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Identification of hub genes 
and candidate herbal treatment 
in obesity through integrated 
bioinformatic analysis and reverse 
network pharmacology
Yuxing Tai  1, Hongying Tian1, Xiaoqian Yang2, Shixing Feng3, Shaotao Chen4,5, 
Chongwen Zhong4, Tianjiao Gao1, Xiaochao Gang4 & Mingjun Liu4,5*

Obesity is a global epidemic elevating the risk of various metabolic disorders. As there is a lack of 
effective drugs to treat obesity, we combined bioinformatics and reverse network pharmacology 
in this study to identify effective herbs to treat obesity. We identified 1011 differentially expressed 
genes (DEGs) of adipose tissue after weight loss by analyzing five expression profiles (GSE103766, 
GSE35411, GSE112307, GSE43471, and GSE35710) from the Gene Expression Omnibus (GEO) 
database. We identified 27 hub genes from the protein–protein interaction (PPI) network by 
performing MCODE using the Search Tool for the Retrieval of Interacting Genes (STRING) database. 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment 
analyses revealed that these hub genes have roles in the extracellular matrix–receptor interaction, 
cholesterol metabolism, PI3K-Akt signaling pathway, etc. Ten herbs (Aloe, Portulacae Herba, Mori 
Follum, Silybum Marianum, Phyllanthi Fructus, Pollen Typhae, Ginkgo Semen, Leonuri Herba, 
Eriobotryae Folium, and Litseae Fructus) targeting the nine hub genes (COL1A1, MMP2, MMP9, 
SPP1, DNMT3B, MMP7, CETP, COL1A2, and MUC1) using six ingredients were identified as the key 
herbs. Quercetin and (-)-epigallocatechin-3-gallate were determined to be the key ingredients. Lastly, 
Ingredients-Targets, Herbs-Ingredients-Targets, and Herbs-Taste-Meridian Tropism networks were 
constructed using Cytoscape to elucidate this complex relationship. This study could help identify 
promising therapeutic targets and drugs to treat obesity.

Obesity is a global health problem without a definitive cure. Being overweight enhances the risk of chronic 
diseases, including type 2 diabetes, cardiovascular disease, cancer, and reproductive disorders1–4. Patients with 
moderate or severe obesity will also face higher all-factor mortality5. A study revealed that the prevalence of 
high body mass index (BMI) has increased globally over recent decades. To date, no country has been able to 
reduce its obesity epidemic by following evidence-based policies6–8. Although dietary and lifestyle modifica-
tions are considered primary solutions to treat obesity, recent studies recommend medications combined with 
lifestyle modifications to reduce weight among patients having BMI ≥ 27 kg/m2 and other associated diseases, 
or BMI ≥ 30 kg/m29. Most drugs used to manage obesity focus on appetite control. These drugs help in reducing 
food intake by stimulating pro-opiomelanocortin (POMC) neurons to promote satiation, ultimately leading to 
weight loss10. However, these current anti-obesity drugs are associated with side effects such as insomnia, dry 
mouth, constipation, adverse gastrointestinal reactions, and acute liver injury 11,12. Therefore, effective alternative 
strategies are urgently required.

Several studies focus on using Chinese herbs and other natural medications to treat obesity13 owing to the 
advantages of traditional Chinese medicine (TCM) in enhancing drug safety and reducing complications due 
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to the homologous characteristics of medicine and food14. A systematic review shows that herbal medicines can 
effectively reduce weight, BMI, waist circumference, hip circumference, and body fat15. They exert anti-obesity 
effects by suppressing appetite and reducing energy intake, inhibiting pancreatic lipase activity and fat absorption, 
stimulating thermogenesis and energy expenditure, increasing lipolysis, and reducing lipogenesis15. Moreover, a 
randomized controlled trial showed that safflower oil intake could modify body weight and shape without lifestyle 
adjustments and also regulate blood pressure and insulin resistance compared with the placebo16. Drug discov-
ery is associated with challenges such as long development cycles, high costs and turnover rates, and constantly 
changing regulatory requirements, which are not ideal for inventors17. As opposed to developing brand-new 
drugs, the extraction of natural ingredients from known herbs has various advantages including considerable 
saving of both time and economic costs. Therefore, it is necessary to identify novel and natural compounds that 
are suitable for the treatment of obesity.

