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Radiative heat transfer 
between two carbon nanotubes
Igor S. Nefedov1, Michael V. Davidovich1, Olga E. Glukhova1,2, Michael M. Slepchenkov1 & 
J. Miguel Rubi3*

We analyze the radiative heat transfer between two parallel and infinitely long carbon nanotubes 
(CNTs). The radiative heat exchange is due to the difference between the Poynting vectors generated 
by the fluctuating currents when the CNTs are at different temperatures. The radiated and absorbed 
Poynting vectors are expressed in terms of the correlations of the electromagnetic fields obtained 
from the Green’s function and the fluctuation-dissipation theorem for the current density. The analysis 
takes into account the scattering of the fields by the nanotubes. We show that the radiative heat 
transfer depends not only on the distance between nanotubes, but also on their chiralities and thus on 
their semiconducting or metallic nature, which would allow the design of nanostructures for optimal 
radiative heat exchange.

In their study of radiative heat transfer between two infinite parallel plates at different temperatures, Polder and 
van  Hove1 showed that it is possible to exceed the value of the radiated energy, established by Planck’s law, when 
the distance between the plates is small enough for evanescent waves to contribute to the radiation, in the so-
called near-field limit. This result was obtained under the assumption that thermal radiation is generated by the 
presence of fluctuations of electromagnetic fields, which are also responsible for some other phenomena such 
as thermal emission, van der Waals interactions, Casimir effect and van der Waals friction between two  bodies2. 
Rytov’s fluctuational  electrodynamics3 provides the theoretical framework to analyze the effect of fluctuations.

Radiative heat transfer arises from the difference between the Poynting vectors associated with the fluctuat-
ing electromagnetic fields that one object generates in the other when the two are at different temperatures. The 
Poynting vector is obtained from the distribution of electromagnetic fields in the objects, which are calculated 
using Green’s functions. This explains why radiative heat transfer depends on the geometry of the objects, as 
shown  in4,5.

The important contribution of the evanescent waves in near-field radiative heat transfer has been reported for 
different basic configurations such as dipole-plate, dipole-dipole, sphere-sphere, sphere-plate, cylinder-cylinder, 
cone-plate, cone-cone and ring-ring6–19. The impact of radiative heat transfer on thermal technologies has been 
reviewed  in20.

When the plates are made of graphene, near field heat transfer shows new behaviours that have been the 
subject of recent studies. It has been found to depend on doping and electron relaxation time, with maximum 
transfer observed at low doping and when the plasmons of the two graphene sheets are in  resonance21. Also, the 
coupling of surface plasmon polaritons and surface phonon polaritons results in a colossal enhancement of the 
energy transmission coefficient and radiation  spectra22. It has recently been shown that near field heat transfer 
can be significantly enhanced in multilayered graphene  structures23.

In this article, we will analyze a new aspect of the near field radiative heat transfer between graphene struc-
tures. We will show that the near-field heat transfer between two CNTs depends significantly on their chiralities 
which dictate their metallic or semiconducting behaviour. It also depends on the relaxation time of the surface 
conductivity. The radiative heat transfer is higher when the nanotubes are metallic than when they are semicon-
ducting and when one is metallic and the other semiconducting. Metallic CNTs are therefore optimal structures 
for heat exchange.

The article is organized as follows. In “The system of two carbon nanotubes” section, we present the model 
for the system of two CNTs. In “Electromagnetic fields” section, we compute the electromagnetic fields from the 
Green’s function formalism. In “Poynting vector and radiative heat transfer” section, we calculate the Poynting 
vectors and the radiative energy exchanged by the nanotubes at two different temperatures. The results obtained 
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for the energy exchanged as a function of frequency, distance, chirality and relaxation time is computed in 
“Results and discussion” section. In the “Conclusions” section, we present our main conclusions.

The system of two carbon nanotubes
We will study the radiative heat transfer between two parallel CNTs, represented in Fig. 1, having radii of a few 
nanometers and a length ranging up to  centimeters24. Their electronic properties are determined by the way the 
graphene sheet is rolled-up. Two integers m and n, combining into a dual index (m, n), characterize different 
types of CNTs: n = 0 for zigzag, n = m for armchair, and 0 < n  = m for chiral ones. CNTs can manifest either 
metallic or semiconductor properties, depending on the chiral angle determined by indices m and n25. Armchair 
CNTs are always metallic (no energy bandgap), zigzag CNTs with m = 3q , with q an integer, are also metallic. 
Other zigzag and chiral CNTs possess semiconductor properties. The radius of a nanotube can be expressed in 
terms of m and n as

where b = 0.142 nm is the interatomic distance in graphene.
In this paper, we will consider zigzag CNTs whose radii are given by

where b = 0.142 nm is the interatomic distance in single-wall CNTs. We will use the surface conductivity model, 
developed  in26 which is based on effective boundary conditions and Green’s function methods and uses the π
-electron tight-binding approximation. Formulas and parameter values are taken  from27. According to this model, 
a CNT is considered as an impedance cylinder having a complex dynamic conductivity σ(ω) which includes the 
intraband and interband contributions

