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Deep residual 
neural‑network‑based robot joint 
fault diagnosis method
Jinghui Pan1*, Lili Qu2 & Kaixiang Peng1

A data driven method‑based robot joint fault diagnosis method using deep residual neural network 
(DRNN) is proposed, where Resnet‑based fault diagnosis method is introduced. The proposed method 
mainly deals with kinds of fault types, such as gain error, offset error and malfunction for both 
sensors and actuators, respectively. First, a deep residual network fault diagnosis model is derived 
by stacking small convolution cores and increasing the core size. meanwhile, the gaussian white 
noise is injected into the fault data set to verify the noise immunity for the proposed deep residual 
network. Furthermore, a simulation is conducted, where different fault diagnosis methods including 
support vector machine (SVM), artificial neural network (ANN), convolutional neural network (CNN), 
long‑term memory network (LTMN) and deep residual neural network (DRNN) are compared, and 
the simulation results show the accuracy of fault diagnosis for robot system using DRNN is higher, 
meanwhile, DRNN needs less model training time. Visualization analysis proved the feasibility and 
effectiveness of the proposed method for robot joint sensor and actuator fault diagnosis using DRNN 
method.

Recently, industrial robots have been widely used on many applications, such as automobile production line, 
aerospace, communication, and consumer  electronics1–3. As an outstanding representatives of mechatronics 
technology, robot joint module integrates a large number of components, including hollow motor, servo driver, 
harmonic reducer, brake, encoder, into a limited  space4. Considering complex and changeable working environ-
ment of robot joints, it is inevitable that kinds of faults will occur. If there is no fault diagnosis mechanism before 
fault happens, it will affect the production efficiency, product quality, and even expose human life in danger. 
Therefore, how to detect and locate the faults quickly and accurately is the most urgent  thing5.

Researchers have been focused on Fault detection and fault tolerant control of robot joints for many years, and 
they have proposed a lot of practical fault diagnosis methods, including hardware redundancy and theoretical 
analysis-based fault diagnosis methods.

Among theoretical analysis-based robot joints fault diagnosis methods, observer is widely  used6,7. Due to 
the fast convergence characteristic of sliding mode method, the error could attenuate as designed, therefore, it 
ensures the rapidity of observer, so it is used at all places in robot joint fault  diagnosis8,9. In addition, backstep-
ping algorithm, Takagi–Sugeno method as well as Luenberger observer are also applied for fault  diagnosis10–12. 
However, most industrial robots are affected by disturbance or noise, so it is necessary to consider the effect of 
disturbance in robot fault diagnosis. For robot system, the first thing that comes to mind is to design disturbance 
observer. There are many methods for disturbance observer design, such as output feedback  method13, nonlinear 
disturbance  observer14 and feedback linearization disturbance observer design  method8.

However, the trickiest problem of observer-based robot joint fault diagnosis method is that the gain of 
observer is very hard to design. At present, in the design of observer gain, the cost function should be determined 
first, and the observer gain is selected to minimize the cost function. The above design process extends the range 
for the value of the gain, which has a great impact on the performance of the observer. Stability of the observer is 
also an important consideration, and it is mostly guaranteed by Lyapunov function, which is very hard to  find15.

The difficulty in gain design in observer-based robot fault diagnosis system promotes the research of robot 
fault diagnosis based on redundant sensors. Thanks to the development of sensors, sensors integrated with 
detection element, actuators and power supply have made a great breakthrough, such as magnetic detection 
chip, velocity measurement and gravity measuring  elements16, and they have become very important feedback 
components in robot joint fault diagnosis system.
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Three-dimensional gyroscope is used to measure the movement of the object. For a six degree of freedom 
robot joint system, low-cost MEMS magnetic, angular velocity and gravity sensors are used to estimate the joint 
angle of a rotating  manipulator17. The sensor is installed at any position of the manipulator link in any attitude, 
and the attitude and position information of the joint system is obtained by above attitude measurement sensors.