Owing to the popularity of gene-microarray and RNA sequencing, integrated bioinformatics has been widely 
used to analyze high-throughput sequencing data of various diseases. By identifying differentially expressed 
genes (DEGs) and screening suitable hub genes, disease-related signaling pathways and their mechanisms can 
be analyzed, becoming the basis for predicting targeted drugs. In addition, network pharmacology has attracted 
considerable attention for the further exploration of the relationship between drugs, diseases, and targets by 
using various databases for analysis and simulation18. Many studies have clarified the targets and mechanisms 
of several Chinese medicines and their components in treating diseases using this technology. However, only a 
few have focused on mining new targeted drugs. In this study, we used an alternative strategy and reversed this 
process. Accordingly, the Gene Expression Omnibus (GEO, https://​www.​ncbi.​nlm.​nih.​gov/​geo/) database and the 
Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP, https://​tcmspw.​
com/​tcmsp.​php) were used to identify the hub genes associated with obesity, explore the relevant mechanism 
through enrichment analysis, and predict the herbs and their ingredients with potential anti-obesity effect.

Results
Identification of DEGs after weight loss.  After standardizing gene sets (Fig. 1), 1011 DEGs (|logFC|> 1, 
p < 0.05) were screened out from GSE103766, GSE35411, GSE112307, GSE43471, and GSE35710 based on the 
above method. The results included 513 downregulated and 498 upregulated genes, as shown in the volcano 
plot (Fig. 2 and Supplementary Table S1). The abscissa in the volcano plot is log2 (fold change) value, and the 
ordinate is log10 (p-value).

PPI network analysis and identification of hub genes.  As shown in Supplementary Fig. S1, the PPI 
network of DEGs, based on the Search Tool for the Retrieval of Interacting Genes (STRING) database, includes 
584 nodes and 1417 edges. Using the MCODE plugin in Cytoscape software, the most significant modules 
(score = 6.667) were recognized from the PPI network as comprising 27 hub genes, including ACP5, CETP, 
COL1A1, COL1A2, CSF1, DNMT3B, EED, HIST1H2AI, HIST1H2BB, HIST1H2BD, HIST1H4B, HIST1H4H, 
HIST2H3C, HP, LCN2, LIPC, LPA, MMP2, MMP7, MMP9, MSR1, MUC1, PLA2G7, SPP1, THBS1, THBS2, 
and VLDLR (Table 1 and Fig. 3).

GO enrichment analysis of hub genes.  An enrichment analysis bubble chart was drawn under GO level 
2 classifications using Omicshare tools (Fig. 4 and Supplementary Table S2). As shown in the figure, hub genes 
were significantly enriched in regulating plasma lipoprotein particle levels, lipid transport, extracellular matrix 
(ECM) organization, response to reactive oxygen species, and the oxygen-containing compound for biological 
process (BP). The hub genes were significantly enriched for cell composition (CC) in lipoprotein particles, extra-
cellular regions, ECM, extracellular exosomes, and secretory granules. For molecular function (MF), the hub 
genes were significantly elevated in lipoprotein particle binding, glycosaminoglycan binding, ECM structural 
constituents, and peptidase activity.

KEGG pathway enrichment analysis of hub genes.  KEGG pathway enrichment analysis showed that 
the hub genes were primarily enriched in ECM–receptor interaction, cholesterol metabolism, PI3K-Akt, IL-17, 
and TNF signaling pathways, endocrine resistance, and leukocyte transendothelial migration (Fig. 5 and Sup-
plementary Table S3).

