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Gap‑filling of ocean color 
over the tropical Indian Ocean 
using Monte‑Carlo method
Aditi Modi 1,2*, M. K. Roxy1 & Subimal Ghosh2,3

Continuous remote‑sensed daily fields of ocean color now span over two decades; however, it still 
remains a challenge to examine the ocean ecosystem processes, e.g., phenology, at temporal 
frequencies of less than a month. This is due to the presence of significantly large gaps in satellite data 
caused by clouds, sun‑glint, and hardware failure; thus, making gap‑filling a prerequisite. Commonly 
used techniques of gap‑filling are limited to single value imputation, thus ignoring the error estimates. 
Though convenient for datasets with fewer missing pixels, these techniques introduce potential biases 
in datasets having a higher percentage of gaps, such as in the tropical Indian Ocean during the summer 
monsoon, the satellite coverage is reduced up to 40% due to the seasonally varying cloud cover. In 
this study, we fill the missing values in the tropical Indian Ocean with a set of plausible values (here, 
10,000) using the classical Monte‑Carlo method and prepare 10,000 gap‑filled datasets of ocean color. 
Using the Monte‑Carlo method for gap‑filling provides the advantage to estimate the phenological 
indicators with an uncertainty range, to indicate the likelihood of estimates. Quantification of 
uncertainty arising due to missing values is critical to address the importance of underlying datasets 
and hence, motivating future observations.

The tropical Indian Ocean exhibits two annual blooms of phytoplankton with the highest peak occurring dur-
ing summer (June–September) and a secondary peak during winter (December–February)1,2. These blooms are 
driven by the changes in the physical forcing primarily associated with the southwest (summer) and northeast 
(winter)  monsoon3–6. The phytoplankton blooms regulate the food availability for higher trophic levels, making 
primary production central to both the aquatic food web and the Indian Ocean rim population that is depend-
ent on marine fisheries for their  livelihood7–11. Recent decades have observed warming of the earth’s climate 
unequivocally, with the oceans accounting for approximately 93% of this increased energy  uptake12,13. Amongst 
the tropical oceans, the Indian Ocean has undergone the largest warming (0.15 °C/decade) in ocean  surface11,14,15, 
with projections of a stronger warming (> 1.5 °C) by 2070 and (> 2.5 °C) by 2100 across the CMIP5  models16,17. 
In the low-latitude regions, a warmer ocean surface enhances the ocean stratification thereby reducing the verti-
cal mixing and inhibiting the nutrients (required for photosynthesis) into the sunlit zone of the  ocean18,19. This 
limits the marine primary production subsequently impacting the biodiversity of the  ocean11,20,21. Any further 
warming is therefore expected to affect both the mean biomass and the timings of seasonal phytoplankton 
blooms in tropical  ecosystems22,23. The timing of phytoplankton blooms, known as phenology, directly affects 
the larval spawning and survival. For example, the onset of local phytoplankton bloom marks the hatching of 
pink shrimps in North  Atlantic24,25. Any change in the bloom initiation timings are therefore likely to proliferate 
across the higher trophic levels—popularly known as the match-mismatch  hypothesis26. Phenology has been 
argued to be one of the most sensitive biological indicators to detecting changes in the marine ecosystem by the 
Intergovernmental Panel on Climate  Change27. With the increasing diversity and resolution of our observations, 
it is imperative to examine the response of ecological indicators of the marine ecosystem to the rapidly warming 
tropical oceans, and ocean color is currently the only window to understand the impact of the changing climate 
on ocean biology; therefore classified as an essential climate  variable28.

To date, cost-effective, routine spatio-temporal observations of phytoplankton biomass have been remarkably 
possible only through the satellite ocean color sensors making it vital in operational forecasting, oceanographic 
research and numerical modelling of  climate29,30. Remote-sensed ocean color provides measurements of chlo-
rophyll—the phytoplankton pigment that undergoes photosynthesis and is a proxy to marine  phytoplankton31. 
The ocean color fields as measured by SeaWiFS (1997–2010), MODIS (2002–), MERIS (2002–2012), VIIRS 