However, the robot fault diagnosis system based on redundant sensors not only increases the structural 
complexity, but also increases the hardware cost of the system. In addition, additional sensors also increase the 
possibility of sensor failure in the system. With the development of artificial intelligence, the fault diagnosis 
method based on data-driven is developed. Robot system based on data-driven method only needs to be trained 
using fault data, which is easy to be collected when there is a fault on robot system, so there is no need to use 
redundant sensors.

Neural network (NN) method has the advantages of massively parallel, distributed processing, self-organiza-
tion and self-learning capacity, so it is very popular on fault  diagnosis18–20. The main stream of NN include basic 
perceptron, Feed-Forward NN (FFNN), long short-term memory (LSTM), CNN and RNN etc.21–23. Perceptron 
is the most original version of NN, which is just a simple neuron. As actual problems need more neurons to 
participate in the calculation, networks consist of many neurons are proposed, which are the NN in the ordinary 
sense. There are many variants of the NN. Zhang used multi-layer FFNN for mechanical fault  diagnosis24. R. 
Sánchez researched Spur Gearbox with feed forward back propagation artificial NN to realize fault identification 
and  classification25. Recently, Khouloud studied LSTM on reflective fiber fault detection, which reduced operation 
and maintenance  expenses26. Albert also tried LSTM neural network for photovoltaic array fault diagnosis, and 
realized automatic feature extraction. Furthermore, to improve the feature extraction ability of neural network, 
convolution operation is adopted, where a convolution kernel is used to scan the full  figure27. Chen researched 
CNN for bearing fault  diagnosis28. Bo used adaptive label propagation technique combined with deep convolu-
tion variational autoencoder to achieve emerge fault  diagnosis29. However, regular NN can’t extract adequate 
information needed by fault diagnosis architecture due to the simple structure of this network. FFNN requires 
abundant data sets to cover all situations, or it may fail. The matrix calculation of CNN is complex, especially 
in multi-layer NN structure. Moreover, CNN faces a severe problem, and that is the gradient loss in parameter 
updating by back propagation.

To overcome the gradient loss in parameter updating process, the RNN is used on fault diagnosis of robot 
actuator. The output of last layer is feed through to the next one, thus, the gradient loss problem which exists in 
deep learning NN is solved. A multi-scale cluster-graph convolution network with multi-channel RNN is pro-
posed  in30. Motor fault diagnosis under nonstationary conditions is studied  in31. Also, the bearing fault location 
using RNN is researched  in32. These scientific research on robot fault diagnosis using RNN extremely enriched 
robot application filed. Chen detailed the application of RNN on multiple  domains33, and the bearing mechanic 
fault diagnosis under unknown situations is also a hotspot.

However, the existing NN fault diagnosis mostly focuses on the mechanical fault of robot actuators, without 
considering the fault classification of sensors and actuators at the same time. Both of the sensors and actuators 
of robot can have constant deviation and constant gain faults, and the sensors are seriously disturbed by noise. 
In addition, the difference of the fault data between the sensors and the actuator is very minor, and the use of 
conventional NN methods leads to low identification accuracy and long training and diagnosis time.

As an extension of our previous research  in34,In this paper, a data-driven deep residual neural network 
fault diagnosis method is proposed for robot joints system. It covers many kinds of faults, including sensor 
and actuator faults, furthermore, the faults for both sensor and actuator are grouped in detail. Firstly, a deep 
residual neural network is constructed using small convolution kernel for fault diagnosis. Then, gaussian white 
noise obtained by MATLAB is injected into the fault data set to verify the noise immunity for the proposed deep 
residual network. Finally, the feasibility and effectiveness of the proposed deep residual network fault diagnosis 
method for robot joint sensor and actuator fault diagnosis are proved by simulation. The main contributions of 
this paper are as follows.

(1) The robot sensor and actuator fault feedback data are very similar, which could be seen from our previous 
research [This is the article title of our previous research and it should be placed at reference], so this could 
result in ambiguous data feature boundary and this cause low diagnosis accuracy. The DRNN is adopted and 
the diagnosis architecture is well designed to eliminant gradient loss.
(2) This paper gives a data fusion method for robot sensor and actuator feedback signals. Where the Gaussian 
white noise is considered to simulate the real working condition. The robot fault diagnosis using fused data 
simplifies dimension of input.
(3) Comprehensive and comparison experiments are conducted, where the current popular NN methods are 
adopted to show their effectiveness and to compare with DRNN. The results show that DRNN owns faster 
converging speed and higher accuracy.

