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Long‑term exposure to particulate 
matter was associated 
with increased dementia risk 
using both traditional approaches 
and novel machine learning 
methods
Yuan‑Horng Yan1,2,3,12, Ting‑Bin Chen4,5,12, Chun‑Pai Yang2,3,6, I‑Ju Tsai2, Hwa‑Lung Yu7, 
Yuh‑Shen Wu8, Winn‑Jung Huang8, Shih‑Ting Tseng9,10, Tzu‑Yu Peng11 & Elizabeth P. Chou11*

Air pollution exposure has been linked to various diseases, including dementia. However, a novel 
method for investigating the associations between air pollution exposure and disease is lacking. The 
objective of this study was to investigate whether long‑term exposure to ambient particulate air 
pollution increases dementia risk using both the traditional Cox model approach and a novel machine 
learning (ML) with random forest (RF) method. We used health data from a national population‑based 
cohort in Taiwan from 2000 to 2017. We collected the following ambient air pollution data from the 
Taiwan Environmental Protection Administration (EPA): fine particulate matter  (PM2.5) and gaseous 
pollutants, including sulfur dioxide  (SO2), carbon monoxide (CO), ozone  (O3), nitrogen oxide  (NOx), 
nitric oxide (NO), and nitrogen dioxide  (NO2). Spatiotemporal‑estimated air quality data calculated 
based on a geostatistical approach, namely, the Bayesian maximum entropy method, were collected. 
Each subject’s residential county and township were reviewed monthly and linked to air quality data 
based on the corresponding township and month of the year for each subject. The Cox model approach 
and the ML with RF method were used. Increasing the concentration of  PM2.5 by one interquartile 
range (IQR) increased the risk of dementia by approximately 5% (HR = 1.05 with 95% CI = 1.04–1.05). 
The comparison of the performance of the extended Cox model approach with the RF method showed 
that the prediction accuracy was approximately 0.7 by the RF method, but the AUC was lower than 
that of the Cox model approach. This national cohort study over an 18‑year period provides supporting 
evidence that long‑term particulate air pollution exposure is associated with increased dementia risk 
in Taiwan. The ML with RF method appears to be an acceptable approach for exploring associations 
between air pollutant exposure and disease.

According to the World Hospital Organization (WHO) in  20161, approximately 92% of the world’s population 
lives in areas where air pollution is severe; furthermore, air pollution results in approximately 11.6% of deaths in 
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the world (90% of these deaths occur in low- and middle-income countries). Air pollution exposure and adverse 
health effects are related to general mild physical illness, respiratory and cardiovascular diseases, and even cancer, 
respiratory and cardiovascular diseases that lead to death. Moreover, a wide range of acute and chronic health 
effects are aggravated by air pollution exposure. Experts firmly believe that air pollution is responsible for more 
deaths globally than acquired immunodeficiency syndrome (AIDS), malaria, and  tuberculosis2–4. In addition to 
the effect on health, the recent unemployment rate is highly correlated with air pollutant levels. For instance, the 
2008–2014 economic crisis has been shown to have influenced the air pollutant  level5, and students’ academic 
performance has been found to be subject to air pollution  levels6. Thus, air pollution is a current crisis and an 
issue of global concern and poses a particular risk to public health.

Previous epidemiological studies have suggested an association between air pollution exposure and the risk 
of  dementia7. However, recent longitudinal studies have shown inconsistent associations between long-term 
exposure to ambient fine particulate matter  (PM2.5), nitrogen dioxide  (NO2), sulfate dioxide  (SO2), and ozone 
 (O3) and the incidences of dementia and Alzheimer’s  disease8, 9. Study design, air pollutants assessed, and sta-
tistical methods used may influence the outcomes. A continued need to confront methodological challenges in 
this line of research has been  noted10. In addition, evidence of long-term air pollution exposure and the risk of 
dementia in East Asia cities is  limited11–14. As East Asia is one of the worst air pollution regions globally, more 
research is needed.

