here and throughout the paper we set 
� = 1.

As generally expected for quantum systems subject to a direct mutual interaction and isolated from an exter-
nal environment, the Newtonian potential V̂ causes establishment of entanglement between the two masses when 
these start in a fully uncorrelated state, which was shown in Ref.4.

Creation of quantum correlations in the KTM model. KTM model. The KTM  model6 assumes a 
specific, fully classical, channel mediating the gravitational interaction. This gives rise to the Newtonian poten-
tial V̂  which is however accompanied by additional decoherence affecting the two-mass system. Specifically, 
the classical channel consists of local measurements plus feedback as briefly sketched next (see e.g. Ref.30 for a 
more detailed description). The position of m1 is first instantaneously measured, the outcome being x1 . A local 
field described by a Hamiltonian term ∝x1x̂2 is then applied on mass 2 for an infinitesimal time (note that here 
only x̂2 is an operator). Analogous operations with swapped roles of systems 1 and 2 are next carried out and the 
whole process iterated over and over during the entire time evolution. Note that such a dynamics is necessarily 
stochastic since measurements in quantum mechanics are probabilistic. The average (so called “unconditional”) 
dynamics, however, is deterministic and demonstrably described by the master equation (ME)6

with Ĥ and K the same as (3) and (5), respectively, and where we set D[Ô]ρ = Ôρ Ô† − 1
2 (Ô

†Ôρ + ρ Ô†Ô) . 
Here, � measures the characteristic rate of the measurement-feedback operation [this rate is generally depend-
ent on the susbsystem ( m1 or m2 ). Here, we it assumed it to be independent of the subsystem for the sake of 
simplicity].

The terms containing � (jointly called dissipator) describe decoherence affecting the two masses, which makes 
the system effectively open and its dynamics non-unitary. Notably, decoherence is minimized for � = K/2 , a 
value which we will set throughout the remainder.

Without dissipator, ME (7) would reduce to (6), showing that the classical channel gives rise to the canonical 
gravitational attraction yet introducing at the same time ineliminable decoherence (observe that the dissipator 
is non-zero for any value of �).

We point out that the dissipator in (7) is the sum of two local dissipators: such “local noise” (as is often referred 
to) is well-known to generally spoil entanglement. This counteracts the effect of the Hamiltonian term in ME (7) 
which instead can create entanglement due to the Newtonian potential (4) as discussed in the previous section. 
The net result is that the dynamics described by ME (7) is unable to create entanglement. Physically, this is due 
to the fully classical nature of the gravitational channel described above which relies solely on LOCC. In fact, 
therefore, the KTM model cannot generate entanglement by construction.

It is convenient to introduce rescaled positions and momenta as (recall that � = 1 ) 
X̂j =

√
mω x̂j , P̂j = p̂j/

√
mω . In terms of these dimensionless operators, master equation (7) for � = K/2 

(minimal decoherence) can be arranged as

with

Here, in line with other  works31 we introduced the dimensionless parameter

namely the ratio between the gravitational coupling strength and the characteristic energy of the harmonic 
confinement of each mass. Thus η measures the effective strength of the gravitational interaction. Since such 
interaction is typically very weak, η should always be considered such that η ≪ 1 . In the remainder, we will 
frequently take advantage of this condition to make approximations.

Equation of motion for the covariance matrix. We will consider throughout the two-mass system initially pre-
pared in a Gaussian state, i.e. a state whose characteristic function is  Gaussian32. Many relevant states—such as 
coherent, thermal and squeezed states—belong to this large class. The form of the KTM master equation (7) is 
such that if the system starts in a Gaussian state then its state will remain Gaussian at any  time32.
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By definition, a Gaussian state of the two masses (quantum harmonic oscillators) is fully specified by the 
first and second moments �Ôm� and �ÔmÔn� with m, n = 1, 2, 3, 4 , where �Â� = Tr{ρÂ} and Ô1 = X̂1 , Ô2 = P̂1 , 
Ô3 = X̂2 , Ô4 = P̂2 . For our purpose of calculating correlations (as will become clear later) it is sufficient to con-
sider the covariance matrix σ whose entries are defined as σmn = �ÔmÔn + ÔnÔm� − 2�Ôm��Ôn�.

In the KTM model, master equation (7) entails that σ evolves in time according to the Lyapunov equation 
of  motion33

with

and with D the diagonal matrix defined by

[note that all these matrices are symmetric under the exchange 1 ↔ 2 since so is master equation (8). The same 
property for the same quantities also holds in the dissipative KTM model and, additionally, for any covariance 
matrix appearing throughout].