This paper is organized as follows: The model of robot joint is established in part II, and the fault data set is 
obtained according to the fault model in the first part. Then basic principle of DRNN is introduced in part III. In 
part IV, simulation and analytic visualization of fault classification results are conducted. The author summarizes 
the research at the end of this paper.

Model and fault dataset
Mathematical model of robot joint. The dynamic model of robot joint is established by Lagrange bal-
ance method from the point of view of  energy35.
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where τ is the vector for torque with dimension of n, q, q̇, q̈ ∈ Rn are state variables of angular position, angular 
velocity and angular acceleration, D(q) and C(q, q̇) are square matrix with dimension of n, denote inertia matrix 
and Coriolis force matrix respectively, G(q) ∈ Rn is the gravity moment vector.

Let position and speed of joints be the state variables, and use variable substitution x = [x1 x2]T = [q q̇]T , 
then (Eq. 1) could be rewritten as

where x is the state variables for S1,y is the system output, f (q, q̇, τ) is the system coupling term, and the specific 
values of matrix A,B and E are as follows.

Fault model of robot joint actuator. Robot joint actuator faults can be roughly divided into two catego-
ries according to the mechanism on the occurrence of joint faults, and they are multiplicative fault and additive 
fault.

For S1 , when the actuator has multiplicative failure, the system (Eq. 2) could be written as follows

where ρ ∈ [0, 1][0, 1] is the effective factor of the actuator. A zero of ρ means the actuator is completely broken 
while one means it works very well.

In addition to the effective factor ρ,there may be additional torque offset fault, and it could be represented 
in the following equation.

where fa is the actuator failure function, and its value is positively correlated with degree of damage.
Now both ρ and fa would decide which kind of faults the actuator is currently suffering. The following four 

fault models can be established by further dividing the faults.
ErrA1: Constant deviation fault of actuator.

ErrA2: Constant gain fault of actuator.

ErrA3: The actuator is completely stuck.

ErrA4: The actuator is completely broken.

Table 1 concludes above mentioned actuator fault types.

Fault model of robot joint sensor. Similar to robot joint actuator fault, sensor fault can be divided into 
four groups, and they are constant deviation fault, constant gain fault and stuck fault as well as sensor completely 
broken. Sensors are used to detect system state, so sensor failure directly affects the state feedback of the system, 
which means the output of the system is directly affected.

Here, four types of sensor faults are listed and corresponding mathematical formula are also deduced.
ErrS1: Constant deviation fault of sensor.

(1)S0: D(q)q̈+ C(q, q̇)q̇+ G(q) = τ ,

(2)S1:
{

ẋ = Ax + Bf (q, q̇, τ)

y = Ex
,

A =
[

0 0

0 1

]

,B =
[

0

1

]

,E =
[

1 0

0 1

]

,

f (q, q̇, τ) = D−1(q)[τ − C(q, q̇)q̇− G(q)].

(3)D(q)q̈+ C(q, q̇)q̇+ G(q) = ρτ ,

(4)D(q)q̈+ C(q, q̇)q̇+ G(q) = τ + fa,

D(q)q̈+ C(q, q̇)q̇+ G(q) = τ + fa, (fa �= 0).

D(q)q̈+ C(q, q̇)q̇+ G(q) = ρτ , (ρ ∈ (0, 1)).

D(q)q̈+ C(q, q̇)q̇+ G(q) = fa, (fa �= 0).

D(q)q̈+ C(q, q̇)q̇+ G(q) = 0.

Table 1.  Actuator fault type table.

ρ fa Fault type

1 Not zero Constant deviation fault

0 < ρ < 1 Zero Constant gain fault

0 Not zero Actuator stuck

0 Zero Actuator broken
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where fb is the sensor failure function with the same dimension of x . fb is positively correlated with degree of 
damage.