Screening of active ingredients.  We converted 27 gene names of the hub genes into protein names that 
could be recognized through the TCMSP database using the Universal Protein Resource (Uniprot). Moreover, 
the hub genes can be input in the required format to identify potential herbs with anti-obesity effects from 
the TCMSP database. After excluding the genes that were not present in the databases or those that had no 
related ingredients, nine were screened for further research, namely, COL1A1, MMP2, MMP9, SPP1, DNMT3B, 
MMP7, CETP, COL1A2, and MUC1. These genes corresponded to 16 ingredients [(-)-epigallocatechin-3-gal-
late (EGCG), arachidonic acid, arctiin, baicalein, beta-carotene, capillarisin, deoxypodophyllotoxin, ellagic acid, 
fisetin, irisolidone, luteolin, matrine, nobiletin, quercetin, rutaecarpine, tanshinone IIa] showing adequate OB 
and DL values (OB ≥ 30%, DL ≥ 0.18) (Supplementary Table S4).

Screening and annotation of key herbs.  There were 254 herbs with active ingredients in the databases. 
The top 10 herbs were Aloe, Portulacae Herba, Mori Follum, Silybum Marianum, Phyllanthi Fructus, Pollen 
Typhae, Ginkgo Semen, Leonuri Herba, Eriobotryae Folium, and Litseae Fructus. These were associated with 
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more DEGs (related genes = 6) and were, therefore, selected as crucial herbs in our study and annotated using 
Chinese pharmaceutical properties (CMPs), including characters, tastes, and meridian tropisms (Table 2).

Construction of ingredients‑targets, herbs‑ingredients‑targets, and herbs‑taste‑meridian 
tropism networks.  We screened the key ingredients in treating obesity using an Ingredients-Targets net-
work containing 25 nodes and 27 edges (Fig. 6). The nine orange nodes represent the target genes and 16 green 
nodes represent the active ingredients. As most genes could be linked (degree = 4), quercetin and EGCG were 
considered the most critical components in the treatment of obesity.

As shown in Fig. 7a, the Herbs-Ingredients-Targets network containing 24 nodes and 43 edges was con-
structed to demonstrate the relationship between them: the 10 green nodes represent the key herbs and the six 
yellow nodes represent the active ingredients in them; the eight blue nodes depict the target genes. By analyzing 
the network, Phyllanthi Fructus and Portulacae Herba were associated with the most ingredients (degree = 4). 
Moreover, quercetin was the most frequent active ingredient (degree = 23) found in all herbs. Regarding gene 
targets, MMP2 was targeted by most ingredients (degree = 5) followed by MMP9 (degree = 4). Other genes were 
only acted upon by one component (degree = 1).

We also established the Herbs-Taste-Meridian tropism network containing 24 nodes and 40 edges to clarify 
the distribution of CMPs (Fig. 7b). Five yellow nodes represent tastes and eight purple nodes represent merid-
ian tropisms. To indicate different characters, we presented 10 nodes of herbs having different greens (light 
green, medium green, and dark green). Regarding characters, cold-cool herbs like Mori Follum were the most 
frequent (nodes = 7), followed by herbs having calm (nodes = 2) and warm (nodes = 1) characters. In terms of 
taste, herbs were mostly bitter (edges = 6), followed by sweet (edges = 4), acid (edges = 2), symplectic (edges = 2), 
and astringent (edges = 2). Regarding meridian tropism, most herbs belonged to the liver meridian (edges = 6), 
followed by the stomach and lung (edges = 4), large intestine (edges = 2), bladder (edges = 2), kidney (edges = 2), 
pericardium (edges = 2), spleen (edges = 1), and gallbladder (edges = 1) meridians.

Figure 1.   Box-plots of the expression profiles after consolidation and standardization. The x-axis label 
represents the sample symbol and the y-axis label represents gene expression values. The black line in the 
box-plot represents the median value of gene expression. (a) Standardization of GSE43471, (b) Standardization 
of GSE35411, (c) Standardization of GSE103766, (d) Standardization of GSE35710, (e) Standardization of 
GSE112307.
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Figure 2.   Volcano plot to identify differentially expressed genes (DEGs). (a) GSE43471, (b) GSE35710, (c) 
GSE35411, (d) GSE103766, (e) GSE112307. The x-axis label represents fold changes and the y-axis label 
represents the p-values. Red dots represent the 498 upregulated genes and green dots represent the 513 
downregulated genes.

Table 1.   The MCODE scores of hub-genes.