In the past, environmental epidemiological studies primarily used traditional regression models to infer the 
relationship between environmental factors, such as temperature, humidity, and air pollutant levels, and disease. 
On the other hand, diseases have often only been controlled as interference factors in tested models, or a mere 
t test or ANOVA test has been used to illustrate significant  differences15–17. Machine learning (ML) is a form of 
artificial intelligence that allows systems to learn from data. It has a wide range of applications and can also be 
used for nonlinear data without too many assumptions about the distribution of population  data18–20. Ideally, the 
real purpose of data analysis is to bring out the visible message content contained in the data, which data analysts 
provide to interested decision-makers. This data-driven intelligence contributes to a deep understanding and 
knowledge of the data and provides the perfect basis for decision-makers. However, research using statistical and 
ML methods mainly focuses on the prediction of air pollutant  concentrations21,22, the relationship between air 
pollutant concentration environmental exposure and clinical  data23, or the use of unsupervised learning methods 
to study regions based on air pollution  indicators24,25.

Recently, ML methods have been widely used in classification. These supervised learning methods are more 
stable and robust than the traditional model-based approaches. Supervised learning methods can address the 
curse of dimensionality and noise of the data and provide reliable prediction results via a speed computing 
process. Therefore, ML methods are increasingly used to generate predictions based on epidemiology datasets. 
There has been great interest in comparing model performance among different ML methods. Studies have 
found that ML methods such as logistic regression (LR), random forest (RF), support vector machine (SVM), 
gradient boosting machine (GBM), K nearest neighbor (KNN), and neural networks can improve clinical risk 
prediction and the identification of risk  factors26–30. Weng et al.31 showed the value of RF and deep learning 
methods in traditional epidemiological studies. Chun et al.32 demonstrated the superior predictive value of ML 
methods compared with traditional Cox models. Moncada-Torres et al.33 showed that ML-based models can 
perform at least as well as classical Cox proportional hazard regression. Studies suggest that the RF method can 
be an alternative choice to Cox  regression34. However, some studies have shown that ML methods such as RF, 
SVM, or artificial neural networks do not always perform better than Cox  regression35, 36.

Due to the popularity of ML methods, more studies have used ML techniques for dementia  prediction37–39. 
The RF method is one of the popular and preferable methods used by researchers. It has proven to be more effec-
tive in dementia  prediction40–44 than other ML methods and is not hindered by the “black box” performance of 
certain ML approaches. The RF method can not only be used to predict results but also to show the importance 
of features used in prediction. In this study, we compared the performance of an ML method and traditional 
statistical survival models. We used clinical datasets to show the potential of ML methods compared to traditional 
Cox regression in predicting dementia risk based on air pollution exposure. We integrated the longitudinal data 
of 457,064 people in the National Health Insurance Research Database of Taiwan from 2000 to 2017 with monthly 
spatiotemporal-estimated air quality data.

Since air pollution exposure has been linked to dementia risk with inconsistent results and a novel method to 
explore the associations is lacking, the objective of this study was to investigate whether long-term exposure to 
ambient particulate air pollution, controlling for gaseous pollutants, increases dementia risk. Both the traditional 
Cox model and a novel ML with RF method were used.

Materials and methods
Medical records. We obtained a longitudinal registry of beneficiaries and medical records of outpatient and 
inpatient visits of two million people randomly selected from all insured beneficiaries from the National Health 
Insurance Database (NHIRD) from 2000 to 2017. The National Health Insurance (NHI) Program in Taiwan has 
a high coverage rate of 99.99%. The Health and Welfare Data Center (HWDC) of Taiwan’s Ministry of Health 
and Welfare (MOHW) continues to maintain the NHIRD and permits applications for data usage for research 
purposes. Details of the NHIRD are described elsewhere (Hsieh et al., 2019). All datasets are linked through 
unique encrypted personal identifiers. The disease diagnoses were defined by the International Classification 
of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) before 2016 and the International Classification 
of Diseases, 10th Revision, Clinical Modification (ICD-10-CM) since 2016. The study was exempted from eth-
ics review because deidentified data were utilized (Kuang Tien General Hospital Institutional Review Board 
approval document KTGH 10923), and the study was conducted according to the guidelines and regulations of 



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17130  | https://doi.org/10.1038/s41598-022-22100-8

www.nature.com/scientificreports/

the Declaration of  Helsinki45. The NHIRD is a deidentified dataset for research purposes, so the requirement for 
informed consent was waived by the Ethics Research Committee of Kuang Tien General Hospital.

This study was approved by HungKuang University and Kuang Tien General Hospital (HK-KTOH-109-05). 
The Institutional Review Board of Kuang Tien General Hospital reviewed the protocol of the current study and 
waived the need for informed consent in view of the retrospective design (Approval IRB number: KTGH 10923) 
in 2020. All methods were carried out in accordance with relevant guidelines and regulations.