Explicit expressions for σintra(ω) and σinter(ω) are given in the Supplementary Material. This model is applicable 
to both metallic and semoconducting CNTs and is valid in any frequency range, including the visible one.

Electromagnetic fields
In this Section, we will compute the electromagnetic (EM) field correlations for two parallel CNTs of infinite 
length having different radii and surface conductivities.

Green’s functions. EM potentials A(r) can be expressed through dyadic Green’s function  as28:

where the vector r has components (x, y, z), J(r′) is the current density in a volume V, and G(r, r′) is the scalar 
Green’s function. The time variation of the fields is given through the factor exp (−iωt) . The dependence of all 
quantities on ω is omitted in Eq. (4) and henceforth.

The Fourier representation of the 3D Green’s function is

(1)R =
√
3

2π
b
√

m2 +mn+ n2,

(2)R =
√
3bm

2π
,

(3)σ(ω) = σintra(ω)+ σinter(ω).

(4)A(r) =
∫

V
G(r, r′)J(r′) dr′,

Figure 1.  Radiative heat exchange between two parallel infinite-length carbon nanotubes of radii R1 and R2 , 
separated by a distance of d. The nanotubes are at different temperatures, T1 and T2 . The z-coordinate is directed 
along the nanotube axis while the x- and y-coordinates lie in the azimuthal plane.
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where ǫh is the relative permittivity of the medium surrounding the CNTs. Integrating over α and using the 
residue method one obtains

where kx =
√

γ 2 + β2 − k20ǫh , and if γ 2 + β2 < k20ǫh then the branch kx = −i
√

k20ǫh − γ 2 − β2 is taken. The 
electric and magnetic fields can be expressed in terms of the Green function as

and

where G
e
(r, r′) and G

h
(r, r′) are the electric and magnetic dyadic Green’s functions, respectively.

The electric dyadic Green’s function is given by

where η = 120π � (Ohm) is the wave impedance of vacuum. The magnetic dyadic Green’s function is

where ǫ̂αβγ is the Levi-Civita pseudotensor. The fields in Eqs. (7) and (8) contain both the fluctuation fields 
excited by current fluctuations and the scattered fields.

EM fields. The radiative heat transfer between the CNTs can be obtained through the Poynting vector which 
is a bilinear form of the EM fields. Its average value is thus expressed in terms of correlations of the EM fields that 
can be computed from fluctuational  electrodynamics3. We neglect the azimuthal currents in the CNTs because 
the axial component of the surface conductivity strongly dominates the azimuthal one due to quantum effects, 
hence Hz = 0 and the radiative heat transfer in the x-direction is expressed only through Hy and Ez.This assump-
tion is justified when the diameters of the CNTs are small enough, of about 1 -1.5 nm smaller than the distance 
between them which is 10-20 nm The field components obtained from expressions (6)–(10) are given by

where we have omitted the dependence of fields and currents on ω . The electric and magnetic fields are expressed 
in terms of their Fourier transforms as

where r⊥ = (x, y) . Integration over the volumes of the nanotubes V1 and V2 thus reduces to integration over their 
cross-sectional areas S1 and S2.

Since the currents flow within shells of CNTs, we can replace the volume currents Jz(r′⊥) by the surface 
currents J(r′⊥) = 2

r jz(r
′
⊥) (henceforth the subindex z will be omitted) and the integration over the CNT cross-

sections by the integration over their contours, L1 and L2 . We assume that the distribution of the surface current 
is homogeneous along the contour Lm of the m-CNT, m = 1, 2 , so the surface currents are jm(r⊥) = jm , and 
thus denote