Gene symbol MCODE score

HIST1H4B 5.785714286

MMP2 5.474358974

HIST1H2BB 5.785714286

MMP9 5

HIST1H4H 5.785714286

CETP 6

HP 6

CSF1 5.571428571

HIST1H2AI 5.785714286

MUC1 5

COL1A2 6.611111111

HIST1H2BD 5.785714286

THBS2 5.2

EED 6

THBS1 6.611111111

COL1A1 5.981818182

ACP5 6

LCN2 5

DNMT3B 5.785714286

MSR1 6

LPA 6

LIPC 6

PLA2G7 6

SPP1 5.621212121

MMP7 5.066666667

VLDLR 6

HIST2H3C 6
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Discussion
Obesity causes energy imbalance due to excess energy intake (intake > expenditure). Controlling energy intake 
and expenditure is the key to maintaining metabolism and weight loss12. Most anti-obesity drugs lead to weight 
loss by promoting satiety and reducing food intake and calorie absorption. The TCM theory has different views. 
Although there is no objection with respect to the influence of energy balance on body weight depending on the 
law of conservation of energy, TCM theory expounds on obesity from the perspective of body functions other 
than the dynamic equilibrium of energy and nutrition. Based on TCM, obesity, as a physical state, results from 
the combined influence of various congenital constitutions and living habits. The obese population can be divided 
into TCM syndrome types based on their body function status rather than the degree of obesity depending on 
BMI, abdominal circumference, and other data17. The TCM theory consistently implements this holistic dialecti-
cal thought to discuss several biomedical problems and provides new treatments for various diseases18. Owing 
to the side effects of the current drugs used for weight loss on one hand and the safety of natural components on 
the other, it is important to predict and further explore potential TCM-based therapies.

Heredity is an important factor contributing to obesity. About 40%–70% of BMI differences among individu-
als are attributed to genetic differences19. Data from genome-wide association studies indicate more than 140 
genetic chromosomal regions associated with obesity, indicating genetic involvement20. About 60% of the cases 
of obesity are due to genetic differences21. Claussnitzer et al.22 observed that regulating the expression of related 
genes in adipose tissue could reduce weight and enhance energy consumption in mice without altering their 
physical activity or appetite. The mechanism is associated with inhibiting adipocyte precursor mitochondria 
thermogenesis via the obesity-related FTO allele in a tissue-autonomous way. A meta-analysis19 revealed that 
97 genetic loci associated with BMI comprised less than 3% (about 2.7%) of BMI variation. In contrast, 21% of 
BMI variation was likely due to common genetic variation, indicating that any single gene could not explicitly 
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Figure 3.   Subnetwork of 27 hub genes from the protein–protein interaction (PPI) network. Node size and 
temperature color reflect the degree of connectivity (bigger node represents a higher degree and smaller node 
represents a lower degree; red node represents a higher degree and yellow node represents a lower degree).
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explain BMI variation. Microarray analysis in systems biology is an effective tool to explore the potential genes 
and pathways in different diseases. It is performed by detecting tens of thousands of gene expression information 

Figure 4.   Biological functions based on Gene Ontology (GO) analysis of obesity-related hub genes. Advanced 
bubble chart shows significance in GO enrichment items of hub genes in three functional groups: biological 
process (BP), cell composition (CC), and molecular function (MF). The x-axis label represents the gene ratio 
(Rich Factor) and the y-axis label represents GO terms.
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using a high-throughput pattern23. The GEO database is the most comprehensive public functional genomics 
database that includes gene expression, mutation, modification, and other related information24. Currently, the 
GEO database has 65,775 microarray expression profiling by array that has been queried and downloaded by 
users for free. Therefore, this study was conducted based on the appropriate microarray data from the GEO data-
base. Additionally, the expression data of the same population before and after weight loss was selected from this 
database in the current study, rather than data from individuals who were obese or of normal weight, to avoid 
the influence of individual genetic factors during the acquisition and adjustment of obesity.