Air quality and meteorological data. Data on hourly air quality variables, including temperature (°C), 
relative humidity (%), concentrations of sulfur dioxide  (SO2; ppb), carbon monoxide (CO; ppm), ozone  (O3; 
ppm), nitrogen oxide  (NOx; ppb), nitric oxide (NO; ppb), nitrogen dioxide  (NO2; ppb), particulate matter  (PM10; 
μg/m3) and  PM2.5 (μg/m3) from 2005 to 2017, were downloaded from the Taiwan Environmental Protection 
Administration (EPA) website (https:// airtw. epa. gov. tw/ CHT/ Query/ His_ Data. aspx)46. There are 83 EPA air 
monitoring stations in Taiwan. The spatial distribution of monitoring stations was shown in our previous  study47.

Daily average values of temperature and relative humidity were aggregated from hourly data. If the number 
of data points was under 75% on that day (less than 18 observations), the daily data were considered missing. 
There are no EPA air monitoring stations on Taiwan’s offshore islands, and residents of the offshore islands were 
excluded from this study.

This study applied a geostatistical approach, namely, the Bayesian maximum entropy method, to calculate the 
spatiotemporal estimation of hourly ambient concentrations for each township in Taiwan from 2005 to  201747. 
We converted spatiotemporal-estimated hourly data to daily average data and monthly average data.

The dataset of the registry of beneficiaries contains monthly records of the demographic data for each insurer, 
including birth year, sex, residential county and township, and insured status. Therefore, each subject’s residential 
county and township were reviewed monthly and linked to air quality data based on the corresponding township 
and month of the year for each subject.

Study subjects. A total of 469,081 insurers aged above 50 years on January 1, 2005, were included in our 
study. We excluded 11,500 subjects with a previous dementia diagnosis (ICD9 CM codes: 290, 294.1, 331.2; 
ICD10 CM codes: F00, F01, F02, F03, F05.1, G30, G31.1) and 517 subjects living on the offshore islands due to 
missing air quality data. Finally, we included 457,064 subjects in our study. The study index date was January 1st, 
2005. All subjects were followed from the index date to the occurrence of dementia, termination of insurance, or 
December 31, 2017, whichever came first.

Since air quality varies with time and the CCI score may also vary with time, we created yearly records con-
sisting of baseline characteristics, annual concentration of air pollutants per interquartile range (IQR), annual 
temperature, and annual relative humidity for each subject from the index date to the end of follow-up. The 
outcome status was recorded every year. If a subject had no dementia at the end of follow-up, then the outcome 
status was censored for every yearly record for the subject. Otherwise, the outcome status was recorded as an 
event in the last year for the subject. There were 13 yearly records at most for a subject.

Comorbidities. Comorbidities including hypertension (HTN; ICD9 CM codes: 401–405; ICD10 CM codes: 
I10-I15), diabetes (DM; ICD9 CM code: 250; ICD10 CM codes: E10-E14), hyperlipidemia (HL; ICD9 CM code: 
272; ICD10 CM code: E78), and the Charlson Comorbidity Index (CCI score)48, 49 before the index date were 
considered potential risk factors for dementia. We used hospital admission records to calculate the modified CCI 
score at baseline and during the follow-up period, which excluded dementia since dementia was the primary 
outcome in this study.

Statistical analysis. To compare the baseline characteristics between people with and without dementia 
diagnosis at the end of follow-up, we used the chi-square test for categorical variables and the Wilcoxon rank-
sum test for continuous variables.

To avoid collinearity, we calculated Pearson correlation coefficients for all two-variable combinations of 
temperature, relative humidity, and air pollutants. An absolute value of Pearson’s correlation coefficients > 0.7 
was considered highly correlated, and we only selected variables that had lower correlations with each other in 
the further analysis.

We examined multiple pollutants simultaneously in our analyses to study the effect of particulate air pollution 
 (PM2.5) in a single-pollutant model, two-pollutant model, and three-pollutant model to assess the association 
between  PM2.5 and dementia.

We performed extended Cox models to analyze the association between ambient particulate matter and the 
risk of developing dementia. Since we have time-varying variables in our model, the Cox regression model based 
on the Andersen-Gill counting process was used for analysis. We used time-dependent ROC curve estimation 
with the R packages  survivalROC50 and  rms51 to measure its performance by the concordance index (C-index)52.

