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Dynamic compression of Ce and Pr 
with millisecond time‑resolved 
X‑ray diffraction
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Both cerium (Ce) and praseodymium (Pr) undergo a volume collapse transition under compression that 
originate from similar electronic mechanisms. Yet the outcome could not be more different. In the case 
of Ce with one affected 4f electron the volume collapse leaves the crystal symmetry intact, whereas for 
Pr with two 4f electrons the crystal symmetry changes from a distorted face centered cubic structure 
to a lower symmetry orthorhombic structure. In this paper, we present a study of the effect of strain/
compression rate spanning nearly 4 orders of magnitude on the volume collapse phase transitions 
in Ce and Pr. These dynamic compression experiments in a diamond anvil cell also reveal kinetic 
differences between the phase transformations observed in these two materials. The transition cannot 
be overdriven in pressure in Ce, which indicates a fast kinetic process, whereas fast compression rates 
in Pr lead to a shift of the phase boundary to higher pressures, pointing to slower kinetics possibly due 
to the realization of a new crystal structure.

One of the fundamental difficulties associated with shock compression experiments is the inherent entanglement 
of the pressure and temperature of the final state. Shock compression to a given stress (“pressure”) results in a 
change in density but also an increase in internal energy greater than the isentropic compression work to the 
same density as shown by the Rankine–Hugoniot  equations1. This additional energy leads invariably to a con-
comitant large temperature  increase2 which can be large enough to be measured using pyrometry  techniques3,4. 
Experimental uncertainties in temperature measurements can be in the hundreds or thousands of Kelvin due 
to low photon counts at such short (ns to µs) timescales. In addition, there are other (unknown) influences like 
thermal diffusivity and conductivity of  windows5 that make an accurate determination of temperature very chal-
lenging. Large scale experimental campaigns have been undertaken or are still ongoing to develop temperature 
 diagnostics6. This led to the development of graded density impactors for light-gas  guns7 and nearly isentropic 
dynamic compression  techniques8–11 which minimize sample heating by performing ‘shockless’ compression. 
In addition, the short timescales of dynamic compression experiments may result in non-equilibrium material 
 behavior2,12.

While shock compression studies necessarily approach the experimental determination of the ambient tem-
perature equation of state (EOS) from the (very) high temperature regime, there are other techniques that are 
more suitable for the determination of this part of the EOS. Static compression in large volume presses and dia-
mond anvil cells (DACs) does not result in an increase in the sample temperature because the pressure increase 
is very slow. Heat generated due to work done on the sample (PdV, where P = pressure and dV = the change in 
volume) or the generation of dislocations and other defects can therefore be dissipated in these experiments. 
Dynamic DACs (dDACs) can access compression rates between conventional dynamic and static compression 
 techniques13,14. However, the question arises whether such fast compression rates in a dDAC would result in an 
increase in the sample temperature as compression timescales could be too short to allow for heat to fully dis-
sipate. This, in turn, could result in a shift of the phase transition pressure to higher or lower pressures, depend-
ing on the P–T slope of the phase boundary. However, the extremely high thermal conductivity of the diamond 
anvils (2000 W/mK at ambient pressure) means that samples that are in contact with the diamond cool on μs 
 timescales15, and so the possibility of sample heating has typically been ignored in previous dDAC  experiments16.

The dynamic compression behavior of the lanthanides cerium (Ce) and praseodymium (Pr), which have one 
and two 4f electrons, respectively, were investigated in this study. Both materials exhibit a large volume collapse 
(VC) transition driven by the behavior of the 4f  electrons17–24, where the fractional volume change of the VC 
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transition is very sensitive to temperature. Ce adopts the face centered cubic (fcc) γ-Ce structure at ambient 
conditions and undergoes an isostructural transition to the fcc α-Ce structure at ~ 0.7 GPa on compression. The 
γ–α transition is associated with a ~ 15% volume reduction at room temperature, and the phase boundary has a 
positive P–T slope with a gradient of ~ 250 K/GPa, terminating in a critical point at ~ 480  K21. A similar decrease 
in the volume change of the VC transition takes place in  Pr20. At room temperature there is a ~ 10% decrease in 
volume across the VC transition and the phase boundary has a positive P–T slope with a gradient of ~ 100 K/
GPa. However, the similarities end there, while Ce’s phases are isostructural on both sides of the transition (fcc), 
Pr’s are distinctly different. At ambient pressure Pr adopts the double hexagonal close packed (dhcp) structure 
(Pr-I) and above ~5.2 GPa it transforms to an fcc structure (Pr-II). At ~7-8 GPa Pr transforms to a distorted face 
centered cubic (d-fcc) structure (Pr-III) and at ~20 GPa Pr collapses into a lower-symmetry α-uranium (α-U) 
structure (Pr-IV). The bulk modulus of Ce under compression decreases until it reaches a minimum and then 
begins to increase as pressure  increases21. Conversely, the bulk modulus of Pr behaves “normally”, under com-
pression by increasing and a discontinuous increase in the bulk modulus is observed across the VC  transition25. 
While both Ce and Pr have been extensively studied under static compression  conditions20–22,25–32, far fewer 
dynamic compression studies have been  reported33–35, and to-date there have been no studies at compression 
rates that are in-between static and dynamic shock or ramp compression regimes.