GO and KEGG enrichment analysis of hub genes revealed that most genes were enriched in ECM-reception 
interaction, including six DEGs. The ECM is a complex structure with different proteins, proteoglycans, and 
polysaccharides. It provides a scaffold for cells to control biological processes such as cell adhesion, migration, 
repair, survival, and development. Obesity is characterized by the extensive expansion of adipose tissue. Thus, 
ECM remodeling and recombination provide adequate space for adipocyte proliferation and the formation of 
new fat cells by the adipogenesis of precursor cells25. In addition, this process forms new blood vessels, which 
are essential for the expansion of healthy adipose tissue. In addition, adipose tissues require a vascular network 
to receive oxygen and nutrients26. Failure of this process will lead to adipocyte necrosis and hypoxia, which can 

Figure 5.   Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of hub genes. The x-axis label 
represents the gene ratio (Rich factor) and the y-axis label represents the pathway.

Table 2.   The CMPs of key hub genes.

Herbs Characters Tastes Meridian tropisms

Aloe Cold Bitter Liver, stomach, large intestine

Portulacae herba Cold Acid Liver, large intestine

Mori follum Cold Sweet, bitter Lung, liver

Silybum marianum Cool Bitter Liver, gallbladder

Phyllanthi fructus Cool Sweet, acid, astringent Lung, stomach

Pollen typhae Calm Sweet Liver, pericardium

Ginkgo semen Calm Sweet, bitter, astringent Lung, kidney

Leonuri herba Cold Botter, symplectic Liver, pericardium, bladder

Eriobotryae folium Cold Bitter Lung, stomach

Litseae fructus Warm Symplectic Spleen, stomach, kidney, bladder



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17113  | https://doi.org/10.1038/s41598-022-22112-4

www.nature.com/scientificreports/

cause chronic inflammation and fibrosis and induce other chronic diseases. Therefore, the growth and expan-
sion of adipose tissue depend on angiogenesis. Intervention with angiogenesis inhibitors among obesity models 
can reduce the number of blood vessels in adipose tissues27 and reduce weight without impacting food intake28.

In this study, we constructed an Ingredients-Targets network using Cytoscape. Next, we screened out two 
compounds as crucial ingredients in treating obesity (quercetin and EGCG), which could each target four hub 
genes considered key in treating obesity. Quercetin is a plant-derived flavonoid with anti-inflammatory and 
anti-obesity effects29. Related studies indicate that quercetin also has antioxidant and cardioprotective effects. 
Its anti-obesity effect is due to the inhibition of adipogenesis by inhibiting the gene expression of peroxisome 
proliferator-activated receptor-γ (PPAR-γ)30. Quercetin is reported to significantly alleviate high-fat-diet–induced 
obesity and influence the production of metabolites linked to obesity-related inflammation and oxidative stress 
by regulating gut microbiota and metabolites31. EGCG is a bioactive polyphenol with antioxidant and anti-
inflammatory effects32. Treatment with EGCG leads to reduced visceral adiposity and loss in body weight and is 
associated with the regulation of Beclin1-dependent autophagy in white adipose tissue33. Moreover, EGCG can 
inhibit adipocyte differentiation and maturation via the PI3K-AKT-FOXO1 pathway34.

We identified 10 key herbs in treating obesity, many of which have been widely used clinically for weight loss. 
Eriobotryae Folium can alleviate visceral and central obesity, insulin resistance, dyslipidemia, oxidative stress, and 
inflammation of metabolic syndrome in high-fat-diet models35. Aloe can inhibit obesity-induced inflammation 
by activating AMPK expression in muscle and reducing proinflammatory cytokines in white adipose tissue36. 
Silybum Marianum has lipid-lowering, antihypertensive, antidiabetic, anti-atherosclerotic, hepatoprotective, and 
anti-obesity effects and is known for its antioxidant, anti-inflammatory, and β-cell regenerative effect; enhance-
ment of insulin sensitivity; and inhibition of gluconeogenesis and Glut4-mediated transport37. However, further 
investigations, such as randomized controlled trials, are required to verify the clinical effects and elucidate its 
anti-obesity mechanisms.

