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Rapid diagnosis of membranous 
nephropathy based on serum 
and urine Raman spectroscopy 
combined with deep learning 
methods
Xueqin Zhang 1, Xue Song 1, Wenjing Li 2, Cheng Chen 2, Miriban Wusiman 3, Li Zhang 4, 
Jiahui Zhang 3, Jinyu Lu 1, Chen Lu 4* & Xiaoyi Lv 2*

Membranous nephropathy is the main cause of nephrotic syndrome, which has an insidious onset and 
may progress to end-stage renal disease with a high mortality rate, such as renal failure and uremia. 
At present, the diagnosis of membranous nephropathy mainly relies on the clinical manifestations 
of patients and pathological examination of kidney biopsy, which are expensive, time-consuming, 
and have certain chance and other disadvantages. Therefore, there is an urgent need to find a rapid, 
accurate and non-invasive diagnostic technique for the diagnosis of membranous nephropathy. In this 
study, Raman spectra of serum and urine were combined with deep learning methods to diagnose 
membranous nephropathy. After baseline correction and smoothing of the data, Gaussian white 
noise of different decibels was added to the training set for data amplification, and the amplified data 
were imported into ResNet, AlexNet and GoogleNet models to obtain the evaluation results of the 
models for membranous nephropathy. The experimental results showed that the three deep learning 
models achieved an accuracy of 1 for the classification of serum data of patients with membranous 
nephropathy and control group, and the discrimination of urine data was above 0.85, among which 
AlexNet was the best classification model for both samples. The above experimental results illustrate 
the great potential of serum- and urine-based Raman spectroscopy combined with deep learning 
methods for rapid and accurate identification of patients with membranous nephropathy.

Membranous nephropathy, a relatively common glomerular disease, is a major cause of the high prevalence of 
clinical nephrotic syndrome1. Approximately 35–47% of patients with persistent nephrotic syndrome develop 
renal failure and uremia2–4. Xinjiang is a region with a high prevalence of primary glomerular diseases, among 
which the number of patients with membranous nephropathy (MN) has been increasing in recent years and is 
gradually becoming younger5. Early diagnosis and timely treatment of membranous nephropathy can effectively 
reduce the deterioration rate of the disease and improve the prognosis6. Renal biopsy is the gold standard for 
the diagnosis of membranous nephropathy at this stage7, and this method is invasive and its accuracy depends 
to a certain extent on the experience of the physician8. The remaining common tests such as ultrasonography9, 
light microscopy10 and electron microscopy11 have disadvantages such as being expensive, time-consuming 
and susceptible to environmental factors, so there is an urgent need to find a diagnostic method that is simple, 
inexpensive and accurate and noninvasive12.

Raman spectroscopy is an optical detection technique based on inelastic scattering of light, which has the 
advantages of easy operation, short measurement time, low diagnostic cost and high sensitivity, while the tech-
nique provides rich chemical and molecular information for fast, simple and non-invasive analysis of diseases13,14. 
It is widely used in the field of biomedicine and disease diagnosis15–17. It has been investigated that body fluids 
contain biomarkers for a variety of clinical diseases and can be used as a reference for disease diagnosis18–21, and 
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Raman spectroscopy based on serum and urine has been used with good results in the diagnosis of a variety 
of diseases such as breast cancer22, cervical cancer23, lung cancer24 and esophageal cancer 25. In recent years, 
significant progress has been made in the study of Raman spectroscopy applied to the diagnosis of kidney 
diseases. Jeyse et al. identified potential biomarkers in samples that could cause kidney failure based on Raman 
spectroscopy of urine and assessed the degree of risk of the samples developing kidney failure26,27. Cassiano et al. 
developed a model for diagnosing kidney-related diseases based on urine samples that can be used to predict 
future Maurício et al. distinguished between patients with chronic kidney disease and healthy subjects based on 
serum Raman spectroscopy combined with a principal component analysis (PCA) classification method and 
obtained a 95% classification accuracy. The aforementioned study showed that the use of Raman spectroscopy 
for the diagnosis of renal diseases can improve the efficiency and accuracy of diagnosis. It has been shown that 
as the disease progresses, the levels of certain biomarkers in human serum and urine change, and these changes 
are potentially associated with the disease and may be useful for its diagnosis and treatment28. Sharan et al. uesd 
dual density dual tree complex wavelet transform to remove Raman spectral noise and spikes29. Sanaeifar A et al. 
used confocal Raman microscopy to spatiotemporal analyze cellular biopolymers on tea plants infected with 
leaf blight30. In this study, we performed classification experiments based on Raman spectroscopy data of serum 
and urine samples from patients with membranous nephropathy and healthy controls to discover the relation-
ship between changes in substance content between serum and urine while achieving accurate identification of 
membranous nephropathy.