The  RF53 approach is a popular supervised method due to its computational efficiency and nonoverfitting 
characteristic. It is an ensemble method that is used to construct multiple decision trees. The trees are built 
using a bagging approach to sample a subset of the training data and randomly select features for the learning 
process. Prediction is made by aggregating the predictions of the ensemble. The RF method can be used to rank 
the importance of features that can discriminate the target feature. It has been successfully applied to various 
practical problems due to the accuracy of its performance. Air quality data for the RF method were aggregated 
from yearly records to determine the 1-, 3-, 5-, and 10-year averages. The CCI score during the study period was 
chosen as the last observation of the yearly record. The selected features used to predict dementia status were 
age, sex, modified CCI, and baseline comorbidities, including HTN, DM, HL, temperature, relative humidity, 

https://airtw.epa.gov.tw/CHT/Query/His_Data.aspx
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 PM2.5, CO,  SO2, NO,  NO2,  NOx, and  O3. The sensitivity and specificity of the predicted results were calculated to 
generate a receiver operating characteristic (ROC) curve. The area under the ROC curve (AUC) for each dataset is 
reported to compare the accuracy of the two models. The computation of RF was carried out by using the R pack-
age  randomForest54, and AUCs were computed by using the R package  pROC55. We used 1000 trees in this study.

All statistical analyses were performed using R software (R Core Team, 2021; https:// www.R- proje ct. org/) 
and SAS software, Version 9.4 (SAS Institute Inc., Carey, NC, USA).

Results
There were 457,064 participants in this study. The mean age of the participants was 63 ± 9.9 years, the proportion 
of males and females was approximately 1:1, and the mean follow-up period was 10.8 ± 3.7 years. Baseline comor-
bidities are shown in Table 1. We also compared the characteristics of the participants with and without a demen-
tia diagnosis at the end of follow-up. The mean age of the participants with dementia was 10 years older than 
that of the participants without dementia (71.4 vs. 61.8 years, respectively). The proportion of females among the 
participants with dementia was higher than that among those without dementia (54.4% vs. 49.6%, respectively). 
Baseline comorbidities were more prevalent in the participants with dementia than in those without dementia.

Figure 1 shows the change in concentrations of air pollutants over time. The concentrations of  PM2.5,  NO2, 
and  SO2 decreased. The participants’ mean exposure levels to air pollutants during the follow-up period are 
shown in Table 2.

Table 3 shows the association between  PM2.5 per IQR and the risk of dementia using a single-pollutant model, 
two-pollutant model, and three-pollutant model. Increasing the concentration of  PM2.5 by one IQR increased 
the risk of dementia by approximately 5% in the single-pollutant model (HR = 1.05 with 95% CI = 1.04–1.05). 
In the two-pollutant model, increasing the concentration of  PM2.5 by one IQR increased the risk of dementia 
by approximately 11% when considering  SO2 in the model (HR = 1.11 with 95% CI = 1.10–1.12). Increasing the 
concentration of  PM2.5 by one IQR increased the risk of dementia by approximately 3% when considering  NO2 
in the model (HR = 1.03 with 95% CI = 1.03–1.04). In the three-pollutant model, increasing the concentration of 
 PM2.5 by one IQR increased the risk of dementia by approximately 10% when considering  NO2 and  SO2 in the 
model (HR = 1.10 with 95% CI = 1.09–1.11).

Table 4 shows the comparison of the performances of the extended Cox model with the RF approach. The 
prediction accuracy of the RF method was approximately 0.7, but the AUC was lower than that of the Cox model. 
The results clearly showed that discrimination is better with the Cox model. In addition, the AUC results at 1, 3, 
and 5 years were stable for both methods (0.79 for the Cox model and 0.76 for the RF model) and only decreased 
by 1% as the prediction time increased to 10 years. The prediction accuracy of the RF method was stable as the 
prediction time increased.

Table 1.  Baseline characteristics, n (%). *Modified CCI, which excluded dementia.