One of the innovations of this study was the construction of the Herbs-Taste-Meridian Tropism network and 
understanding the CMP rules of herbs with promising effects. Although several scholars have begun to study the 
weight-loss effect of Chinese herbs, research on potential herbs based on CMP is relatively insufficient. CMP is 
an integral aspect of the TCM theory38 that has guided the clinical practice of TCM practitioners for thousands 
of years as the primary prescription basis. Some research groups have studied Hedysarum Multijugum Maxim, 
Coicis Semen, and other Chinese herbs based on the theories of Yin-Yang and Chinese herbal characters. They 
found that warm-hot herbs could increase cAMP, prostaglandin E2, and other heat-related metabolites in rats 
with elevated body temperature. Cold-cool herbs could elevate metabolites such as histidine, tyrosine, lipid, 
and inositol and exert a cooling effect39. A study indicated that40 the characters, tastes, and meridian tropisms 
of Chinese herbs correlate with human tissues and organs, depicting a nonlinear relationship. Warm herbs have 
evident effects on the upper part of the liver, heart, and spinal cord, whereas hot herbs affect the stomach, kid-
neys, and small intestine. According to the theory of TCM, Schisandrae Chinensis Fructus tastes like acid, and 
acid herbs correspond to the liver. Therefore, Schisandrae Chinensis Fructus is traditionally used in a clinical 
setting as a liver tonic. Recent studies have revealed that it can alleviate the symptoms of metabolic syndrome 
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by inhibiting oleic acid–induced fatty liver41. From the perspective of meridian tropism, Sanjiao Meridian has 
a significant impact on the thymus, brain, upper spine, and medulla. In contrast, the Pericardial Meridian has 
significant effects on the stomach, kidneys, small intestine, and medulla. The above studies could not completely 

Figure 7.   Herbs-Ingredients-Targets network (a) and Herbs-Taste-Meridian tropism (b) network. (a) Yellow 
nodes represent the active ingredients and the blue nodes represent the target genes. (b) Yellow nodes represent 
tastes and purple nodes represent meridian tropisms. In all networks, the light green nodes represent cold-cool 
herbs, medium green nodes represent calm herbs, and dark green nodes represent warm herbs.
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summarize the relationship between CMP and disease targets and the therapeutic mechanism. However, they 
did explain its regularity and objectivity to a certain extent.

Limitations.  Discrepancies in gender, body weight, age, treatments, platforms, and other factors may have 
influenced the identification of hub genes, as we used five distinct datasets from the GEO database. Thus, further 
studies on these genes are required for validation. Next, the two key ingredients and 10 key herbs predicted in 
this study should be verified using clinical and animal experiments to confirm their effectiveness and heteroge-
neity in obesity therapy. Lastly, further studies are required to validate the association between drug properties 
and CMPs and to elucidate potential mechanisms of action.

Conclusions
In this study, we identified 27 hub genes associated with weight loss and analyzed their related signaling pathways 
using publicly available databases. Additionally, we predicted several potential natural compounds and Chinese 
herbs targeting these genes using the TCMSP platform. Quercetin and EGCG were screened out as crucial ingre-
dients. Aloe, Portulacae Herba, Mori Follum, Silybum Marianum, Phyllanthi Fructus, Pollen Typhae, Ginkgo 
Semen, Leonuri Herba, Eriobotryae Folium, and Litseae Fructus were screened out as key herbs. These herbs and 
compounds are expected to be effective in treating obesity. Supplementary investigations involving randomized 
controlled trials and molecular biology studies are warranted to verify these findings.

Methods
Downloading and normalization of microarray data.  The search strategy included (“obesity”[MeSH 
terms] OR obesity [All Fields]) AND “Homo sapiens”[porgn] AND “Expression profiling by array”[Filter]. The 
inclusion criteria were as follows: (i) subcutaneous adipose tissue (SAT) from patients who were obese after 
lifestyle-based weight-loss interventions; (ii) SAT of patients before weight-loss interventions were considered 
as controls.

Based on the above retrieval strategy, the five gene expression profiles that were selected for analysis from the 
GEO database were GSE10376642, GSE3541143, GSE11230744, GSE4347145, and GSE3571046, and their platforms 
were GPL19109, GPL10335, GPL6947, GPL6947 (same as previous), and GPL96. After the five data sets were 
retrieved and standardized using the GEOquery47 package in R software (version 4.1.3)48, ggplot2 package was 
used to design box-plots for gene expression data49.