Figure 1.  Dynamic DAC experimental setup with fast 2D X-ray diffraction at the extreme conditions beamline 
P02.2 at PETRA III. (a) Two GaAs LAMBDA photon counting X-ray detectors are positioned on either side of 
the X-ray beam, where each detector collects a portion of the diffracted Debye–Scherrer rings. (b) Schematic 
of the piezo-driven dynamic DAC showing how the X-rays pass through the middle of the piezo actuator to 
interact with the sample that is contained in a gasket between the two diamond anvils (inset zoomed into the 
sample compartment). (c) Typical pressure–time profile obtained from a ramp compression experiment with 
the drive voltage is also shown. (d) 2D raw diffraction patterns from four solid phases of Pr obtained on the 
compression portion of the ramp, where the most intense reflections from the high-pressure Pr phases are 
indicated with the arrows.
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Results and discussion
A total of eight compression ramps on Ce and seventeen ramps on Pr samples were carried out at the Extreme 
Conditions Beamline (ECB, P02.2) at PETRA III. Figure 1 shows a schematic of the experimental set-up for a 
typical dDAC experiment, where X-ray diffraction data are collected using two GaAs LAMBDA detectors posi-
tioned at opposite sides of the incoming X-ray beam. Samples were compressed with average compression rates 
ranging from ~ 10 to > 1000 GPa/s, and data were collected with acquisition times ≥ 0.5 ms. More than 20,000 
diffraction patterns were collected during this study, which allowed us to characterize the structural evolution 
of Ce and Pr across the entire pressure range of each dDAC ramp at various compression rates.

Representative intensity plots from Ce and Pr dDAC experiments are shown in Fig. 2. A complete list of all 
experimental runs can be found in the Supplementary Material. High-pressure phase transitions in Ce and Pr 
are easily identified in these intensity plots by the appearance of new diffraction peaks, disappearance of peaks, 
or the discontinuous shifts of peaks. While, reflections from the pressure marker appear as continuous lines that 
shift smoothly to higher diffraction angles during compression and to lower diffraction angles on decompres-
sion. In all cases, the sample pressure did not return to its initial value on decompression, which is typical in 
these experiments due to the nature of the gasket deformation during loading and unloading process. This was 

Figure 2.  Representative dynamic compression intensity plots of (a) Ce compressed at an average compression 
rate of 472 GPa/s and (b) Pr at an average compression rate of 1547 GPa/s. In Ce, the γ-α VC transition is clearly 
observed, which is identified by the discontinuous shift of the fcc reflections to higher 2θ at ~ 12 ms. For Pr the 
entire structural sequence is observed in this run: the sample transforms from the ambient pressure dhcp Pr-I 
structure to fcc Pr-II at ~ 20 ms followed by a transition to d-fcc Pr-III at ~ 26 ms and finally into the collapsed 
α-U Pr-IV phase at ~ 31 ms. Side panels on each plot show the pressure profile for each experiment.
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not typically an issue in the Pr experiments, as the sample always back-transformed to Pr-III on decompression. 
However, due to the relatively large hysteresis of the VC transition in Ce, either pure α-Ce or a mixed α/γ phase 
was observed at the end of each ramp. Therefore, the pressure of the Ce samples was manually lowered to ≤ 0.2 
GPa after each compression cycle so that the sample would transform back to γ-Ce before the start of the next 
ramp. This was achieved by loosening the dDAC cap that holds the piezo actuator against the DAC and releasing 
the screws on the DAC.