OPEN

1Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Pune, India. 2IDP in Climate Studies, 
Indian Institute of Technology, Bombay, India. 3Department of Civil Engineering, Indian Institute of Technology, 
Bombay, India. *email: aditi.modi@tropmet.res.in

http://orcid.org/0000-0002-2044-5256
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-22087-2&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18395  | https://doi.org/10.1038/s41598-022-22087-2

www.nature.com/scientificreports/

(2011–) sensors span different time periods with very limited overlapping between the two missions. In view of 
this, a recent Ocean-Color Climate Change Initiative (OC-CCI) by the European Space Agency (ESA) provides a 
high-quality, long-term chlorophyll dataset at a very high resolution (~ 4 km), achieved by blending ocean color 
observations from multiple satellite missions and applying quality  corrections32,33—thus bringing the current 
global records of chlorophyll to more than two decades (22 years). The availability of OC-CCI chlorophyll data 
has resulted in a consistent rise in the assessment of trends in the marine ecosystem; therefore expanding our 
ability to detect the signature of human-induced climate change on the marine  ecosystem33,34. Previous studies 
suggest a decline in the marine primary production throughout the tropical oceans, particularly the open oceans 
and have warned of detrimental impacts on the marine food web in response to future ocean  warming35–38. 
The western Indian Ocean, which is the most biologically productive region of the Indian Ocean, has already 
undergone a significant decline of 20–30% in the surface phytoplankton distribution during 1998–2013, as shown 
by both satellite observations and the CMIP5 Earth System  Models38. However, the phenology of the seasonal 
phytoplankton blooms is still overlooked in the Indian Ocean, majorly due to the lack of gap-free observations 
at a higher temporal frequency.

Satellites have been instrumental in advancing our knowledge of the changing biophysical interactions under 
the recent climate change scenario. Besides global coverage, data obtained from satellites are high in both sam-
pling frequency and spatial resolution required to assess trends and interannual variability of phytoplankton 
 phenology39. However, satellite observations are subject to gaps—both frequent and persistent—caused by several 
factors such as sun-glint, atmospheric aerosols, cloud cover, sensor saturation, hardware  issues40–42. Missing data 
tends to reduce the statistical power of a dataset along with affecting the accuracy of the estimating  parameters43. 
The merging of chlorophyll by OC-CCI has led to a reduction in missing  values40 as a result of the overlap in 
the spatial coverage of satellite sensors. However, this does not solve the critical issue of gaps in satellite data 
occurring due to the presence of  clouds44,45.

Over the tropical Indian Ocean during the summer monsoon, the gaps in ocean color data can be as high as 
40% (Fig. 1a). Enhanced convective activity owing to moisture-laden monsoonal cross-equatorial flow during 
June–September leads to formation of persistent cloud cover over the Indian Ocean north of  10S46,47. This results 
in a considerable reduction in outgoing longwave radiation (OLR) by up to 100 W/m2 from the annual mean 
(Fig. 1b), hence preventing the satellites from observing the  ocean48. This poses a major challenge in the usage 
of satellite data as it is during the summer monsoon season that the highest productivity, driven by enhanced 
vertical mixing and offshore wind-driven upwelling, is experienced in the north Indian  Ocean3,6. Furthermore, 
it is important to note that contrary to the Indian Ocean, satellites have good data coverage over the Pacific and 
Atlantic (Supplementary Fig. S1). This may be one of the factors leading to the fact that the Indian Ocean is 
least understood of all the tropical  basins38. Some of the highly productive regions in the tropical oceans include 
eastern Pacific and eastern Atlantic. However, due to low cloudiness (reflected in the OLR, Fig. 1b), both the 
regions have a good satellite  coverage49. Hence, in studies that consider the global domain, this difference of 
cloud cover in the different basins can bias the regional estimates of both the phytoplankton distribution and 
 phenology44,50 and needs to be considered. The potential biases introduced by intermittent data in assessment of 
ecological trends and variability has already been demonstrated in the scientific literature. Errors of typically 15 
and 30 days in the bloom peak and initiation timings respectively and high uncertainty (> 2 weeks) in the dura-
tion of the seasonal phytoplankton bloom have been estimated when dealing with incomplete time  series44,51; 

Figure 1.  Missing values in ESA chlorophyll and mean OLR in the tropics during boreal summer. (a) Number 
of missing pixels (in percentage) in 8-day composites of ESA OC-CCI chlorophyll data from 1998–2019 over 
the tropical oceans during boreal summer (June–September). Gap-free pixels are indicated in white. The pixels 
having more than 25% of missing values are shown in black; and (b) Climatological map of OLR (in W/m2) 
during summer (June–September) for the tropical oceans for the period 1998–2019. The regions in dark blue are 
associated with a weaker convection and those represented in yellow represent strong convection. This figure is 
created using Python 3.9.10 software (https:// docs. python. org/ relea se/3. 9. 10/).

https://docs.python.org/release/3.9.10/


3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:18395  | https://doi.org/10.1038/s41598-022-22087-2

www.nature.com/scientificreports/

making gap-filling a prerequisite for detecting the phenological (or, ecological) indices of the ocean ecosystem 
using the existing observations.