All participants

Dementia events over the 
13-year follow-up

P value

Nonevents Events

(n = 457,064) (n = 400,032) (n = 57,032)

Age at baseline, years

 Mean (SD) 63 (9.9) 61.8 (9.4) 71.4 (8.7)  < 0.0001

Sex

 Men 227,448 (49.8) 201,437 (50.4) 26,011 (45.6)  < 0.0001

 Women 229,616 (50.2) 198,595 (49.6) 31,021 (54.4)

Duration of follow-up, years

 Mean (SD) 10.8 (3.7) 11.4 (3.4) 7.1 (3.7)  < 0.0001

Baseline comorbidity

 Hypertension 207,256 (45.3) 170,740 (42.7) 36,516 (64.0)  < 0.0001

 Diabetes 95,129 (20.8) 78,329 (19.6) 16,800 (29.5)

 Hyperlipidemia 121,988 (26.7) 103,123 (25.8) 18,865 (33.1)

Modified CCI*

 0 372,606 (81.5) 331,622 (82.9) 40,984 (71.9)  < 0.0001

 1 25,143 (5.5) 20,650 (5.2) 4493 (7.9)

 2 13,475 (2.9) 11,217 (2.8) 2258 (4.0)

 3 4882 (1.1) 4019 (1.0) 863 (1.5)

 ≥ 4 40,958 (9.0) 32,524 (8.1) 8434 (14.8)

Number of townships 338

https://www.R-project.org/
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Figure 1.  shows the temporal distribution of  PM2.5,  NO2, and  SO2 used in this study.

Table 2.  Participants’ mean exposure levels to air pollutants during the follow-up period. IQR = the 75th 
percentile–the 25th percentile.

Air pollutant Mean (SD) Median Range IQR

PM2.5 31.76(6.73) 31.49 10.42–72.66 10.29

PM10 56.31(11.37) 54.34 24.26–115.66 19.22

CO 0.57(0.16) 0.53 0.1–1.69 0.21

NO 8.84(5.84) 6.59 0.1–52.61 7.11

NO2 18.97(4.57) 18.38 2.83–44.25 7.23

NOx 27.63(9.98) 25.18 4.71–93.61 13.46

O3 27.53(2.3) 27.7 12.15–44.31 3.35

SO2 4.35(1.35) 3.92 1.39–20.82 1.33

Table 3.  Hazard ratios (95% CI) for the association between  PM2.5 and dementia risk during the 13-year 
follow-up period. Adjusted for age, sex, modified CCI, hypertension, diabetes, hyperlipidemia, temperature, 
relative humidity and pollutants in the corresponding year.

Hazard ratio* (95% CI)

PM2.5 1.05 (1.04, 1.05)

PM2.5 +  SO2 1.11 (1.10, 1.12)

PM2.5 +  NO2 1.03 (1.03, 1.04)

PM2.5 +  SO2 +  NO2 1.10 (1.09, 1.11)

Table 4.  Performance of the Cox model and the random forest classification model. Cox model adjusted 
for age, sex, modified CCI, hypertension, diabetes, hyperlipidemia, temperature, relative humidity,  PM2.5, 
 NO2, and  SO2 in the corresponding year. Random forest classification: age, sex, modified CCI, hypertension, 
diabetes, hyperlipidemia, temperature, relative humidity,  PM2.5, CO,  SO2, NO,  NO2,  NOx, and  O3.

Cox model Random forest

AUC AUC Accuracy

Year 1 0.79 0.76 0.70

Years 1–3 0.79 0.76 0.70

Years 1–5 0.79 0.76 0.70

Years 1–10 0.78 0.75 0.69
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Discussion
This national cohort study over an 18-year period provides supporting evidence that long-term ambient  PM2.5 
is associated with incident dementia in Taiwan, East  Asia9,56–58. This study had a much higher,  PM2.5 level (31.7), 
above US National Ambient Air Quality Standards, than other studies. The findings imply that dementia could be 
powerfully prevented in highly polluted regions by air pollution control policies. We further examined multiple 
pollutants simultaneously in our analyses. After controlling for gaseous pollutants,  PM2.5 showed consistent 
significant associations with dementia risk. The combination of  PM2.5 and  SO2 seemed to have the largest effects 
on dementia risk. Further studies are ongoing to investigate the role of gaseous pollutants and the synergistic 
effects of  PM2.5 and multiple gaseous pollutants.