Integrating Eqs. (11) and (12) over the coordinates r⊥ and r′⊥ , we obtain:

where

Similarly,

(5)G(r, r′) = 1

(2π)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

exp (i[α(x − x′)+ β(y − y′)+ γ (z − z′)])
α2 + β2 + γ 2 − k20ǫh

dαdβdγ ,

(6)G(r, r′) = 1

8π2

∫ ∞

−∞

∫ ∞

−∞

exp (i[β(y − y′)+ γ (z − z′)] − kx|x − x′|])
kx

dβ dγ ,

(7)E(r, r′) =
∫

V
G
e
(r, r′)J(r′) dr′,

(8)H(r, r′) =
∫

V
G
h
(r, r′)J(r′) dr′,

(9)G
e
(r, r′) = i

k0
η(∇∇ + k20ǫhI)G(r, r

′),

(10)G
h
(r, r′) = −ǫ̂αβγ ∂γG(r, r

′),

(11)Ez(r) = i
8π2k0

η
∫

V

∫∞
−∞

∫∞
−∞

(k20ǫh−γ 2)ei[β(y−y′)+γ (z−z′)]−kx |x−x′ |

kx
Jz(r

′)dβdγ dr′,

Hy(r) = − i
8π2

∫

V

∫∞
−∞

∫∞
−∞ ei[β(y−y′)+γ (z−z′)]−kx |x−x′| Jz(r′) dβdγ dr′

(12)Ez(r) = 1
2π

∫∞
−∞ Ẽs(r⊥)eiγ z dγ ; Hy(r⊥) = 1

2π

∫∞
−∞ H̃s(r⊥)eiγ z dγ ,

(13)Em =
∫

Lm
Ẽz(l) dl, Hm =

∫

Lm
H̃y(l) dl

(14)E1(γ ) = − i
8π2k0

η(k20ǫh − γ 2)

{

2
R1

∫∞
−∞ j1(β)

1
kx
W1 dβ + 2

R2

∫∞
−∞ j2(β)W12

e−kxd

kx
dβ

}

(15)W1 =
∫

L1

∫

L1
e−kx |x−x′|+iβ(y−y′) dldl′ = R2

1

∫ 2π
0

∫ 2π
0 e−kxR1| sin φ−sin φ′|+iβR1(cosφ−cosφ′) dφdφ′.
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The integrals in W1 and W2 can be calculated numerically or replaced by simple expressions using the mean 
value theorem:

We now calculate the term

Here x′ > x because this point belongs to the second CNT, so |x − x′| = x′ − x . Therefore, one can write

where I0(x) is the zero-order modified Bessel function. If γ 2 < k20ǫh , then I0(Rn
√

γ 2 − k20ǫh), m = 1, 2 is 
replaced by J0(Rm

√

k20ǫh − γ 2) , where J0(x) is the Bessel function. Then expression (14) can be written as:

For the second CNT, one can write:

The magnetic field components are

Thus, the average Poynting vector on the surface of the 2nd CNT, induced by the current in the 1st CNT, is 
expressed in terms of the current correlations as:

Poynting vector and radiative heat transfer
To obtain the Poynting vector from the result obtained in the previous equation, we will calculate the current 
and its correlations.

Calculation of the current. The electromagnetic fields are solutions of the Lippmann-Schwinger integral 
 equations29:

where Ge
zz and Gh

yz are the zz and yz components of the electric and magnetic Green’s tensors, respectively. 
The field components Ez(r), Hy(r) , and the current Jz(r) consist of contributions due to EM fluctuations and 
to the scattered (diffraction) fields, that will be respectively denoted by the indexes 0 and s. We then have: 
Ez(r) = E0z (r)+ Esz(r) , Hy(r) = H0

y (r)+Hs
y(r) , and Jz(r) = J0z (r)+ Jsz(r) . The total fields can be found by solv-

ing Eq. (24) by the iteration method of the multiple scattering  approach30,31. In the zero-order approximation, 
which was used  in32 to calculate the Casimir force between two CNTs, Eq(r) = E0q(r), Hq(r) = H0

q (r) . Here we 
will find an exact solution for the scattered currents and substitute it into Eqs. (24). The scattered electric field 
on the CNT fulfills the impedance condition jsm = σmE

s
z ( m = 1, 2 ), where σm is the surface conductivity of the 

m-th CNT. Then, imposing impedance boundary conditions at the surfaces of both CNTs, and using the Fou-
rier transforms of the fields given in Eqs. (20),(21), one can write the system of linear equations for the Fourier 
transforms in γ and β of the currents:

(16)W2 =
∫

L2

∫

L2

e−kx |x−x′|+iβ(y−y′) dldl′ = R2
2

∫ 2π

0

∫ 2π

0

e−kxR2| sin φ−sinφ′|+iβR2(cosφ−cosφ′) dφdφ′.