The pressure–volume (P–V) curves from four different compression ramps on Ce and Pr are shown in Fig. 3, 
and those from the remaining ramps are shown in the Supplementary Material. For each material, both the P–V 
curves and the volume drop across the VC transition obtained at different compression rates are in good agree-
ment with each other and also with results from previous static compression  studies20,21. For both elements, the 
large overall volume changes experienced during the entire compression ramp (e.g. the volume of Pr decreases 
by 50% by ~ 40 GPa) raises the question of whether the fastest compression rates could result in a non-negligible 
increase in the sample temperature due to the short timescale of the experiment. In particular, accurate knowl-
edge of the P–T path is important to rule out the effect of temperature on the phase transition pressure, which 
would shift the VC transition to higher pressures due to the positive P–T slope of the phase boundary.

In order to assess the possibility of sample heating during the rapid compression experiments on Ce, our 
dDAC results were compared to the 293 K and 377 K isotherms reported in the static compression study by Lipp 

Figure 3.  Representative P–V curves collected at various compression rates for (a) Ce and (b) Pr. Multiple runs 
at different compression rates are plotted to highlight that there are no systematic changes in the P–V curves 
collected at different compression rates. Additionally, elevated temperature isotherms are plotted in both panels 
to assess whether any significant heating of the sample occurs under rapid compression at room temperature in 
the dDAC.
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et al.21 (Fig. 3). This allows us to look for deviations from the 293 K isotherm due to thermal expansion of the 
crystal lattice. It can be seen that both the γ- and α-Ce volumes plot below the 377 K data and are in good agree-
ment with the data collected at 293 K, suggesting that there is no significant heating of Ce up to the maximum 
compression rate achieved in this study (472 GPa/s). However, we note that evaluation of heating above ~ 1.5 GPa 
is complicated by the fact that the 293 and 377 K P–V curves overlap in this region. A fractional volume drop of 
ΔV/V = 15.0 ± 0.4% was found for all the experiments, and no systematic changes as a function of compression 
rate are observed. Considering that the γ- to α-Ce phase boundary is very sensitive to temperature it is unlikely 
that there is significant heating of the sample during these runs since the first appearance of α-Ce is consistently 
observed between 0.70 and  0.77 GPa independent of the rate of compression.

Our Pr dDAC results were also compared to the 300 K and 540 K static compression isotherms reported by 
Baer et al.20 to assess possible heating of the sample. Unfortunately, the volumes obtained for the d-fcc phase are 
scattered, which makes it more difficult to identify temperature-induced deviations from the 300 K isotherm. This 
scatter is likely due to uncertainties in the fitted peak positions because of both peak overlap and low intensity 
of the diffraction peaks at short exposure times. A more detailed discussion on this topic can be found in the 
Supplementary Material. The c/a ratio of the d-fcc phase ranges from 2.40 to 2.52 (see Supplementary Material), 
in good agreement with previous  results20,31,36. Most of the data points lie close to √6 = 2.449, which corresponds 
to the undistorted fcc structure, suggesting that the deviatoric stress in these Ne loaded dDAC experiments 
remains low. Most of the data points plot below the 540 K isotherm. Baer et al.20 reported a linear decrease in 
the fractional volume drop at the VC transition with temperature (ΔV/V = 16.235 − 0.0156[T(K)]), where this 
gradual decrease is in marked contrast to Ce. The average ΔV/V in our experiments is 10.2 ± 0.4%. If one takes 
the smallest value for ΔV/V of 9.7% it provides an upper bound of possible temperature increase of the sample 
of 120 K. However, as this approach relies on accurate atomic volumes of the un-collapsed and collapsed phases 
and given the scatter observed for the Pr d-fcc phase, this is not the most reliable approach for estimating tem-
perature changes in these dDAC experiments.

Figure 4 shows the compression-rate dependence of the onset transition pressure in Ce and Pr. The VC transi-
tion in Ce initiates at the same pressure regardless of compression rate, which is in contrast with Pr where the VC 
transition pressure increases with compression rate (i.e. an overdriving of the phase transition boundary). These 
new dDAC results span nearly 4 orders of magnitude in compression rate, bridging the gap between traditional 
“static” DAC experiments (time scales of minutes to hours) and dynamic shock and ramp compression experi-
ments (µs–ns time scales). These results are consistent with the shock compression studies of Pavlovskii et al.34 
who report that the VC transition in Ce occurs at 0.76 GPa, and also with ramp compression experiments on 
Pr by Bastea and  Reisman35, who report a 5–10% over-compression at both the PrI-PrII(III) and the PrII(III)-
PrIV phase transformations. As discussed above, this observation is not likely related to significant heating of 
the sample under rapid compression in the dDAC.