ErrS2: Constant gain fault of sensor.

where � is the effective factor of the sensor.
ErrS3: The sensor is at constant output point.

When this happens, it means there is no reaction for the sensor when robot joint moves.
ErrS4: The sensor is at zero output point.

The effective factor of the sensor is zero, and it means the sensor does not work anymore. The actuator and 
sensor faults are combined together, and considering (Eq. 1) and (Eq. 2), the expression after integration is given 
in (Eq. 5).

Fault data acquisition. The model of the robot joint control system is established by MATLAB/Simulink 
as shown in Fig. 1. The total simulation time is set to 40 s and the sampling frequency is 100 Hz.

From the joint sensor fault model and actuator fault model in (Eq. 5), they effect the system in a different 
way. However, through the model derivation and transformation, the sensor fault can be transformed into 
actuator fault through the first-order filter, which simplifies the analysis procedure. In order to reflect as much 
as information using collected fault data set, the sensor and actuator fault data are pre-processed according to 
the following formula.

where Fault denotes fault data set needed, �Sensor represents the difference between sensor output and settings, 
Actuator is the output of actuator, a and b are sensor and actuator faults coefficient respectively. Item Noise rep-
resents the gaussian white noise, and it adds with sensor and actuator feedback signals, and three of them form 
the fault signals to verify the noise immunity ability of the RNN.

In our study, fault types for both sensor and actuator are considered, including constant gain fault, constant 
deviation fault, stuck fault, and inactive fault. Above eight kinds of faults are researched separately for sensor and 

{

ẋ = Ax + Bf (q, q̇, τ)
y = Ex + fb, (fb �= 0)

,

{

ẋ = Ax + Bf (q, q̇, τ)
y = �Ex, (� ∈ (0, 1))

,

{

ẋ = Ax + Bf (q, q̇, τ)
y = fb, (fb �= 0)

.

{

ẋ = Ax + Bf (q, q̇, τ)
y = 0, (fb �= 0)

.

(5)S1:
{

ẋ = Ax + BD−1(q)[ρτ+fa − C(q, q̇)q̇− G(q)]
y = �Ex + fb

.

(6)Fault = a�Sensor + bActuator + Noise

Figure 1.  Model of robot joint control system.
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actuator. furthermore, constant deviation fault occurred simultaneous on sensor and actuator is also considered. 
Table 2 lists all ten kinds of system types including normal condition.

Fault diagnosis based on resnet
Architecture of RESNET. RESNET is a kind of deep CNN, and it provides forward information through 
residual feedforward. Not only the depth of the network is expanded, but also the gradient disappearance phe-
nomenon in the process of parameter updating is avoided by RESNET, which improves the strong adaptive 
capacity of the network.

Generally, CNN consists of five parts: convolutional layer, batch standardization, active layer, pooling layer, 
and dropout layer. The whole CNN architecture is constructed by fully connected layer (FCL), as shown in Fig. 2.

Furthermore, CNN fault diagnosis architecture could be divided into two parts, and they are filtering and 
classification module. The filtering module can extract features from the input data set, and the classification 
module can process and classify the features extracted from the filtering module. Both the two modules use 
parameter sharing mechanism and sparse connection to reduce the amount of model training procedure and to 
improve the training efficiency of the  network36.

Enhancement of dataset. It usually needs large training sample when using RESNET for fault diagno-
sis. Traditional data set enhancement methods mainly include: flip transformation, scaling, rotation transfor-
mation, mirror transformation, and translation  transformation37. However, these methods are not suitable for 
one-dimensional sample data. In order to expand the acquired robot joint fault data, a sliding sampling data set 
enhancement method is proposed, as indicated in Fig. 3.

The system data over a period is obtained, and data sampling points of N1 is used each time the network 
needs to be trained. Assuming a total number of m ∗ N1 data is obtained, then the network could be trained by 
m times according to above method. In order to expand the coefficient of utilization for data, the start point of 
the second data set is h backwards then the first one, and the rest is roughly the same.