(17)W1 = (2πR1)
2, W2 = (2πR2)

2.

(18)W12 =
∫

L1

∫

L2

e−kx |x−x′|+iβ(y−y′).

(19)

W12 =
∫

L1

∫

L2

e−kx |x−x′|+iβ(y−y′) dldl′ =
∫

L1

ekxx+iβy dxdy

∫

L2

e−kxx
′−iβy′ dx′dy′

= R1

∫ 2π

0

eR1(kx sin φ+iβ cosφ) dφR2

∫ 2π

0

e−R2(kx sin φ
′+iβ cosφ′) dφ′

= (2π)2R1R2I0(R1

√

γ 2 − k20ǫh)I0(R2

√

γ 2 − k20ǫh) ≡ (2π)2R1R2U ,

(20)E1(γ ) = iη
R1

k0
(k20ǫh − γ 2)

[
∫ ∞

−∞
j1(β)

1

kx
dβ +

∫ ∞

−∞
j2(β)U

1

kx
e−kxd dβ

]

.

(21)E2(γ ) = iη
R2

k0
(k20ǫh − γ 2)

[
∫ ∞

−∞
j1(β)U

1

kx
e−kxd dβ +

∫ ∞

−∞
j2(β)

1

kx
dβ

]

.

(22)
H1(γ ) = −iR1

[∫∞
−∞ j1(β) dβ +

∫∞
−∞ j2(β)Ue

−kxd dβ
]

H2(γ ) = −iR2
[∫∞

−∞ j1(β)Ue
−kxd dβ +

∫∞
−∞ j2(β) dβ

]

.

(23)�E2H∗
2�(γ ) = 4η

R2
2

k0
(k20ǫh − γ 2)U2

∫ ∞

0

∫ ∞

0

e−(kx+k′x)d

kx
�j1(β)j1(β ′)� dβ dβ ′.

(24)
Ez(r) = E0z (r)+

∫

V Ge
zz(r, r

′)Jz(r′) dr′,
Hy(r) = H0

y (r)+
∫

V Gh
yz(r, r

′)Jz(r′) dr′,

(25)
js1(β)/σ1 = Ŵ11(β)(j0(β)+ js1(β))+ Ŵ12(β)j

s
2(β),

js2(β)/σ2 = Ŵ21(β)(j0(β)+ js1(β))+ Ŵ22(β)j
s
2(β),
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where

Here the dependence on γ has been omitted and it has been assumed that only scattered currents flow in the 2nd 
CNT. Then we can express the scattered currents through fluctuating current of the 1-st CNT:

where

The total current in the 1st CNT then reads

Poynting vector and radiative heat transfer. Substituting Eq. (29) for the full current into the fluctu-
ation-dissipation  theorem33, expressing the current fluctuations via the real part of surface  conductivity32, we 
obtain

where

is Planck’s distribution and σ ′
1 = σ ′

1zz is the real part of the zz-component of the surface conductivity tensor of 
the first CNT. Substituting (30) into (23), one obtains the expression for the Fourier components of the Poynting 
vector radiated by the first CNT at temperature T1 and absorbed by the second

Similarly, the Poynting vector radiated by the second CNT at T2 , and absorbed by the first CNT is

where D2 is obtained from D1 by replacing σ ′
1 → σ ′

2 , σ
′
2 → σ ′

1 . Due to the parity of the integrands, we have 
replaced the lower integration limit −∞ of the integrals over β and β ′ by zero and multiplied the integrals by a 
factor of two.

The total radiative heat transfer per unit length between both CNTs is thus given by

Its behavior as a function of frequency and chirality will be analyzed in the next Section.

Results and discussion
In this Section, we will present the most salient features of the near-field radiative heat transfer between differ-
ent types of CNTs: metallic-metallic, metallic-semiconducting, and semiconducting-semiconducting. Metallic 
CNTs are of zigzag or armchair types whereas semiconducting CNTs are of zigzag type. The temperature of the 
first CNT is assumed to be 307 K which corresponds to the black-body thermal emission spectrum at about 18 
THz. For simplicity, the temperature of the second CNT is taken as zero. The distance between both CNTs is 
10 nm, and the relaxation time is 10−13 s for both CNTs, in the three cases considered.