The solution of the linear equation of motion (11) reads

with σ0 the covariance matrix at t = 0 (the explicit analytical expression is cumbersome and thus not reported 
here).

The knowledge of the covariance matrix at any time t is enough to compute correlations of any kind (quantum 
or not) between the two masses.

Dynamics of of quantum correlations. Our aim is assessing the ability of the classical channel in the KTM model 
to create QCs and, if any, analyzing their temporal behaviour. Accordingly, we naturally focus throughout on 
initial product states, i.e. of the form

with ̺j the initial state of mass j. State (15) features no correlations of any kind between the two masses (thus 
mutual information I and of course D vanish).

We will next consider two different types of initial states: coherent and squeezed.
When ̺ j is a coherent state it can be expressed as ̺ j = |αj��αj| with |αj� = e

αj â
†
j −α∗j âj |0�j , where |0�j the vacuum 

state and âj the usual annihilation operator. In this case, the covariance matrix corresponding to (15) is simply 
given by

which is independent of the coherent-state amplitude αj.
To benchmark the dynamics and amount of quantum correlations to be analysed shortly, we first study the 

behaviour of mutual information I (measuring total correlations, either classical or quantum), which can be 
calculated straightforwardly from Eqs. (24) and (16). The behaviour of I against time (rescaled in units of ω−1 ) 
is reported in Fig. 2 for growing values of the effective gravitational interaction strength η [recall definition (10)].

We see that I first grows monotonically from zero until reaching its maximum value, then undergoes damped 
oscillations (exhibiting vanishing minima) and eventually asymptotically converges to a finite stationary value. 
Note that, as is reasonable, the maximum and asymptotic values grow with the effective gravitational interac-
tion strength η.

Let us now address quantum correlations in the form of quantum discord. Being defined as the mismatch 
between mutual information and classical  correlations13–15, it captures the pure quantum contribution to cor-
relations in a bipartite system. This discrepancy can only appear in the quantum realm as classical correlations 
rely upon the knowledge of the state of a subsystem (local measurement). For the relevant case of Gaussian 
states, measurements can be restricted to Gaussian  ones34, yielding a closed analytical expression of the so called 
Gaussian  discord27,28 (see “Methods” section for more details).

The dynamics of quantum correlations is computed by plugging σ0 into (14) and next working out the 
corresponding evolved Gaussian discord D (t) , which yields an exact although cumbersome expression (not 
reported here). The time behaviour of D is shown in Fig. 3 for increasing coupling strengths η . Discord first grows 
monotonically until reaching a maximum and then undergoes damped oscillations with vanishing minima. 
The generation of quantum correlations can be justified noting that the dissipator in Eq. (7) can be written as 
D[x̂]ρ ∝ D[â]ρ +D[â†]ρ + F(â, â†; ρ) , where F(â, â†; ρ) contains all the remaining terms. While the jump 
operator â acts trivially on a coherent state, the operator â† turns it into a mixture of non-orthogonal (coherent) 
states, a key ingredient to get non-zero  discord35.

(11)σ̇ = Yσ + σ YT + 4D
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(
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(
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)
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(
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Thereby, quantum correlations indeed show up, thus confirming that they can be created by the classical 
gravitational channel. The amount of quantum correlations established in the transient is significant, which 
can be seen e.g. by noting that the first maximum of D is about half as that of mutual information [see Fig. 2]. 
Overall, the temporal dynamics of discord is similar to mutual information except at long times. Indeed, the 
plots indicate that, within our numerical capabilities, quantum correlations are unstable, dropping off with a long 
tail for t → ∞ . A rigorous proof that QCs vanish in the long-time limit is demanding due to the cumbersome 
expression of D (t) and the very long tail. Remarkably, however, this decay to zero can be shown analytically in 
the realistic regime of small η (due to the weakness of gravitational interaction). Indeed, in this case, the long-
time expression of discord can be worked out as

with τ = ωt . This is easily shown to vanish in the limit τ → ∞.
To sum up, the above shows that quantum correlations are indeed created by the gravitational interaction in 

the transient and in a significant amount, but eventually (although slowly) fade away.
Coherent states are the most classical states in that both the field quadratures x̂i and p̂j have minimum uncer-

tainty. In contrast, we next take each ̺j [cf. Eq. (15)] to be a squeezed state36 where the uncertainty on one of 
the two quadratures is “squeezed” (and the other one is consequently enhanced as imposed by the uncertaintly 
principle) [the non-classicality mentioned here lies in the reduced state of each oscillator (at t = 0 ) and not in 
the correlations between the two oscillators, recall that initial state (15) is fully uncorrelated].