Machine learning is a subfield of artificial intelligence (AI) and is often applied in fields such as spectral 
data-assisted medical diagnosis31. Traditional machine learning algorithms are highly interpretable and have 
short training time32, but they are not suitable for data with large sample size, high feature dimensionality and 
strong similarity, and require a lot of pre-processing work on the data to achieve better classification results33. The 
development of neural network models has provided more possibilities for analyzing and processing complex 
data34, and deep neural networks have been designed to improve the shortcomings of traditional machine learn-
ing methods35, and the network structure can be built according to the characteristics of the data set, making the 
model more suitable for processing complex and diverse data36,37. ResNet introduces a residual module to solve 
the problem of gradient disappearance with depth deepening38. AlexNet uses ReLU as the activation function to 
avoid overfitting and speed up convergence39, and GoogleNet introduces the inception module to improve the 
training effect by extracting more features with the same amount of computation40. All the above three models 
are optimized and improved to address the shortcomings of traditional machine models to facilitate learning and 
discrimination of complex data41. The above neural networks can approximate the realistic correlations as much 
as possible, although they cannot completely find the functional relationship between inputs and outputs42. In 
addition, deep learning models have higher fault tolerance and adaptability compared with traditional machine 
learning techniques, and show higher efficiency and accuracy in processing augmented large sample data, which 
have greater potential for development and application in future research43.

In this study, the diagnosis of membranous nephropathy was performed for the first time based on serum 
and urine Raman spectral data. The collected serum and urine Raman spectral data were preprocessed and 
divided into training and test sets. To improve the learning effect of the neural network, the data were expanded 
by Gaussian white noise data augmentation method and combined with deep learning such as AlexNet, ResNet 
and GoogleNet frameworks to establish diagnostic models, and to achieve better classification effects, this experi-
ment fine-tuned the above three deep learning algorithms. The classification accuracy of all three classification 
models reached 1 for serum samples and more than 0.85 for urine samples. The substances corresponding to 
important features in the samples were analyzed based on the classification results to explore the potential rela-
tionship between the changes in substance content in the two body fluid samples. In addition, machine learning 
algorithms KNN and LDA were selected for comparison experiments, and the accuracy rates were lower than 
the three deep learning models selected in this paper, which further proved the superiority of the method in 
this paper for the classification of membranous nephropathy and provided a reference for future research on the 
diagnosis of nephropathy using deep learning models.

Materials and methods
Experimental materials.  A total of 73 urine samples were collected in this experiment, including 35 MN 
patient samples and 38 healthy urine samples; a total of 75 serum samples were collected, including 43 MN 
patient samples and 32 healthy serum samples. Firstly, the collected serum samples were placed in a refrigerator 
at 4 °C for 30 min, and the Raman spectral signal of the serum was started to be collected when the serum was 
thawed. All samples were obtained from the Department of Nephrology, Xinjiang People’s Hospital.