Most common gap-filling techniques of ocean color data involve spatial or temporal  interpolation51–53; 
 filtering54,55; and substitution by mean, median,  minimum56. Conventionally, interpolation has been the most 
widely used tool in scientific literature to deal with data-gaps. It involves extending the areal coverage of the data 
by utilizing the information of the neighboring observations. However, if not performed cautiously, excessive 
smoothing (or, interpolation) can disrupt data quality by blending the sub-grid to grid scale features, leading to 
under- or over-estimation of the chlorophyll concentrations; thereby making the data unreliable for extracting 
information of the important local biophysical processes. This is because linear interpolation is based on the 
assumption that the missing pixel has a linear relationship with the surrounding pixels which is far from reality, 
as phytoplankton blooms are known to occur in patches and their concentration varies dramatically from the 
coastal to the open ocean waters. Hence, beyond a certain neighboring grid, interpolation of ocean color data 
becomes  invalid57. Additionally, averaging the data to a coarser temporal resolution of the order of monthly 
scale might reduce the frequency of gaps but the reduced time scale will leave the data inadequate for estimation 
of phenological indicators. Similarly, substituting the missing value with the sample average seems convenient 
as a method of gap-filling, but the phenological algorithms to estimate the interannual variability and trends, 
when applied to the reconstructed data, leads to flawed outcomes. Moreover, since the ocean color satellite data 
is highly positively skewed (skewness value of log (chlorophyll) = 1.51, Fig. S2), using the data-mean to fill the 
missing values would be inappropriate for a skewed distribution.

There are a few advanced methods presented in the literature for gap-filling such as neural networks, empirical 
orthogonal functions (DINEOF); however they are limited to single value imputation overlooking the uncertainty 
of estimates around the true value—an important aspect of gap-filling40,52,58. Most of the studies have utilized 
a small sample size (< 10 years) of satellite data and has been limited to reconstructing a gap-free climatology, 
which does not allow for examining the interannual variability and trends. An attempt to prepare a gap-free 
climatology of chlorophyll for the tropical Indian Ocean employing 7 years of SeaWiFS data has been carried out 
by Levy et al.54,55. It was the first attempt using remote-sensed ocean chlorophyll to produce a gap-filled dataset 
over the Indian Ocean. However, their methodology is based on filtering techniques, essentially relying on the 
information of surrounding spatio-temporal values for estimating the missing value and limited to single value 
imputation. Even with the recent technological advancement and computational resources available, the current 
set of CMIP6 model outputs of chlorophyll are limited to a monthly scale. Hence, this problem of intermittent 
datasets needs addressal with the existing satellite ocean color data, which drives the purpose of this study.

The choice of the method becomes increasingly important as the amount of missing data increases such as in 
the case of the tropical Indian Ocean. More importantly, to draw useful inferences in the phenological indices 
estimated from these gap-filled datasets, it becomes crucial to address the uncertainty of the estimates. With the 
single imputation methods used to fill the missing data, no information of the uncertainty associated with the 
analyzed parameters can be determined. We believe that this issue can be addressed by applying computational 
statistical tools of moderate complexity. Hence, in this study, we propose a methodology of gap-filling which 
enables us to quantify the phenological indices along with uncertainty measures. We achieve this by perform-
ing a large number of simulations using the classical Monte-Carlo method in addition to a strict optimal local 
averaging to fill the gaps in ocean color data. The Monte-Carlo procedure allows us to impute the missing pixel 
with a set of pseudo-random values in place of a single value as done with the other techniques of gap-filling. 
This approach will generate ensembles of reconstructed datasets rather than just producing a single gap-filled 
data. This provides the additional advantage of using Monte-Carlo approach, as we will have a range of possible 
values in the derived phenological parameters. The proposed methodology is explained in the “Methods” section 
and schematically illustrated in Fig. 3.

The primary emphasis of this study is to acknowledge the importance of determining uncertainty in the esti-
mated parameters derived using these gap-filled datasets which is a significant advantage of using this method, 
otherwise not possible with the conventional gap-filling approaches. Though focused on marine ecosystems, 
this methodology can be extended to using other variables of the climate system. We hope that this work con-
tributes towards improving the use of existing datasets to extract reliable information of biophysical processes 
of the marine ecosystem.