A squeezed state of the jth mass reads ηj = |sj��sj| with |sj� = e
[sj(â2j )†−s∗j â

2
j ]/2|0j� , where sj is the squeezing 

parameter. For simplicity, we assume the same squeezing on both the oscillators, i.e., s1 = s2 = s . Accordingly, 
the covariance matrix corresponding to the initial state (15) in this case can be worked out as

(17)D (τ ) ≃ 1

2

[

(1+ ητ) log
ητ

2+ ητ
+ log

(

1− (ητ)−4
)

− (ητ)2

1+ ητ
log

(ητ)2 − ητ − 1

(ητ)2 + ητ + 1

]

Figure 2.  Semi-log plot of mutual information I against time (in units of ω−1 ) when each mass starts in a 
coherent state. Note that the growing frequency of damped oscillation is due to the logarithmic scale.

Figure 3.  Semi-log plot of quantum discord D against time (in units of ω−1 ) when each mass starts in a 
coherent state. Discord D was calculated using Eq. (27).
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with

For s = 0 (no squeezing) σ0 coincides with (16) as in this limit the initial state of each mass reduces to the 
vacuum state (which can be seen as a zero-amplitude coherent state).

The calculation of discord (25) corresponding to (18) yields again an involved expression, which is hard to 
arrange in a form as compact as Eq. (17) even restricting to specific regimes.

In Fig. 4, we set the representative value of coupling strength η = 10−2 and study the effect of squeezing (as 
measured by s) on generation of discord. A dynamics qualitatively similar to the case of coherent states [cf. Fig. 3] 
occurs, which features an initial growth towards a maximum followed by damped oscillations characterized by 
a slow decay time. A remarkable difference from coherent states [cf. Fig. 3] yet stands out in that discord can 
reach far higher values during the transient, even orders of magnitudes larger (but still below the entanglement 
threshold D = 1 , see “Methods” section)

This is witnessed by the growth of maxima with s.
Interestingly, it was recently found in Ref.31 that squeezing also enhances entanglement generation if no 

decoherence is present, namely when the dynamics is unitary and described by the von Neumann equation (6). 
The present analysis thus indicates that discord (in place of entanglement) enjoys a similar property when the 
KTM dissipator is added to the ME [cf. Eq. (8)].

Quantum correlations in the dissipative KTM model. As previousy discussed, the KTM model lacks 
a stationary state, namely there exists no solution of master equation (8) such that ρ̇ = 0 . This entails a temporal 
divergence of the energy of the masses. To overcome this pitfall, a dissipative version of the KTM model (hence-
forth referred to as DKTM model) was very recently proposed in Ref.10. This model produces a master equation 
featuring the same Hamiltonian term as Eq. (8) but a different dissipator in such a way that, differently from the 
KTM model, a stationary state exists (in particular preventing from energy divergence). As the original KTM 
model, this modified model still relies on LOCC operatios meaning that it still describes gravitational interac-
tions mediated by a classical channel unable to create entanglement.

In the following, after briefly reviewing the DKTM model’s main features and associated master equation, we 
work out the ensuing equation of motion for the covariance matrix and then use it to investigate the dynamics 
of quantum correlations.

Dissipative KTM model. Like the KTM model, the DKTM model assumes that the gravitational interaction is 
mediated by a classical channel via local measurements and feedback. Yet, measurements of x̂j (position of the jth 
mass) in the KTM model are now replaced by a measurements of the quadrature x̂j + iαp̂j with α a free param-
eter of the model that should be yet intended as small (the KTM model is retrieved for α = 0).

The resulting master equation (see Ref.10 for details on the derivation) reads

(18)σ0 =
(

S2 0
0 S2

)

(19)S2 =
(

cosh s + sinh s 0
0 cosh s − sinh s

)

.

Figure 4.  Lin-lin plot of quantum discord against time (in units of ω−1 ) when each mass starts in a squeezed 
state |sj� for different values of the squeezing parameter s. We set η = 10

−2 . The inset contains the lin-log version 
of the plot. Discord D was calculated using Eq. (27).
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with

where X̂j and P̂j are rescaled positions and momenta, Ĥ and D are the same as in Eq. (3) and where we rescaled 
α as α̃ = mωα (dimensionless).