Although the performance was not superior to that of the Cox model, the ML with RF method appears to 
be an acceptable approach to exploring associations between air pollutant exposure and disease. This raises a 
potential methodological advance for an unknown link in environmental  epidemiology59. The ML method is 
used mainly for source apportionment, forecasting/prediction of air pollution/quality or exposure, and generat-
ing hypotheses regarding air pollution  epidemiology18,60, 61. Using high-quality health data from the NHIRD and 
air quality data from Taiwan EPA monitoring stations, ambient air pollution has been linked to a wide variety of 
diseases in  Taiwan62–66. Most of these studies used the Cox proportional hazards model with a generalized equa-
tion to estimate the association between exposure to air pollutants and the incidence, progression, and mortality 
associated with certain diseases. Using the ML method, we broaden the possibilities for linkage of environmental 
data with information from health databases. More associations will be identified with the accumulation of 
NHIRD and EPA monitoring data. ML models for predicting the incidence of disease using environmental and 
air pollution factors could evolve into medical and public health warning  systems67.

Human and toxicological studies have provided evidence that air pollution induces brain  toxicity68–70. 
Increased oxidative stress, inflammation, mitochondrial dysfunction, microglial activation, disturbance of protein 
homeostasis, and ultimately neuronal death often postulate and concomitantly coincide with the main mecha-
nisms of air pollution-related neurodegenerative  processes71. Further investigations are needed to understand 
the biological impact of air pollution on various types of neurodegeneration.

In such an era of abundant data, these data resources hide anonymous information or undiscovered prin-
ciples. It is necessary to mine valuable information from these data, extract naturally encoded knowledge and 
intelligence, and understand the black box behind AI. Once these relevant characteristic factors have been 
identified, scientists can fully support their decision-making with interpretable and visible patterns, thus taking 
responsibility for decision-making. For researchers in the healthcare industry, this will connect their diagnostic 
decisions to an intricate set of responsibilities and consequential legitimacy.

ML methods are hypothesis-free and can be applied to different kinds of data, such as nonlinear or nonnor-
mal data. These methods can be easily applied without having prior knowledge of the data shape. ML methods 
are not like traditional statistical methods that require careful model assumptions of data normality and feature 
independence. Thus, ML methods are more attractive for analyzing real-world datasets. Traditional statistical 
approaches, such as Cox regression, are limited in the number of features that can be included in a single model. 
ML methods can handle high-dimensional data that the Cox model does  not72. In the future, other ML or deep 
learning methods should be considered. Ensemble methods that combine traditional statistical methods and 
ML approaches should be considered in future studies. Feature selection with ML methods can be applied first 
to identify the relevant risk factors in dementia prediction. More relevant features should be considered in the 
model to make ML methods more accurate. In addition to the supervised method, unsupervised clustering 
methods can be used to group patients with similar characteristics. For different groups of patients, we can 
further explore diverse predictive risk features.

The strengths of this study include the large national cohort random sample, over an 18-year observation 
period, and the novel method used. There were, however, several limitations in this study. First, although we 
adjusted for potential confounders, unrecognized confounders may have affected the results. Data on risk fac-
tors for dementia, such as smoking, alcohol intake, diet and exercise, were not present in our claims database, 
which prevented us from further exploring the potential effects of these variables. Second, dementia is a neuro-
degenerative disease that has a long insidious onset, which might have started long before being diagnosed. In 
this study, we used a rigorous definition of claim-based diagnosis. This may have led to covariate measurement 
misclassification. Third, given that  PM2.5 is a heterogeneous mixture from multiple sources, the results are not 
generalizable to areas with different pollutant constituents and particle sources. Fourth, exposure misclassification 
is a common concern in environmental epidemiology. We did not have individual exposure data, which may have 
resulted in differential measurement errors. However, using modeled pollution from temporally resolved daily 
pollutant outputs at a fine spatial resolution, rather than monitored pollution data, may provide a more accurate 
exposure–response relationship and thereby substantially reduce the likelihood of exposure misclassification. 
Fifth, the associations of  PM2.5 exposure with dementia subtypes were not examined in this study.

Conclusion
This national cohort study of data collected over an 18-year period provides supporting evidence that long-term 
particulate air pollution exposure is associated with increased dementia risk in Taiwan. The ML with RF method 
appears to be an acceptable approach to exploring associations between air pollutant exposure and disease. The 
results highlight the potential value of expanding the use of ML in environmental epidemiological practice.

Data availability
The datasets generated and/or analyzed during the current study are available from the National Health Insur-
ance Database (NHIRD), which has been transferred to the Health and Welfare Data Science Center (HWDC) 
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and is a publicly available dataset. Available from: https:// www. nhi. gov. tw/ Engli sh/ Conte nt_ List. aspx?n= 8FC09 
74BBF EFA56 D& topn= ED4A3 0E51A 609E49. Accessed June 15, 2022.
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