When the sliding step size is small, that means h is quite large, we can get more data samples, which can well 
meet the needs of data sets for deep convolution neural network in training. Comprehensive consideration, the 
sliding step selected here is 29.

Table 2.  Actuator fault type table.

Fault types Parameters

ErrA1-F1 ρ = 1, fa = 5

ErrA2-F2 ρ = 0.8, fa = 0

ErrA3-F3 ρ = 0, fa = 30

ErrA4-F4 ρ = 0, fa = 0

Actuator & sensor deviation fault-F5
{

ρ = 1, fa = 5

� = 1, fb = 0.1

ErrS1-F6 � = 1, fb = 0.1

ErrS2-F7 � = 0.8, fb = 0

ErrS3-F8 � = 0, fb = 0.3

ErrS4-F9 � = 0, fb = 0

Norm-F10
{

ρ = 1, fa = 0

� = 1, fb = 0

Data sets
Convolution 

layer

Batch 

standardization

Activation 

layer

Pooling

layer

Dropout

layer

Fully 

connected 

layer

Diagnosis 

output

Filter module

Classification module

Figure 2.  Diagram for CNN fault diagnosis system.
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RESNET fault diagnosis model based on data driven. RESNET is a kind of deep convolutional neu-
ral network. In order to reduce the use of the model parameters and the calculation of the network, this paper 
uses several small convolution kernels and stacks them all, thus the convolution kernel size is increased, which 
enhances the ability of feature extraction for the network. The whole structure using RESNET in fault diagnosis 
from data input to fault diagnosis output is shown in Fig. 4.

Conv3*1,4,6 in Fig. 4 represents a convolution kernels dimension, and its depth is 4, sliding step is 6. BN, 
ReLU, GAP and Dense are batch standardization, active layer, pooling layer and fully connected layer respec-
tively in Fig. 2. The structure of the whole network is regularized to prevent over fitting, when input and output 
dimensions of each convolution module are inconsistent, the residual jump is carried out through virtual channel, 
which is indicated by dotted line in Fig. 4.

Simulation verification and analysis
The simulation platform used is PyCharm, combining with Python3.6 interpreter. RESNET architecture is based 
on Keras with Tensorflow as its background. Tensorflow is an end-to-end open-source machine learning plat-
form, and it has a comprehensive and flexible ecosystem, which contains a variety of tools, libraries, and com-
munity resources. Keras is an open-source artificial neural network library written by python. It can be used as 
a high-level application interface of tensorflow to design, debug, evaluate, apply, and visualize the deep learning 
 model38.

Fault dataset. A variety of fault types listed in Table 1 are studied. The fault data sets are obtained for each 
kind of sensor and actuator faults, and we get 4000 data for every kind of fault type, around 216 data points are 
contained in the aforementioned 4000 data points. The sliding sampling enhancement method is used, as shown 
in Fig. 3, and 1000 samples are taken for each kind of fault, so a total of 10,000 samples are studied, including one 
data set under normal operation environment. The fault diagnosis results need to be evaluated, so 1000 samples 
are divided a by a ratio of 7:2:1, which means 70% of the data is used to train the neural network, 20% is used for 
validation and the rest for testing.

Hyper‑parameters of RESNET. According to previous research, hyper parameters in deep learning algo-
rithm not only affect the performance of the algorithm itself, but also affect the expression ability of the trained 
model. However, about how to set hyper parameters, there is no mature theory. At present, most of the hyper 
parameter settings are based on the trial and error. This paper takes the advice from Y.bengio39. The correspond-
ing hyper parameters are set according to whether these hyper parameters can increase or decrease the capacity 
of the model.

In the process of parameter updating, the exponential decay learning rate is used. At first, a large learning 
rate is used to get the optimal solution quickly, and then the learning rate is gradually reduced to keep the model 
stable in the later stage of training. The initial learning rate η0 is set to 0.2, and decay learning rate ξ is set to 0.99, 
so the decay rate is updated per round. The expression for decay rate is as follows.

where η denotes exponential decay learning rate, H stands for the current round, and L is the period,Batch_k is 
the number of iterations. When a complete data set passes through the neural network once and then returns, 
this process is called Epoch and here we set Epoch to 40.