For Ce, the results from our dDAC experiments and those from previous shock compression  studies34 both 
show that the VC transition pressure is independent of compression rate, indicating that the kinetics of the VC 
transition are fast in comparison to the compression timescales. These results are in agreement with previous 
work which found that cycling back and forth across the phase boundary at room temperature had no effect on 
the kinetics of the  transformation37. A recent study interpreted the observation of two co-existing single crystals 
with the same crystal structure and orientation as evidence that the γ–α transition is a diffusionless phase trans-
formation where nucleation and growth occurs at multiple  sites22. This type of transformation is characterized 
by a small (usually less than interatomic distances) cooperative movement of a large number of atoms, which 
results in a change in crystal structure while the atoms maintain their relative positions. These are sometimes 
referred to as military transformations in contrast to civilian diffusion-based phase  transformations38.

These results can be understood by considering the crystal structures of the γ and α phases of Ce. The γ to 
α transformation is isostructural so Ce remains fcc across the VC transition. Since there is no rearrangement 
of the atoms across the phase transition, this transition likely occurs more rapidly than a transition where 
rearrangement of the atoms is required. As for Pr, the VC transition is a structural transition from a higher 
symmetry phase (d-fcc, R3m) to a lower symmetry phase (α-U, Cmcm) requiring a rearrangement of the atoms. 
There is likely a much larger activation barrier to the atomic rearrangement concerning the VC of Pr versus Ce. 
Additionally, there may also be a change in multiplicity of the valence band across the VC transition in  Pr20. 
Changes in multiplicity can be slow processes so it is possible that this may contribute to the overdrive of this 
transition with fast compression. Interestingly, there is also likely a change in multiplicity in Ce across the VC 
 transition39 yet we do not observe an overdrive of the VC transition. Therefore, Ce may be unusual since it is an 
isostructural transition. It should be noted that there are two main models that have been proposed to explain 
the VC transition in Ce. The Mott transition model proposes that the nature of the 4f states changes from strongly 
correlated (localized) at pressures below the transition to more weakly correlated (itinerant) at pressures above 
the  transition40–42, while the Kondo volume collapse model proposes that the conduction electron screening of 
the Ce 4f electron changes while the 4f electrons remain localized in both γ and α  Ce18,19.

Figure 4 shows data from samples which were compressed multiple times in order to collect data points at 
different compression rates. Therefore, in order to definitively identify rate-dependent phenomena, it is necessary 
to rule out the possibility that the VC transition pressure is influenced by defect generation associated with the 
large volume change during the transition. For example, dislocation formation in Ce is a natural consequence of 
the lattice mismatch at the γ-α  interface23. It has been proposed that each time the γ ↔ α transformation occurs 
within a compression cycle, more dislocations remain and deformation bands form near the (111) planes which 
could retard the  transformation23. However, no evidence of any defect-generation induced raising or lowering of 
the γ-α phase transition pressure was observed in our experiments. The VC transition pressure was not observed 
to change in one of our Ce samples which was cycled through the transition a total of nine times, suggesting 
that more than nine cycles may be needed for defect generation to become  relevant18. In Pr, defect generation 
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was investigated by performing oscillation experiments similar  to43, where the sample was subjected to 20 com-
pression cycles at an average compression rate of 17 GPa/s. In this case, the Pr-III to Pr-IV phase boundary was 
crossed multiple times in a single experiment, and the transition pressure was observed to remain essentially 
constant as a function of compression cycle (Supplementary Material). This likely indicates that for Pr defect 
generation does not play a major role in the results shown in Fig. 4, and that possibly more cycles are needed 
before defect generation would play a role. This strongly suggests that the observed shift in transition pressure 
is purely related to the rate of compression i.e. the observation of kinetic phenomena.