Data and methods
Daily synoptic fields of remotely-sensed chlorophyll concentrations (in mg/m3) at a 4-km spatial resolution were 
obtained for the period 1998–2019 from the European Space Agency Ocean Color-Climate Change Initiative 
(OC-CCI) version 4.2 (https:// clima te. esa. int/ en/ proje cts/ ocean- colour/). The chlorophyll-a time series (chl-a) 
obtained from OC-CCI is a multi-mission product aimed to provide a global long-term dataset to support trend 
studies in the marine ecosystem, otherwise impossible from single mission products—due to lack of continuity 
and homogeneity—and is derived by merging data from the SeaWiFS, MODIS, MERIS, and VIIRS  sensors32. 
The Level-3 data from different sensors were band-shifted to SeaWiFS wavebands and bias-corrected for the 
signal-to-noise ratio, thus resulting in a climate-quality  dataset59,60. Though the satellite ocean color measure-
ments started in 1978 with the CZCS mission, it couldn’t be merged with other sensors owing to its limited spatial 
coverage and the difference in spectral bands.

Apart from chlorophyll, gridded daily OLR fields provided by NOAA at one-degree resolution are utilized 
in the study. Moreover, a gap-filled 7-year SeaWiFS climatology (for 1998–2006) reconstructed by Levy et al. 
(mentioned hereafter as Levy) and is available online (http:// www. nio. org).

https://climate.esa.int/en/projects/ocean-colour/
http://www.nio.org
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Bloom initiation and peak are predicted using the threshold  method61. The bloom initiation is declared when 
summer chlorophyll exceeds a threshold of 5% above the annual median value. And bloom peak is defined as 
the maximum chlorophyll value during summer months.

Gap‑filling algorithm. Before applying the gap-filling algorithm, 8-day composites are prepared from the 
chlorophyll daily time series and then the chlorophyll data is re-gridded from 4 km × 4 km resolution to 1° × 1° 
using conservative binning. This reduces some gaps in the chlorophyll data and the resultant temporal and 
spatial resolution is sufficient for applying statistical algorithms for evaluating phenological indicators. Then the 
gap-filling algorithm is applied to this data in a two-step procedure (Fig. 3) as discussed below.

Step I: Optimal Linear Interpolation. The first step involves filling in the gaps using an optimal linear 
interpolation scheme applied along the three dimensions sequentially in the order of longitude, latitude and 
 time51. The choice of the sequence of latitude, longitude and time used for interpolation made in the study is 
based on the underlying physical features observed in case of the phytoplankton blooms. The zonal variation in 
phytoplankton biomass is comparatively lesser than the meridional  variation6, hence interpolation is first done 
longitude-wise and then latitude-wise. For our study, we are using weekly chlorophyll values and the temporal 
variations in phytoplankton biomass are high at weekly  timescales18,62. Hence, time is used last for the interpola-
tion. The root mean square error (RMSE) values computed for interpolation in each dimension also confirm to 
the precedence order used (Supplementary Table 1). Under the scheme, a missing pixel is filled by substituting 
it with the arithmetic mean of the two neighboring grid values, each weighing equally. If the surrounding point 
used in averaging is invalid (a land point) or missing (in the ocean), it is assigned a zero weight. If both the points 
surrounding the missing pixel are found to be invalid along all the three dimensions, then the gap is left unfilled.

Step II: Monte‑Carlo Filling. To fill the remaining gaps, we use Monte-Carlo method in the second step 
of the gap-filling algorithm. Monte-Carlo involves filling the missing pixel with a set of plausible values instead 
of a single value and utilizes inferential statistics to provide a probabilistic solution to the problem of interest. In 
Monte-Carlo, pseudo-random values are drawn based on the probability distribution of  data43,63,64. Monte-Carlo 
method is based on the assumption that the true value of the missing pixel lies within the probabilistic distribu-
tion of the large population. It involves repeated sampling such that the number of simulations (N) are enough 
to estimate the probability distribution  correctly65. To identify the best-fit probability density function (PDF) of 
the chlorophyll fields for the Indian Ocean at each grid, the parametric distributions (here, normal, lognormal 
and gamma) are applied. The Kolmogorov–Smirnov (K–S) test confirms how well the assumed distributions fits 
the  data63. Using the K–S test, the best-fit curve is obtained based on the largest p-value. If the K–S test suggests 
a poor-fitting for all the applied parametric distributions (p-value < 0.05) at a grid, then a Kernel density Estimate 
(KDE) is used to estimate the PDF.