In order to alleviate the over fitting of neural network, l2 regularization method is used in this paper. Regu-
larization is to introduce the model complexity index into the loss function and suppress the noise in the training 
data set by weighting the parameters w in the neural network. The loss function is as follows.

{

η = η0 × ξ (H/L)

H = Epoch/Batch_k
,

Figure 3.  Schematic diagram of data set enhancement method.
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where Loss_all represents loss function of all parameters in the model, REGULARIZER is the regularization 
weight, w generally refers to the weight in the forward propagation of neural network, and Loss(w) is the result 
of l2 regularization of parameter w.

The Adma optimal algorithm is used and the procedure of weight updating is as follows.
Step 1: Give the iteration step ε = 0.001.
Step 2: Set the decay rate for matrix calculation,ρ1 = 0.99, ρ2 = 0.999.
Step 3: Determine the convergence threshold δ = 10−8.
Step 4: Initialize network weight θ,and initializes first and second moment variables s, r,and set s = 0, r = 0.
Step 5: Set the simulation time step to 0.0001.
Step 6: Small data set with m samples are collected from the training set, use 

{

x(1), x(2), ..., x(m)
}

 denotes it 
and set corresponding goals y(i).

(7)







Loss = Loss_all + REGULARIZER × Loss(w)

Loss(w) =
�

i
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Figure 4.  RESNET model diagram.
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Step 7: Calculate gradient variable g ← 1
m∇θ

∑

i
L(f (x(i);θ),y(i)) , and update biased first moment estimation 

s ← ρ1s + (1− ρ1)g as well as biased second moment estimation r ← ρ2r + (1− ρ2)g.
Step 8: Correct the deviation of the first moment ŝ ← s

1−ρt1
 and deviation of the second moment r̂ ← r

1−ρt2
.

Step 9: Calculate incremental weight error �θ = −ε ŝ√
r̂+δ

,and update it to the network weight θ ← θ +�θ

.
Step 10: If the convergence threshold in Step3 is not met, then, back to Step6, else end the iterative process.
Machine learning is a highly empirical process, accompanied by a large number of iterations. In order to find 

the most suitable model, a lot of model training is needed. The optimizer is a tool to guide the neural network to 
update parameters. Using the optimization algorithm can help to quickly train the model and find the optimal 
solution. In this paper, we choose the Adma optimization algorithm, which does not occupy memory, and it is 
an efficient random optimization algorithm.

Fault diagnosis results. In order to verify the feasibility and effectiveness of the RESNET fault diagnosis 
method used in this paper for robot joint sensor and actuator fault diagnosis, the artificial neural network, sup-
port vector machine, convolution neural network, long-term memory network and deep residual network meth-
ods are used for comparative analysis and verification. The average accuracy and standard deviation of different 
network training results are compared in Table 3.

It can be seen from Table 3 that compared with the traditional data-driven fault diagnosis method (ANN and 
SVM), the fault recognition accuracy of the deep learning fault diagnosis method is significantly improved. The 
average accuracy of network training results is less than 70% using traditional fault diagnosis method, but the 
average accuracy of CNN, LTMN and RESNET is more than 95%. Meanwhile, the average accuracy of RESNET 
in both training and test set is more than 99%, which means RESNET is suitable and effective for fault diagnosis 
of robot joint sensors and actuators faults.

For the purpose of further analyzing the diagnosis effect of three kinds of deep neural networks (CNN, 
LTMN and RESNET) on robot joint sensor and actuator faults, the accuracy and loss function of each kind of 
network in the training set and testing set are drawn with the help of tensorflow, and the results are shown in 
Fig. 5 and Table 4.

Figure 5 shows the fault diagnosis accuracy and loss on both training and validation datasets. The reasons 
that validation loss is better than training loss may be deduced as follows. The datasets under the same working 
condition are grouped proportionally as 7:2:1, so the validation datasets only occupy 20% of all. This may cause 
the accuracy difference.