Identification of differentially expressed genes (DEGs).  DEGs with a threshold criterion of |log FC 
|> 1 and p-value < 0.0550 in SAT samples were screened using the linear models for microarray data package 
after incorporating weight-loss intervention51. Pheat map, ggplot2, and RColorBrewer packages52,53 were used to 
formulate the volcano plots of the DEGs.

Creation of the PPI network and identification of hub genes.  After summarizing and removing 
duplicates DEGs, the PPI network of DEGs was determined to identify the most significant clusters of DEGs 
using STRING (version 11.5; https://​cn.​string-​db.​org/) having a combined score > 0.4 as the cutoff point. After 
STRING analysis, Cytoscape (version 3.9.1), an open-source bioinformatics software platform used for network 
analysis to visualize their associations, was used to visualize and identify the PPI network. MCODE plugin (ver-
sion 2.0.0) was used to identify the hub genes, and the parameters of DEG clustering and scoring were as follows: 
MCODE score = 6.667, Degree Cut-off = 2, Node Score Cutoff = 0.2, k-score = 2, and Max. Depth = 100.

GO and KEGG pathway enrichment analyses.  GO enrichment analysis annotates the genetic informa-
tion based on three aspects: MF, BP, and CC. It is widely used in mining biological function information and the 
corresponding biological mechanism in microarray results54. KEGG (https://​www.​genome.​jp/​kegg/) is a com-
prehensive database involving pathways, genes, compounds, drugs, and diseases for annotating the biological 
functions of genes and genomes at the molecular level55. GO and KEGG enrichment analyses were performed 
on the screened hub genes using Omicshare tools, an online platform for data analysis and gene annotation of 
gene DENOVO (https://​www.​omics​hare.​com/​tools/).

Screening of active ingredients.  When retrieving drug information associated with specific genes (tar-
gets) from the TCMSP database, there are requirements on the format of input information. TCMSP can only 
identify protein names. Nevertheless, the gene expression matrices obtained from the previous steps had been 
written by the gene names. We needed to transform gene names into protein names that TCMSP could recog-
nize to successfully compare the information of gene targets with Chinese herbs in TCMSP. This step was com-
pleted using UniProt (https://​www.​unipr​ot.​org/​help/​about), a free comprehensive online database for protein 
sequences and their annotations56. After entering all protein names for the hub genes, we selected the active 
ingredients of Chinese herbs based on their oral bioavailability (OB) and drug-likeness (DL) values (OB ≥ 30%, 
DL ≥ 0.18).

Screening and annotation of key herbs.  After screening the herbs containing active ingredients that 
could treat obesity, the relationship between the herbs and target genes was studied. If different components in a 
particular herb were associated with the same target, only one association was considered between the herb and 
the target gene. Herbs associated with more target genes were considered more significant in treating obesity. 
We defined a part of the herbs acting on more target genes as the key herbs in treating obesity. Then, referring to 

https://cn.string-db.org/
https://www.genome.jp/kegg/
https://www.omicshare.com/tools/
https://www.uniprot.org/help/about
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the Chinese Pharmacopoeia 2020 Edition (I), key herbs were annotated with CMPs, such as characters, tastes, 
and meridian tropisms.

Construction of ingredients‑targets, herbs‑ingredients‑targets, and herbs‑taste‑meridian 
tropism networks.  We established the Ingredients-Targets, Herbs-Ingredients-Targets, and Herbs-Taste-
Meridian Tropism networks using Cytoscape to determine the association between the above nodes. The impor-
tance of each node in the network was determined based on the degree value of the network topology parameter. 
Thus, the importance of the node changed significantly with the increase in degree value, and the degree value 
was represented by the edge connecting the node57.

Data availability
The data that support the findings of this study are available in GEO database (http://​www.​ncbi.​nlm.​nih.​gov/​
geo), reference number [GSE103766, GSE35411, GSE112307, GSE43471, and GSE35710].
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