It can be cheked that, setting α = 0 , one recovers the master equation of the KTM model [cf. Eq. (7)].

Quantum discord. The equation of motion for the covariance matrix σ corresponding to master equation (20), 
which can be worked out analogously to the KTM model, is given by Eq. (11) but with matrices Y and D now 
given by

and

The typical time behaviour of quantum discord when each mass starts in a coherent state is reported in Fig. 5 
for representative values of parameter α̃ , showing that discord is created even in the present model.

Somewhat similarly to the standard KTM model (cf. Fig. 3) D grows from zero exhibiting secondary oscil-
lations in the transient. In contrast to the KTM model, however, D rapidly saturates to a small stationary value 
that depens on α̃.

The occurrence of a steady value reflects the fact that the model is constructed so as to admit a stationary state. 
Indeed, using standard methods of linear algebra, it can be shown that the matrix equation σ̇ = 0 [cf. Eq. (11)] 
admits only one solution σss (its analytical expression is too cumbersome to be reported here),  which is the 
covariance matrix of the unique steady state of master equation (20). The computed discord of σss using the 
parameters set in Fig. 5a correctly matches the asymptotic value of D in each considered case. This asymptotic 
value slightly grows with α̃ as shown in Fig. 5b, where the asymptotic mutual information is also plotted for 
comparison.

Overall, taking into account that α̃ should be understood as a small parameter, we can conclude that the 
present model predicts that at large times classical correlations dominate over quantum ones somewhat in line 
with the KTM model.

(20)

ρ̇ =− i[Ĥ + δĤ , ρ] + ηω

2
∑
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2
α̃ηω

∑
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∑

j
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2
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(21)δĤ = 1
4

∑

j

α̃ηω (X̂jP̂j + P̂jX̂j) ,

(22)Y =
(

Y11 Y12
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)

, where Y11 = ω

(

1
2 α̃η 1

(η − 1) − 3
2 α̃η

)

, Y12 =
(

0 0
−ηω 0

)

,

(23)D =
(

D11 D12

D12 D11

)

, where D11 = ω
2

(

1
2 α̃

2η 0
0 ηω

)

, D12 = ω
2

(

0 1
2 α̃

2η
1
2 α̃

2η 0

)

.

Figure 5.  Correlations in the dissipative KTM model. (a): Discord D against time (in units of ω−1 ) when 
each mass starts in a coherent state and for some representative values of parameter α̃ (this must be small in 
fact by  definition10). The case α̃ = 0 (standard KTM model) is also displayed for comparison. (b): Asymptotic 
discord (purple line) and mutual information (yellow) versus α̃ . In both panels we set η = 10

−2 . Discord D was 
calculated using Eq. (27).



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17641  | https://doi.org/10.1038/s41598-022-22212-1

www.nature.com/scientificreports/

Discussion
Whether the quantum nature of the gravitational field, if any, could be witnessed by detection of quantum cor-
relations (QCs) between two massive objects is currently a hot theme. Within this general framework, some 
theories have been put forward which show that the gravitational interaction could be mediated by a classical 
channel relying on LOCC operations, hence unable to create entanglement. In this work, we asked whether 
such theories might still be compatible with establishment of QCs although not accompanied by entanglement 
(as measured by quantum discord). To this aim, we considered the Kafri Taylor Milburn (KTM) model and its 
associated master equation for a pair of quantum harmonic oscillators. Based on this, we predicted production of 
a significant amount of quantum discord, which yet eventually decays with time. Interestingly, an initial amount 
of local squeezing in the oscillators can greatly enhance the maximum value reached by discord in the transient, 
which is reminiscent of a similar property for entanglement recently shown in the case of quantum channels. 
Finally, we investigated the dynamics of QCs in a recently proposed dissipative extension of the KTM model, 
whose ensuing master equation admits a steady state (unlike the KTM model). Similarly to the KTM model, we 
showed that significant discord is created with a small fraction even surviving indefinitely.

We point out that, despite its usual detrimental action for entanglement generation, decoherence plays a key 
role in the creation of discord without entanglement. The reason is that discord can be non-zero for separable 
states only provided that these are mixed. In this respect, it is therefore essential for discord creation having a 
non-zero dissipator in the master equation in addition to the Newtonian interaction Hamiltonian.

These findings contribute to the general debate on the possible coexistence between classical gravity and quan-
tum mechanics by showing that, even if the gravitational field were fully classical, it might still be able to estab-
lish non-classical correlations between quantum masses although of a non-entangled nature. It is worth noting 
that this further highlights the importance of detecting entanglement if the goal is demonstrating the quantum 
nature of the gravitational field, since other forms of quantum correlations can raise from classical gravitation.