The dropout layer in training process. In order to accelerate the model training time, the dropout layer is 
introduced. While the dropout doesn’t operate at validation stage. Combining Fig. 5, Table 4, it can be seen 
that the highest accuracy of CNN in training data set is 99.2%, and that number is 97.3% in test data set. The 
highest accuracy of LTMN and RESNET in training data set and test data set is 100%, and their accuracy curve 
is relatively smoother. Obviously, both LTMN and RESNET can better reflect the fault information from the 
original data set and can make more accurate judgment of sensor and actuator faults in robot joints. But from 
the point of view of the training time, RESNET needs 2.5 T, while LTMN needs 12 T, which is more than five 
times of RESNET.

Thus, compared with other data-driven fault diagnosis methods, the deep RESNET network used in this 
paper has higher accuracy in the fault diagnosis of robot joint sensors and actuators, and the training time cost 
is relatively less, so it is more practical.

Considering that the initial value of the neural network is random, in order to avoid the inaccuracy of fault 
diagnosis results and verify the reliability of each training result, the cross method is used to train the fault data 
set for ten times. The results are shown in Fig. 6.

As can be seen from Fig. 6, the training accuracy of RESNET in each experiment is more than 99%, and the 
lowest accuracy is 99.6%. Therefore, it can be concluded that the best fault diagnosis method of robot joint sensor 
and actuator is RESNET-based neural network in our study.

Visualization analysis of RESNET classification results. Visualization analysis of RESNET is carried 
out to study the intermediate process of neural network. t-distributed stochastic neighbour embedding (t-SNE) 
is used to reduce the data dimension of the output of each residual block in RESNET architecture, and the results 
are shown in Fig. 7.

Table 3.  Actuator fault type table.

Network type Average accuracy on training set Average accuracy on testing set

ANN 68.32± 0.63 68.16± 1.24

SVM 63.16± 0.23 63.02± 1.36

CNN 97.68± 1.65 95.73± 1.82

LTMN 99.87± 0.12 98.67± 0.24

RESNET 99.91± 0.09 99.87± 0.13
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Figure 5.  Fault diagnosis results of three kind of neural networks.

Table 4.  Actuator fault type table.

Network type Max accuracy for training (%) Max accuracy for testing (%) Stable time Training time

CNN 99.2 97.3 4 Epoch 1 T

LTMN 100 100 7 Epoch 12 T

RESNET 100 100 5 Epoch 2.5 T
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Figure 7a is the result of t-SNE visualization of fault data set with signal to noise ratio setting to 10. Fig-
ure 7b–i correspond to the t-SNE visualization results of the outputs of the eight residual blocks in the RESNET 
architecture in Fig. 4. Figure 7j is the final output of RESNET neural network. Different curves with different 
colours in Fig. 7 represent different fault types listed in Table 1. A total of 10 colours correspond to 9 faults and 
1 health state for robot joint system.

It can be seen from the Fig. 7 that with the increase of residual blocks, the data expression ability of RESNET 
network is gradually enhanced, and finally the accurate classification of nine kinds of fault types is realized. From 
the visualization analysis results of data in two-dimensional space, the feasibility and effectiveness of RESNET 
fault diagnosis algorithm proposed in this paper are further verified.

Conclusion
A novel RESNET based neural network fault diagnosis method for robot joint system is proposed in this paper. 
Aiming at the problem that the traditional robot joint fault diagnosis algorithm cannot accurately locate the 
fault, a data-driven RESNET fault diagnosis algorithm is proposed. The fault models of robot joint sensor and 
actuator are built to simulate various fault states in order for fault data acquisition. After getting the fault data 
set needed, the RESNET architecture constructed by small convolution kernel is studied, and by increasing the 
residual blocks, the convolution kernel is gradually increased to improve the fault extraction ability of the model. 
Compared with other data-driven based fault diagnosis algorithms, simulation results show that the accuracy 
of fault diagnosis based on RESNET is more than 99%, which is the highest among all studied methods and 
meanwhile the model training time is less.

Figure 6.  Cross validation result.
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Data availability
The data presented in this study are available on request from the corresponding author.

Code availability
The data presented in this study are available on request from the corresponding author.
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