Figures 2, 3, 4 and 5 show the results of the numerical integration over frequency of the Poynting vector, emit-
ted by the first CNT. The integration stops when the integral converges which allow us to identify the frequency 
range contributing to the total thermal energy flow. In addition, we present results for the Poynting vector when 
scattering is considered or not. In the figure we plot the ratio between the total radiative heat transfer Sx and that 
obtained only by propagating waves S0 . It can be seen that the evanescent waves are dominant in the heat transfer.

Figure 2 illustrates the importance of scattering in metallic CNTs. For m1 = 6 , the Poynting vector obtained 
when the scattering is considered is more than seven times the value obtained when scattering is not taken into 
account. This result indicates the existence of multiple scattering between the highly conductive metallic CNTs. 
This difference decreases rapidly with increasing distance d. For example, if d = 20 nm, neglecting the scattering 
leads to an underestimation of the total heat transfer by about four times. It is observed that the lower the index 
m1 (the smaller the diameter of the CNT) the higher the total radiative heat transfer. This fact can be explained 

(26)Ŵ11(β) = η
k0ǫh−γ 2

2πk0kx
, Ŵ12(β) = Ŵ11(β)Ue

−kxd , Ŵ21(β) = Ŵ12(β), Ŵ22(β) = Ŵ11(β).

(27)js1(β) = j0
Ŵ11Q2 − Ŵ12Ŵ21

Q1Q2 − Ŵ12Ŵ21
≡ j0D1,

(28)Q1 = 1
σ1

− Ŵ11, Q2 = 1
σ2

− Ŵ22.

(29)j1(β) = j0(β)(1+ D1).

(30)�j1(ω, γ ,β)j1(ω′, γ ′,β ′)� = (1+ D)2

π
σ ′
1�(ω,T)δ(ω − ω′)δ(γ − γ ′)δ(β − β ′),

(31)�(ω,T) = �ω

exp
(

�ω
kBT

− 1
) .

(32)�E2H∗
2�(ω, γ ,T1) = 4η

R2
2

πk0
(k20ǫh − γ 2)σ ′

1U
2�(ω,T1)

∫ ∞

0

∫ ∞

0

(1+ D1)
2 e

−(kx+k′x)d

kx
� dβ dβ ′.

(33)�E1H∗
1�(ω, γ ,T2) = 4η

R2
1

πk0
(k20ǫh − γ 2)σ ′

2U
2�(ω,T2)

∫ ∞

0

∫ ∞

0

(1+ D2)
2 e

−(kx+k′x)d

kx
� dβ dβ ′,

(34)Sx(T1,T2) =
∫ ∞

0

Sω dω = 4

∫ ∞

0

dω

∫ ∞

0

[

�E2H∗
2�(ω, γ ,T1)− �E1H∗

1�(ω, γ ,T2)
]

dγ dω.
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by the fact that the real and imaginary parts of σ1 are larger for CNTs with smaller indices m1 , see Fig. 6. Both σ ′
1 

and σ ′′
1  do matter since σ ′′

1  influence on the scattering. Note that for semiconducting CNTs both σ ′ and σ ′′ are 
two orders of magnitud smaller than for metallic  CNTs26. It is remarkable that the radiative heat flow carried 
only by the propagating waves is ten orders of magnitude smaller than the total flux.

In Fig. 3, we compare the radiative heat flows between two metallic zigzag and two armchair CNTs. The m 
indices for both types of CNTs are taken in such a way that the radii were similar: R = 0.587 nm for zigzag CNTs 
and R = 0.610 nm for armchair CNTs. Comparison of the properties of different types of CNTs with equal radii 
is difficult as they take discrete values. The radiative heat transfer between zigzag CNTs is slightly higher. If scat-
tering is ignored, the curve (in red) is close to the others.