KDE is a non-parametric approach of curve-fitting to estimate the best-fit PDF of the variable. The major 
advantage of choosing KDE over other non-parametric methods is that it is independent of the bin size and the 
starting bin and it produces a smooth estimate of the PDF, thus giving a better representation of  multimodality66. 
The kernel used in the KDE model is Gaussian and the most critical parameter, bandwidth of the kernel is 
determined using the cross-validation method. Once the distribution which best fits the data for that grid is 
identified, we generate 10,000 instances using the identified PDF. It is to be noted that this process of identifying 
the best-fit PDF is repeated for each grid point and the supplementary Fig. S3 represents the PDF used for each 
grid. Most of the grids in the North Indian Ocean are fitted with a KDE (Fig. S3). This KDE curve-fitting for 
most of the grids in our case gives us the advantage that no assumption is made about the data, which makes the 
Monte-Carlo gap-filling more robust. However, as KDE has a limitation of the bandwidth range, hence we are 
using the parametric distributions wherever it better fits the data.

Once the input probability distribution of the Monte-Carlo model is identified, the distribution-specific 
parameters (shape, scale and location) are estimated at each grid using the identified PDF for that grid. These 
parameters of the assumed probability distribution are then fed to the Monte-Carlo model and the gaps are 
filled by generating N pseudo-random values using a random number generator. Here, we have performed a 
significantly large number of Monte-Carlo (N = 10,000) computations. All of these ensembles when used for any 
subsequent analysis, will lead to a range of estimates allowing the estimation of uncertainty in derived measures 
such as phenology.

Results
Missing pixels up to 25% are reflected over the tropical Indian Ocean in the multi-sensor merged chlorophyll 
dataset (Fig. 2a). These missing pixels are dominant in the summer (Fig. 1a) due to the presence of thick cloud 
cover indicated by the low OLR over the tropical Indian Ocean (Fig. 1b) which reduces considerably by 100 W/
m2 with respect to the annual mean. Moreover, the strong convective activity over the Arabian Sea and the Bay 
of Bengal leads to a strong disproportionality in the percentage of missing data in the two hemispheres (Fig. 2b). 
Hence, the majority of missing values are present over the north Indian Ocean. Whereas during the winter 
months, absence of strong convective activity improves the satellite  retrieval3, leaving no significant gaps in the 
data over the north Indian Ocean (Fig. 2c).

To reduce these gaps in the basin, we apply our gap-filling algorithm—a two-step procedure. For detailed 
steps on the methodology, refer to the “Methods” section (Fig. 3). The first step of the algorithm performs opti-
mal linear averaging. This step of the algorithm fills the data-gaps, reducing them by 10% roughly, bringing the 
data gaps down from 25% (Fig. 4a) to less than 15% in the Arabian Sea and less than 5% in the Bay of Bengal 
(Fig. 4b). This interpolation step is sufficient to handle the missing pixels of data in the tropical Indian Ocean 
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south of equator as all the gaps are completely filled in the first step. Thereafter, the second step of gap-filling is 
applied to fill the remaining data-gaps (~ 15%). In this step, Monte-Carlo computations are performed to impute 
10,000 ensembles of chlorophyll fields. The filling of gaps with multiple values addresses the problem of wide-
gaps present in the data (Fig. 4c).

We confirm whether the gap-filling method induces any spurious artifacts in the mean spatial and tempo-
ral features in the reconstructed datasets by showing the annual climatological cycle of the ensemble datasets 
(Fig. 5). The mean of the ensembles (indicated in pink) coincide with the original annual cycle (indicated in light 
blue) both in amplitude and phase—both for the Arabian Sea and Bay of  Bengal67,68 (Fig. 5a,b). The uncertainty 
bands (represented by box and whiskers) provides useful information about the variation of the predicted values 
by Monte-Carlo for gap-filling. The boxplots clearly shows that 75th percentile of the values lie within a very 
narrow range with few outliers. This uncertainty band is narrow due to the fact that the data is averaged over 
a region, but it might be higher for an individual grid. Albeit higher, the uncertainty band is indispensable to 
the estimated parameters from the gap-filled datasets. Needless to mention, this uncertainty accounts for all 
the variability—ranging from local to interannual—exhibited by the bloom events. Further examination of the 
reconstructed chlorophyll ensemble mean is seen to exhibit a similarity in its spatial distribution to the original 
chlorophyll concentrations (Fig. 5c,d).