Raman spectral data acquisition.  A 15-μL drop of serum was removed onto aluminum foil using a 
pipette, dried at room temperature and then its Raman signal was measured directly. A high-resolution confocal 
Raman spectrometer (LabRAM HR Evolution, gora Raman spectroscopy, ideaoptics, China) with a YAG laser at 
excitation wavelength of 785 nm, an objective lens of 10 × , an integration time of 15 s, and a laser power of 160 
mW was used to set the acquisition method to continuous acquisition. The Raman spectra of serum samples in 
the range of 500–2000 cm-1 were measured, and three spectral signals were recorded from different positions of 
each sample. A total of 35 × 3 urine data were obtained from MN patients and 38 × 3 from healthy controls; 43 × 3 
serum data were obtained from MN patients and 32 × 3 from healthy controls. Since the differences between the 
three data from the same sample were small, the data were averaged for the three data from the same sample and 
then trained for data amplification and classification.
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Data pre‑processing.  As shown in Fig.  1, there is no obvious Raman absorption peak in the range of 
2000–4000 cm−1, so the serum and urine Raman spectra in the range of 500–2000 cm−1 were used in this experi-
ment for biomedical research. Since the raw serum Raman spectra collected by the spectrometer contained 
noise and fluorescence background, in order to extract the Raman signal accurately and obtain more effective 
information, the airPLS method was used to perform baseline calibration of the serum and urine Raman spectral 
data in this paper. After baseline calibration of the raw data, origin 2018(http://​www.​winwi​n7.​com/​soft/​51322.​
html) software was used to smooth the serum sample data using polynomial (Savitzky-Golay) with 20 smooth-
ing points, and MATLAB R2021a(https://​ww2.​mathw​orks.​cn/​produ​cts/​matlab.​html) was used to smoothen the 
urine sample data with a smoothing window of 9. The average spectra of the two sample data after baseline cali-
bration and smoothing are shown in Fig. 1. The urine and serum samples were divided into training and test sets 
according to diseased and healthy as 7:3, respectively, and then Gaussian white noise was added to the training 
set for data augmentation.

Data enhancement and cross‑validation.  The training effect of deep learning models improves with 
the increase of sample size in a certain range, and the large sample size can prevent the occurrence of overfitting 
and improve the generalization ability of the model to a certain extent. By comparing the existing data control 
augmentation methods, this study selects the Gaussian white noise data augmentation method to expand the 
data set. The pre-processed data were divided into training and test sets, and the sample size was expanded to 
five times the original size by adding five different decibels of Gaussian white noise of 16, 20, 24, 28 and 32 dBW 
to the training set44–47.

In order to evaluate the prediction performance of the model, reduce overfitting and obtain as much valid 
information as possible from the limited data, the model is validated using the five-fold cross-validation method. 
This method has the advantage of not requiring additional data splitting, which reduces the computational cost 
while avoiding data waste.

Model metrics.  In this paper, the performance of the model is evaluated using the true positive rate (TPR), 
true negative rate (TNR), precision and accuracy, using Eqs. (1)–(4).

(1)TPR =
TP

TP + FN

(2)TNR =
TN

TN + FP

Figure 1.   (a) Average spectra of urine and healthy samples from MN patients (b) Average spectra of serum and 
healthy samples from MN patients.

http://www.winwin7.com/soft/51322.html
http://www.winwin7.com/soft/51322.html
https://ww2.mathworks.cn/products/matlab.html
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In addition, ROC curves were plotted with TPR as the vertical coordinate and false positive rate (FPR) as 
the horizontal coordinate, and AUC values were calculated to comprehensively assess the model performance 
(Table 1).

Ethics approval.  This study has been approved from the Cancer Affiliated Hospital of Xinjiang Medical 
University (in these studies). After obtaining the patient’s consent, the patient signs the "Informed Consent 
Form for Sample Retention at Xinjiang Cancer Hospital of Xinjiang Medical University", which states that "the 
specimens will be retained only for scientific research in the prevention and treatment of diseases and to reserve 
important resources for the research and development of medical science and technology. Without prejudice to 
diagnosis and treatment, tissue specimens will be retained from biopsies or surgical resections, and blood speci-
mens will be retained in 3–10 ml only." The hospital will only retain disease-related specimens after helping the 
patient understand the consent form and obtaining your consent or that of an authorized person.

Informed consent.  Informed consent was obtained from all participants prior to participating in the inter-
view study. All methods were carried out in accordance with relevant guidelines and regulations (e.g. Helsinki 
guidelines).