Figure 4 illustrates the spectral dependence of the radiative heat transfer calculated for armchair CNTs with 
different radii determined by Eq. (1) with m1 = n1 = m2 = n2 . Figure 5 depicts the radiative heat exchange 
between CNTs when the first one has semiconducting properties and the second one metallic. We assume that 
the chiral index of the second CNT is m2 = 12 . There are two significant differences with respect to the previous 
case. First, the total heat transfer is almost four orders of magnitude lower than in the case of two metallic CNTs. 
This result is due to the lower conductivity of semiconducting CNTs. Secondly, the effect of scattering is very 
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Figure 2.  Radiative heat transfer per unit length versus frequency for m2 = 12 . Red curves relate to calculations 
with neglect of the scattering (lines 4,5,6). Black curves (1,2,3) show results obtained taking into account the 
scattering. m1 = 6 (lines 1 and 4); m1 = 9 (2 and 5); m1 = 12 (3 and 6).
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Figure 3.  Radiative heat transfer per unit length Sx versus frequency calculated for zigzag CNTs with 
m1 = m2 = 15 (blue curve 1) and armchair CNTs with m1 = m2 = 9 (black curve). The red curve is obtained 
for the case of absence of scattering.
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low, so we present the result without taking scattering into account only for m1 = 13 . The fields radiated by the 
first semiconductor CNT are scattered by the second metallic CNT, but do not excite any significant current in 
the first CNT, except for that induced by thermal fluctuations. For the same reason, the radiative heat transport 
between two semiconducting CNTs is much weaker than when both are metallic and similar to that when one is 
semiconducting and the other metallic as discussed above. Thirdly, unlike in the case of two metallic CNTs, the 
larger the index m1 and consequently the radius of the CNT, the larger the total heat flux.

Calculation of the Poynting vectors have been carried out by using the values of the real and imaginary parts 
of σ1 represented in Fig. 6. Both parts contribute to the result since σ ′ is included in the fluctuation-dissipation 
theorem and σ ′′ influences the scattering. For semiconducting CNTs σ ′ and σ ′′ are two orders of magnitude 
smaller than for metallic CNTs. We can also see in the figure that for CNTs with a lower index m1 the real and 
imaginary parts of σ1 are larger.

Figure 7 displays the dependence of the radiated heat flux on the relaxation time τ responsible for the losses. 
This parameter can be estimated from the interaction of electrons with longitudinal acoustic  phonons34. Cal-
culations have been implemented for larger distance between CNTs than in previous cases, d = 20 nm. How it 
depends on frequency is still a matter of debate. At low frequencies of about a few terahertz, it is usually taken as 
10−12 to 10−13 s (see Refs.26,35,36). At higher infrared frequencies (below optical transitions) the value is τ = 10−13 
to 10−14 s (see Ref.37). Due to the difficulty in determining this parameter, we have studied how the radiative 

0 2 4 6 8 10 12
/2  (THz)

0

0.5

1

1.5

2

2.5

3

10
14

S
 (J

/m
)

Figure 4.  Spectral dependence of the radiative heat transfer Sω(ω/2π) per unit length calculated for armchair 
CNTs with m1 = n1 = m2 = n2 = 7 (blue curve), m1 = m2 = 10 (black curve), and m1 = m2 = 12 (red 
curve).
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Figure 5.  Radiative heat transfer per unit length Sx versus frequency for m2 = 12 . The solid black curve 
corresponds to m1 = 13 whereas the red one is obtained when scattering is not considered. The dashed line is 
obtained for m1 = 10 , and the dotted line for m1 = 8.
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heat transfer and the corresponding losses in metallic CNTs depend on it. The figure shows that the heat transfer 
increases with relaxation time. The results start from τ = 0.01 ps. The red curve 2 corresponds to the case of 
absence of scattering by the CNTs.

Finally, Fig. 8 illustrates how the radiative flow decreases with increasing the distance between the nanotubes. 
The results are normalised to the maximum values of the radiative flux which are 1.221 W/m for τ = 10−13 s, 
and 0.311 W/m for τ = 10−14 s, respectively. They are given on a logarithmic scale due to the rapid drop in 
radiative heat transfer.

Conclusions
In this article, we have studied the radiative heat transfer between two CNTs. Carrying out this study for these 
particular structures is important, as they are often found in many condensed matter, electronic, and biological 
applications. We have shown that the heat transfer is dependent on the distance between the nanotubes, their 
chiralities, their nature: metallic or semiconducting, and the relaxation time of the surface conductivity.

In the calculation, we have considered the CNTs to be parallel and infinitely long and have therefore presented 
the radiative heat transfer per unit length. We have assumed that the azimuthal currents on the CNT surfaces 
are negligible because the azimuthal component of the surface conductivity is much larger than the axial one, 
along the z-coordinate. Furthermore, we have considered a homogeneous distribution of the azimuthal surface 
current. Our analysis takes into account the fields scattered by the nanotubes. We have shown that the scattering 
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is only important if both CNTs are metallic, with the corresponding conductivity value. We have found that 
the total radiative heat transfer between metallic CNTs is four orders of magnitude higher than in the cases of 
semiconductor and semiconductor-metallic CNTs.

Data availability
The data that support the findings of this study are available from the corresponding authors upon reasonable 
request.
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