Conclusions
The VC transitions in Ce and Pr have been investigated across an unprecedented range of compression rates in the 
latest generation of piezo-driven dDAC. These new results span nearly 4 orders of magnitude in compression rate, 
bridging the gap between traditional “static” DAC experiments and dynamic shock and ramp compression experi-
ments. The onset transition pressure of the VC transitions in Ce and Pr at compression rates up to the ~ 1000 
GPa/s regime were accurately constrained. These results show that the kinetics of the γ- to α-Ce VC transition 
are fast, which is consistent with the shock compression study of Pavlovskii et al.34 and the cycling experiments 
reported by  Kutsar37. Our results are also consistent with the proposed dislocation induced diffusionless growth 

Figure 4.  VC transition pressure as a function of compression rate for (a) Ce and (b) Pr. The dotted region is 
the reported range of the transition pressure as determined from static compression experiments found in the 
 literature20–22,25–27,30,31 (where the compression rates are on the order of 0.01 GPa/s or less). These new dDAC 
results span nearly 4 orders of magnitude in compression rate and provide a clear picture of how Ce and Pr 
behave at intermediate timescales.
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mechanism proposed by Decremps et al.22, but they do not allow us to distinguish between the proposed Mott 
transition or Kondo screening models. In contrast, the onset transition pressure of the Pr-III to Pr-IV VC transi-
tion increases as the compression rate increases, in agreement with results from the ramp compression study of 
Bastea and  Reisman35. Similar behavior was observed in Bi, where the Bi-III to Bi-V transition is observed at 
higher pressures at faster compression  rates16. This may be characteristic of structural transitions where atomic 
rearrangements occur.

Methods
Two Ce samples were prepared and loaded between two pre-compressed NaCl pellets which served both as the 
pressure medium and pressure marker. Six Pr samples were prepared and loaded with either Au or Cu pressure 
markers and a Ne pressure medium. Pressure markers NaCl, Au, and Cu were obtained from Alfa-Aesar all with 
a minimum purity 99.9%. The Ce and Pr samples were obtained from Alfa-Aesar as foil samples packaged in 
mylar under Ar. The Ce foil was 25 × 25 mm and 1 mm thick with a purity of 99.9% (Lot # B07X002), where as the 
Pr foil had the same dimensions and 99.5% purity (Lot # R19A044). Based on the peak widths of the measured 
ambient samples the grain size is estimated to be ~ 2–4 um. Since Pr and Ce rapidly oxidize in air, they were 
loaded in a dry  N2 box and screened with X-rays prior to the dDAC experiments to ensure the samples were 
oxide free or nearly oxide free. DACs were equipped with standard design diamond anvils with culets ranging 
from 200 to 750 μm, and stainless-steel gaskets were used in all the experiments.

Time-resolved synchrotron X-ray diffraction experiments were performed on dynamically-compressed Ce 
and Pr samples at the Extreme Conditions Beamline (ECB, P02.2) at PETRA  III44 using the LLNL dDAC  design14. 
The experimental setup was described in greater detail by Husband et al.16. Data were collected using a 25.6 keV 
(~ 0.4843 Å) incident X-ray beam focused to a ~ 8(h) × 3(v) μm2 spot using compound refractive lenses. This 
energy was chosen because of the high flux that is achieved in this beamline configuration and the quantum 
efficiency of the GaAs Lambda detectors was almost 100%. Diffraction images were collected using two GaAs 
LAMBDA 2 M detectors that were horizontally offset to either side of the primary X-ray beam at a sample-to-
detector (SDD) distance of ~ 420 mm. The SDD, detector tilt and rotation were calibrated based on a  Cr2O3 NIST 
diffraction standard. The integration of the dDAC into the set-up at the ECB, including information on triggering 
signals for each component, is fully described in  reference14. Samples were compressed using a trapezoidal volt-
age waveform with a variable rise time, where samples were compressed multiple times through the transition 
to collect multiple data points.

Diffraction images were radially integrated using DIOPTAS  software45, which can perform bulk integration of 
the diffraction images for each compression  cycle45. The integrated diffraction patterns were processed in Origin-
Pro using a custom code written to process the large number of diffraction patterns collected for each dDAC run. 
Diffraction peaks were fit using a Pseudo-Voigt function and the refined peak positions were used to calculate 
the atomic volumes of the sample and pressure marker. The pressure during each compression-decompression 
cycle was estimated from the fitted Au (111), Cu (111), or NaCl (220) reflections using the reported EOSs for 
 Au46,  Cu47, and  NaCl48 (see Supplementary Material for a more detailed description of volume calculations and 
tables of the pressure and volume from each run). The transition pressure for all these experiments is defined as 
the first appearance of α-Ce or Pr-IV in the diffraction patterns.

Data availability
All data required to evaluate the conclusions of the manuscript are presented in the main text and/or the Sup-
plementary Materials. Additional data related to this paper is available upon reasonable request from the cor-
responding author.
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