Results
Spectral analysis.  Figure  2a shows the absorbance of the six peaks with large differences in the serum 
spectrum, with large peak differences at 728, 842, 980, 1316, 1439 and 1650 cm−1; Fig. 2b shows the absorbance 
of the six peaks with large differences in the urine Raman spectrum, with large peak differences at 630, 918, 980, 
1051, 1316 and 1657 cm−1. There are large peak differences, especially at 918, 980 and 1051 cm−1. These peak 

(3)FPR =
FP

FP + TN

(4)Precision =
TP

TP + FP

(5)Accuracy =
TP + TN

TP + FP + FN + TN

Table 1.   Model evaluation index. Note: (True Positive (TP), False Positive (FP), False Negative (FN), True 
Negative (TN)).

Predict value

Actual value

Positive Negative

Positive TP FP

Negative FN TN

Figure 2.   (a) Average spectra of serum and control group in membranous nephropathy (b) Average spectra of 
urine and control group in membranous nephropathy.
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differences represent biomolecular differences between patients and control subjects in vivo and can be used as 
a theoretical basis for disease classification.

In Table 2, the Raman shifts corresponding to the characteristic peaks and their attribution information are 
listed48,49. Combined with Table 2, the glycerol content in the urine of patients with membranous nephropathy 
is slightly higher. 728 cm−1 represents C–C stretch and proline, 842 cm−1 represents glucose, 918 cm−1 represents 
proline, strong proline and glycogen, 980 cm−1 is protein, 1051 cm-1 is lipid, 1316 cm−1 is guanine, 1439 cm−1 
indicates a bent deformation of CH2 cm-1, three amides at 1650 cm−1. The difference in these levels indicates a 
change in the composition of substances in the serum and urine of patients with membranous nephropathy, 
resulting in fewer amino acids, guanines, and proteins in patients than in normal subjects50.

Membranous nephropathy (MN) is a common cause of nephrotic syndrome in adults, and patients usually 
present with severe hypoproteinemia, which was concluded in the pathogenesis analysis51, so that the protein 
content becomes low in serum samples. Hypoxanthine–guanine phosphoribosyltransferase converts guanine to 
guanosine 5’ monophosphate in order to remedy normal purines when renal function is impaired52. Therefore, 
a decrease in serum guanine levels can occur. In addition, supplementation with amino acids such as proline is 
effective in patients with kidney disease, which may be related to the reduced amino acid levels in the patient53.

In the urine spectrogram, the biomarker corresponding to the position of the largest difference in the Raman 
peak at 980 cm−1 is protein, and the increase in protein in the urine of MN patients correlates with the character-
istic pattern of glomerular damage, a phenomenon that also corresponds to changes in the substance content54. 
The clinical manifestations of membranous nephropathy are accompanied by hyperlipidemia and glomerular 
lipid deposition, so the lipid content is increased55. In MN patients with impaired renal function, elevated uric 
acid occurs, and when guanine content increases, it leads to uric acid deposition in the organism56.

Model design.  In this paper, we choose to use ResNet, AlexNet and GoogleNet deep models and fine-tune 
the network structure according to the data characteristics, and the structure of each neural network model is 
shown in Fig. 3.

Figure 3A shows a schematic diagram of the GoogleNet network structure, and by introducing the Inception 
module, using a 1 × 1 convolution to lift and lower the dimension, and performing simultaneous convolution and 
reaggregation at multiple dimensions57, the model can use resources more efficiently and acquire more features 
without changing the computational volume. In this study, a GoogleNet network structure containing two initial 
structural Inception blocks is constructed, and the Inception block is equivalent to a subnetwork containing four 
channels, which can be controlled by customizing the hyperparameters of each channel to control the model 
complexity58. The filter sizes of the two Inception modules are set to 8 and 16, respectively, and the number of 
kernels of the two convolutional layers are 32 and 64, respectively, with convolutional kernel sizes of 7 and 3 and 
step sizes of 2 and 1. The activation functions of the two fully connected layers are chosen as ReLU and Softmax, 
respectively, with kernel sizes of 256 and 2, respectively.