In Levy’s reconstructed climatology (Fig. 5a, shown in violet), a higher amplitude of chlorophyll annual cycle 
is seen in the Arabian Sea. Also, very high chlorophyll concentrations in the open ocean region of Arabian Sea 
and Bay of Bengal are seen in Levy’s reconstructed spatial climatology (Fig. 5e). This might be due to the fact that 
Levy’s climatology is prepared using the data for a shorter duration (7 years), significantly less than the period 
of 22 years, as utilized in our study. However, to confirm if this factor can be attributed to the overestimation 
of the amplitude of the annual cycle in the Arabian sea region, we compared the original satellite dataset and 
our reconstructed dataset for the same time period as Levy’s, i.e., 1998–2005 (Fig. S4). An overestimation of 
chlorophyll concentrations in the spatial climatological patterns (Fig. S4a,b) and the amplitude of annual cycle 
is clearly seen in Levy’s reconstructed dataset (Fig. S4c–e), suggesting potential biases in Levy’s reconstructed 
climatology. Most importantly, the peak of summer and winter blooms coincide in the original and reconstructed 
climatology, but a delay of 15 days to 1 month is observed in Levy’s annual cycle (Fig. 5b). However, it cannot be 
substantially stated whether the smoothing applied or the small sample size is the reason behind the observed 
shift in Levy’s reconstructed data. It is also possible that the original dataset used by Levy might be subject to 
biases, all of which needs to be accounted for. Nevertheless, it is quite evident from the above comparison that 
the observed shifts in annual cycle might lead to erroneous computation of ecological indicators.

The above analysis helps us validate that the Monte-Carlo gap-filling does not lead to variations in the spatial 
and temporal characteristics of phytoplankton distribution in the reconstructed datasets. Further validation of 
the reconstructed dataset is done with the available Teledyne/Webb APEX—Argo  floats38,69 for the Indian Ocean. 
The satellite and the reconstructed data are averaged over a region within the trajectories of the Argo floats 
(66–68°E, 8–12°N, within 50 km of the Argo location) and compared for the period during which in-situ data is 
available (year 2010). Even though the satellite data is averaged closely following the Argo trajectory, the Argo 
data is available for point locations, hence a one-to-one comparison between the two is not possible. It should 
also be taken into account that while the satellite data measures chlorophyll integrated over the upper part of the 
photic zone (which may extend up to a few meters in clear waters), the in-situ Argo data used for comparison 
is at about 6 m depth. Regardless of these limitations, the annual cycle of chlorophyll is well represented in both 
the satellite and the reconstructed time series and matches with the Argo time series. Along with, both the time 
series shows a high correlation (r = 0.80) with the Argo data, statistically significant at 95% confidence level (Fig. 
S5). Moreover, the annual mean computed from the Argo dataset (horizontal dashed yellow line, Fig. S5) for 

Figure 2.  Annual and seasonal maps showing the count of missing pixels (in percentage) in the ESA merged 
chlorophyll data over the tropical Indian Ocean. Number of missing pixels (in percentage) in the 8-day 
composites of 22 years of ESA OC-CCI chlorophyll data from 1998–2019 in the Indian Ocean during the 
months (a) January–December; (b) June–September; (c) December–February. The seasonal maps of (b) and (c) 
indicate the seasonal contribution to the total number of observed pixels in (a). Gap-free pixels are indicated in 
white. The pixels exceeding 25% of missing values are marked as black. This figure is created using Python 3.9.10 
software (https:// docs. python. org/ relea se/3. 9. 10/).

https://docs.python.org/release/3.9.10/
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the period April–December 2010 is comparable to the satellite mean and reconstructed data mean (horizontal 
dashed cyan and pink line, Fig. S5). Furthermore, the satellite and the reconstructed datasets shows a very high 
correlation of 0.995, thus validating the fact that the Monte-Carlo filling does not induce spurious changes in 
the mean characteristics of phytoplankton biomass distribution.

The timings of phytoplankton blooms determine the food availability for higher trophic levels in the marine 
ecosystem. Computing the phenological indices from the time series becomes particularly challenging when data 
is subject to large gaps. This is where the usage of Monte-Carlo serves its purpose as it enables us to extract the 
phenological indices along with uncertainty estimates. As a demonstration, we have computed two phenological 
indicators, bloom initiation and peak, for a recent year in central Arabian Sea which is one of the highest produc-
tivity regions in the Indian Ocean. Bloom initiation for the year 2018 is likely to occur between 20th May–24th 
August (pink horizontal solid line, Fig. 6a) given by the gap-filled ensembles with a mean initiation date as 24th 
August (pink solid circle) and the bloom peak is likely to occur between 28th May–1st September 2018. This 
range of bloom indices as given by these ensembles is the uncertainty quantification of the bloom timings (pink 
horizontal solid line). A high uncertainty is seen here in the initiation and peak which is evident as the data is 
missing for a longer period during June–September 2018 (light blue line, Fig. 6a). If on the other hand, we com-
pute these indices for a gap-filled data prepared only by single imputation, we fail to extract information of errors 