Methods
Computation of quantum correlations. The total amount of correlations between the two masses 
is measured by the mutual information I12,37. This is defined in terms of the von Neumann entropy 
S(̺) = −Tr(̺ log ̺) with ̺  a generic quantum state (represented by a density matrix). If ρ is the joint state of the 
two masses, mutual information I is the discrepancy between the sum of the local von Neumann entropies and 
the von Neumann entropy of the joint system according to

Here, Sj = −Tr(ρj log ρj) is the local entropy of mass j [whose reduced state is given by ρ1(2) = Tr2(1)ρ ], while 
S = −Tr(ρ log ρ) is the joint entropy. A basic property of mutual information is that it vanishes if and only if 
ρ = ρ1 ⊗ ρ2 , meaning that the two subsystems are fully uncorrelated. As such, mutual information captures all 
possible correlations regardless of their classical or quantum nature.

In this work, our main focus is quantifying the amount of quantum correlations (QCs) which can be meas-
ured through the so called quantum discord13–15. This quantity expresses the discrepancy between I and another 
expression of the mutual information, J = S1 − S1|2 with S1|2 the conditional  entropy12,37 (amount of informa-
tion to describe the state of subsystem 1 conditioned to a local measurement of 2), which provides the same result 
in a classical system, but different results in a quantum system. Discord turns out to be evaluated as

Here, the minimization is over all possible quantum measurements {M̂1k} performed on mass j = 1 . One 
such measurement with outcome k collapses the joint system onto ρ2|k = (M̂1kρM̂1k)/pk with probability pk 
[note that discord is generally asymmetric, i.e., swapping indexes 1 and 2 in (25) generally changes the result. 
Yet, we will be interested throughout in dynamics and initial states which are invariant under the swap 1 ↔ 2].

It is worth noting that this discrepancy arises from non-local correlations between the two subsytems, namely 
a genuinely non-classical feature: discord (25) is accordingly interpreted as a measure of the total amount of QCs.

Most importantly, especially for our purposes here, while non-zero entanglement entails non-zero 
discord D the converse does not hold. Indeed, there exist mixed states which are separable (zero entangle-
ment) but such that D  = 0 [for instance, given two spin-1/2 particles each with basis {|↑� , |↓�} , the state 
ρ = 1/2| ↑�1�↑ | ⊗ | ↑�2�↑ | + 1/2|+�1�+| ⊗ | ↓�2�↓ | , where |+� = 1/

√
2 (| ↑� + | ↓�) , is separable but D  = 0 . 

This is a consequence of the lack of distinguishability of states in quantum mechanics (in this case | ↑� and |+� ), 
which in turn follows from the superposition principle].

For Gaussian states, which are the only ones entering our analysis, the minimization in (25) can be restricted 
to Gaussian  measurements35, which produces a closed analytical expression of D (see below) as an explicit func-
tion of the σ ’s  entries27,28 (so called Gaussian discord).

A property of Gaussian discord is that states such that D > 1 are  entangled28, which somehow reflects the 
aforementioned ability of discord to detect QCs more general than entanglement. A consequence of this is that 
for any classical channel (namely unable to create entanglement as in the KTM model) if D (0) < 1 then discord 
must remain below the threshold D = 1 at any time, that is D (t) < 1.

Calculation of Gaussian quantum discord. Due to the demanding minimization over all possible meas-
urements, quantum discord as defined in Eq. (25) cannot be calculated explicitly in closed form for an arbitrary 
state, not even in the simplest case of a qubit (two-level system). However, for a pair of quantum harmonic oscil-

(24)I = S1 + S2 − S .

(25)D = S1 − S +min
M̂1k

∑

k

pkS(ρ2|k) .
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lators which are in a two-mode Gaussian state, it can be  shown28 that it is not restrictive limiting the minimiza-
tion to Gaussian measurements, which yields a closed analytical formula. To give this, we first note that a generic 
4× 4 covariance matrix has the form

where each Aj is a 2× 2 matrix. Defining now Ij = detAj (for j = 1, 2, 3 ), I4 = det σ and � = I1 + I2 + 2I3 , 
2ν2± = �±

√

�2 ± 4I4 , discord (25) takes the closed form

where

Equation (27) holds for measurements made on subsystem 2 (for measurements on 1 indexes 1 and 2 must 
be swapped).

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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