Figure 3B shows the structure of ResNet network, and ResNet introduces the residual block, which can effec-
tively solve the problem of gradient disappearance and gradient explosion, and solve the degradation problem in 
the deep network, which allows neurons to be connected in alternate layers and weakens the strong connection 
between each layer59. In this paper, ResNet contains four residual blocks, and the four residual block filter sizes 
are set to 24, 48, 64 and 128, and the convolution kernel size is all 3 with a step size of 2. Softmax is used as the 
activation function to output the model processing results.

Figure 3C shows the structure of AlexNet network. Compared with traditional machine learning classification 
algorithms, AlexNet extends the basic principles of CNN to a deeper and wider network, uses ReLU as the acti-
vation function, solves the gradient disappearance problem of Sigmoid, and significantly improves the training 
speed of the model. In this study, five one-dimensional convolutional layers are constructed with convolutional 
kernels of 24, 64, 128, 128 and 64, and both fully connected layers have kernels of 128, and Dropout is set to 0.5 
to prevent overfitting. All three models use the cross-entropy loss function, and the optimizer is chosen from 
Adam with 100 iterations and a five-fold cross-validation. This study use Python 3.7(http://​www.​downza.​cn/​
soft/​281667.​html) to build the classification model.

Table 2.   Location and substance assignment of characteristic peaks in Raman spectra.

Serum spectral wavenumber Corresponding substance Urine spectral wavenumber Corresponding substance

728 C–C stretching, proline (collagen assignment) 630 Glycerol

842 Glucose 918 Proline, hydroxyproline Glycogen and lactic acid

980 C–C stretching b-sheet (proteins)
CH bending (lipids) 980 C–C stretching b-sheet (proteins)

CH bending (lipids)

1316 Guanine (B,Z-marker) 1051 Lipids

1439
CH2 bending mode in normal tissueCH3, CH2 deforma-
tion CH2 scissoring
CH2 deformation in normal breast tissue

1316 Guanine (B,Z-marker)

1650
(C=C) Amide I
Protein amide I absorption
Amide I

1657 Fatty acids
Amide I (collagen assignment) Triglycerides (fatty acids)

http://www.downza.cn/soft/281667.html
http://www.downza.cn/soft/281667.html
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Figure 3.   (a) GoogleNet network structure (b) ResNet network structure (c) AlexNet network structure.

Table 3.   Neural network model sensitivity, specificity and AUC.

TPR TNR AUC​

ResNet(urine) 1.0 0.727 0.87

AlexNet(urine) 0.909 0.818 0.89

GoogleNet(urine) 0.818 0.727 0.86

ResNet(serum) 1.0 1.0 1.0

AlexNet(serum) 1.0 1.0 1.0

GoogleNet(serum) 1.0 1.0 1.0
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Classification results.  Table 3 shows the sensitivity, specificity, AUC values and training time of three dif-
ferent deep models, ResNet, AlexNet and GoogleNet. It can be found that AlexNet based on serum and urine 
samples has the best training effect and the shortest training time. Figure 4 shows the ROC curves of the models 
based on urine samples and serum samples, respectively. The classification accuracy of urine samples is lower 
than that of serum, with ResNet 0.851, AlexNet 0.866, and GoogleNet 0.863, and the classification accuracy of 
serum samples is higher, close to 1.0. It may be because the substance change of serum samples is larger com-
pared with that of urine samples, and the difference of spectral data is larger thus leading to a good classification 
effect.

Supplementary experiments were conducted using traditional machine learning algorithms such as K-neigh-
borhood algorithm (KNN) and linear discriminant analysis (LDA) to classify urine and serum Raman spectral 
data. As shown in Table 4, the serum Raman spectroscopy dataset showed better classification results, but the 
classification accuracy of both urine Raman spectroscopy datasets was lower than 85%, so deep neural networks 
were considered in this study to classify both data to improve the classification accuracy.