Figure 3.  Schematic of the algorithm to fill the gaps of missing chlorophyll concentrations. The daily 
chlorophyll fields are available at a spatial scale of 4 km × 4 km for the period 1998–2019 by ESA OC-CCI. 8-day 
composites are prepared from the daily fields and re-gridded to 1 degree to reduce gaps. Then the gaps are filled 
in two steps: (a) Linear Interpolation; (b) Monte-Carlo Multiple Imputation. The arrows depict the sequence 
of the algorithm (refer to “Methods” section for details). Only pixels with missing data are reconstructed. The 
schematic is adapted from Racault et al.51.
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arising due to missing values, therefore, missing the estimated uncertainty. Hence, uncertainty quantification is 

Figure 4.  Spatial maps of missing pixels (in percentage) before and after applying the gap-filled methodology. 
Spatial maps showing missing number of pixels (in percentage) in the 8-day composites of chlorophyll during 
1998–2019 in the (a) original chlorophyll data from ESA OC-CCI, (b) after the first step of interpolation, and 
(c) after the final step of Monte-Carlo multiple imputation. The regions in white indicate gap-free pixels. This 
figure is created using Python 3.9.10 software (https:// docs. python. org/ relea se/3. 9. 10/).

Figure 5.  Annual cycle of chlorophyll and its spatial distribution in the Arabian Sea and Bay of Bengal for the 
original and gap-filled datasets. Climatological annual cycle of reconstructed chlorophyll (8-day composites) 
for the period 1998–2019 in the (a) Arabian Sea [60°E–70°E, 8°N–16°N], and (b) Bay of Bengal [85°E–95°E, 
8°N–16°N]. Light Blue line indicates ESA v4.2 satellite chlorophyll (original data); pink line represents the 
mean of gap-filled chlorophyll datasets (reconstructed data); and violet line represents the climatology of the 
gap-filled annual cycle reconstructed by Levy. The boxplot overlaid on the time series represents the range of 
values between the 25th and the 75th percentile. The black dots represents the outliers. Spatial distribution of 
chlorophyll concentration (in mg/m3) in the tropical Indian Ocean for the period 1998–2019 in (c) satellite 
chlorophyll, (d) reconstructed chlorophyll using our proposed methodology, and (e) Levy’s reconstructed 
dataset. This figure is created using Python 3.9.10 software (https:// docs. python. org/ relea se/3. 9. 10/).

https://docs.python.org/release/3.9.10/
https://docs.python.org/release/3.9.10/
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critical especially when gaps are present in the data.
It should be noted that in Fig. 6a the phenological indices cannot be estimated on the original satellite data 

due to the presence of missing values. Hence, in order to facilitate a comparison between the phenological indices 
estimated from the reconstructed and original satellite dataset, we prepare climatology of both the datasets to 
compute the bloom indices. Bloom initiation is likely to occur within 1st–15th July in the gap-filled ensembles 
(pink solid circle, Fig. 6b) with the mean initiation date as 7th July. The mean bloom initiation time of the recon-
structed datasets coincides with the original dataset (light blue, Fig. 6b). Similarly, the bloom peak is likely to 
occur during 8th–22nd August having a uncertainty band of 2 weeks (pink solid square, Fig. 6b).

Discussion
Our study is the first to examine the gaps in remotely-sensed ocean color observations in the tropical Indian 
Ocean and propose a methodology which enables to quantify uncertainty along with the phenological indices 
when estimated using satellite ocean color observations with missing values. Previous gap-filling techniques 
applied to ocean color datasets have been limited to single-value imputation which do not provide any informa-
tion about the uncertainty in the estimated phenological parameters. This uncertainty quantification is over-
looked, if conventional gap-filling approaches are adopted and needs to be highlighted which drives the objective 
of using Monte-Carlo for gap-filling. Using Monte-Carlo method, we fill the missing pixel with multiple pseudo-
random values. The outcome of this approach results in multiple gap-free datasets to determine phenological 
indices with uncertainty values.

We perform an optimal linear interpolation first and it brings down the gaps in the data from 25 to 15% 
in the North Indian Ocean while making the tropical Indian Ocean south of the equator completely gap-free. 
Interpolation performed beyond the optimal  average70 range tends to blend the meso-scale to large-scale features 
of the data leading to under- or over-estimation of the chlorophyll concentrations. Hence, we have restricted 
interpolation to only one surrounding grid to ensure optimal local averaging. This still leaves us with gaps in 
data as high as 15% to which the Monte-Carlo method is applied. Application of Monte-Carlo brings down the 
percentage of gaps to zero thus making the ocean color dataset gap-free. Using the methodology, we generate 
10,000 ensembles of gap-free ocean surface chlorophyll data for the period 1998–2019. All of these ensembles 
when analyzed, provide a range of estimates accounting for the degree of bias associated with estimating a miss-
ing  value58.