Discussion
The identification of non-invasive biomarkers of early MN to replace complex and expensive renal biopsy meth-
ods is important to prevent the development of nephrotic syndrome and to improve the cure rate of MN patients. 
The results of spectral analysis showed a correlation between changes in the levels of certain biomarkers in urine 
and serum samples from MN patients and healthy samples, such as a significant decrease in protein and guanine 
in serum samples and an increase in urine samples, a change consistent with the clinical presentation of MN 
patients. The model classified the diseased and healthy controls more accurately according to the significant 
differences in the levels of these substances, making the model identification results more convincing. The differ-
ence in Raman spectral intensity at the peak between patients and normal subjects reflects the difference in the 
content of biomolecules such as proteins and lipids in the human body, providing a basis for Raman spectroscopy 
combined with deep learning algorithms to discriminate patients with membranous nephropathy60. Although 
there is variability in the spectral peaks of patients and controls, the small magnitude of this difference makes 
it difficult to discriminate patients with membranous nephropathy visually from the spectrogram61. Therefore, 
powerful classification models are also needed to achieve rapid and accurate patient identification.

The traditional machine learning model, LDA, maps the data by selecting the projection direction with the 
best classification performance. Assuming that the classified data conform to Gaussian distribution, LDA follows 
the principle of minimum intra-class variance and maximum inter-class variance after projection. Because it is 
a supervised method, LDA may be overfitted by the data itself during the classification process. The prediction 
results of KNN method are easily affected by noisy data, and when the samples are unbalanced, the classes of 
new samples are biased toward the classes with the dominant number in the training samples, which may easily 
lead to prediction errors. In order to make the prediction results more accurate, this study selects deep learning 
models for further identification of MN patients. All three networks, ResNet, AlexNet and GoogleNet, improved 
data classification accuracy in different ways while reducing the risk of overfitting. Compared to the three, the 

Figure 4.   The ROC curves of AlexNet, GoogleNet and ResNet for urine samples on the left, and the ROC 
curves of AlexNet, GoogleNet and ResNet for serum samples on the right.

Table 4.   KNN and LDA classification results.

Accuracy Recall F1-score

KNN(urine) 0.81 0.81 0.81

LDA(urine) 0.83 0.84 0.83

KNN(serum) 1.0 1.0 1.0

LDA(serum) 1.0 1.0 1.0
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ResNet network had the longest training time and was more time-consuming to process large amounts of data, 
the GoogleNet network was less effective compared to the other two models, and the AlexNet network was opti-
mal with the shortest training time and the highest classification accuracy. The reason for this result may be that 
the data selected for this experiment are most suitable for the AlexNet network structure and the parameters in 
the network are set better. The classification results of both samples for membranous nephropathy were better, 
and this study found the association between the changes in substance content within the two samples while 
distinguishing more accurately between patients with membranous nephropathy and healthy controls, which 
provided a basis for the classification of the model and improved the confidence of the classification results.

Conclusion
In this study, we collected both urine and serum samples based on serum and urine Raman spectra combined 
with deep learning methods, and were able to distinguish membrane nephropathy samples from healthy controls 
more accurately, with the accuracy of serum samples close to 100%. In this study, the background noise was firstly 
removed by airPLS baseline correction of the spectral data, and the important spectral bands were selected, the 
Gaussian white noise data augmentation improved the robustness of the model, and the five-fold cross-validation 
increased the reliability of the model classification results. After spectral analysis, it was also found that the same 
bands existed in the serum and urine spectra of MN patients and controls, with large differences in the peaks 
at these locations, indicating that the substances corresponding to this band are significant for the classification 
of membranous nephropathy, and also indicating that analyzing urine and serum simultaneously can enhance 
the credibility and persuasiveness of the classification results. Among the three deep learning models selected 
for this study, AlexNet has the best classification effect, with a classification accuracy of 0.89 for urine samples, 
which is higher than that of traditional machine models, and 1 for serum samples, with the fastest model training 
speed among the three models. In this study, Raman spectroscopy was used for the first time for the diagnosis of 
membranous nephropathy, providing a solution for rapid and non-invasive diagnosis of membranous nephropa-
thy, which can effectively improve the diagnostic accuracy and disease cure rate of patients with membranous 
nephropathy and prevent membranous nephropathy from developing into serious diseases such as nephrotic 
syndrome or even renal failure.

Data availability
The datasets generated and analyzed during the current study are not publicly available due to data privacy laws, 
but are available from corresponding author on reasonable request.
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