A validation of these reconstructed datasets is done with the satellite data and the available in-situ bio-Argo 
observations, which shows that the Monte-Carlo filling does not change the spatial and temporal characteristics 
of phytoplankton biomass. Moreover, generating multiple ensembles for filling missing values also addresses 
the most critical issue of uncertainty quantification associated with missing data which has been demonstrated 
in this study by computing the annual timings of bloom initiation and peak (Fig. 6). Since Levy’s climatologi-
cal dataset is prepared from 7 years of satellite data and with a single satellite sensor, we do not claim that our 
methodology is generating a better dataset than Levy’s as our emphasis is placed on the most crucial subject 
which is the quantification of uncertainty in the estimated parameters derived from these gap-filled datasets. 

Figure 6.  Phenological Indicators derived for the annual cycle of chlorophyll in the Arabian Sea. Bloom 
initiation and bloom peak estimated for the 8-day composites of the reconstructed datasets showing (a) 
for the year 2018, (b) chlorophyll climatology during 1998–2019. The phenological indices shown here are 
computed for a grid location in the central Arabian Sea [64°E, 11°N]. Light Blue line indicates ESA v4.2 
satellite chlorophyll (original data); dotted pink line represents the mean of gap-filled chlorophyll datasets 
(reconstructed data). The bloom initiation is indicated by solid circles and bloom peak by solid squares in same 
color as the data. The uncertainty in bloom initiation and peak timings as derived from our gap-filled datasets 
are represented by a horizontal solid line (pink). The horizontal dashed lines in (b) represents the annual 
median value of both the datasets. This figure is created using Python 3.9.10 software (https:// docs. python. org/ 
relea se/3. 9. 10/).

https://docs.python.org/release/3.9.10/
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Hence, we do not compare the two datasets for absolute values but with the intention to highlight the difference 
in the outcomes of the two techniques.

Missing data are ubiquitous in remotely-sensed ocean color observations. The seasonally varying cloud cover 
of the southwest summer monsoon is one of the major reasons for the observed high percentage of missing values 
over the tropical Indian Ocean. This is also the time when highest productivity is experienced in the northern 
Indian Ocean. The impact of missing data on statistical inference is potentially significant and are therefore 
prone to biased  estimates71; but filling the data-gaps is equally challenging. This paper presents a method to fill 
gaps in remote sensed data by using sophisticated statistical tools of moderate complexity. The need for these 
tools is unavoidable as the wider the gaps, the more uncertain are first and second order statistics of the exam-
ined time  series70. Since the chlorophyll observations are global in scope, we expect that this methodology is 
applicable to the other ocean basins and should not lead to spurious data filling. Though limited to ocean color 
in the current study, this method can be extended to preparing gap-free datasets of other variables of the earth 
system. However, the data first needs to be tested for the underlying probability distribution as the power of the 
proposed statistical algorithm depends on the appropriateness of the assumed underlying distribution. For a 
more time-specific gap-filling, additional use of the Markov Chains should be made in this method also known 
as the Markov chain Monte Carlo (MCMC), which is a future scope of the study. It should also be noted that our 
uncertainty quantification does not account for the uncertainty arising due to interpolation.

Although the numerical technique of gap-filling presented in the manuscript helps to achieve a reliable long-
term ocean color gap-free dataset, this signals us towards the real underlying issue of the scarcity of the available 
in-situ observations, particularly in the Indian Ocean. If available consistently, these in-situ records of chlorophyll 
can be used to fill the gaps in satellite data. But the current distribution of in-situ measurements is not enough to 
fill the gaps observed in satellite data. Moreover, the scarcity of in-situ bio-Argos in the Indian Ocean limits us to 
further validate the satellite datasets. This demands immediate attention as the way ahead is to provide ecological 
forecasting for the Indian Ocean rim population which has a strong dependence on fisheries for their livelihood. 
We are hopeful that with the recent initiative of the Indian Ocean Observing System (IndOOS)  program72 aimed 
to enhance the observations in the surface and subsurface tropical Indian Ocean by implementing the observing 
networks such as Argo floats, RAMA moorings, satellites,  drifters71; accurate measurements will be gathered 
in the Indian Ocean. While this is one big collaborative step taken forward, more international participation is 
needed for the sustenance of the observational networks.

The importance of gap-free observations of biological variables before any actual data analysis could be carried 
out and has been already emphasized in the existing literature. Also, the uncertainty associated with analyzing 
the gap-filled datasets needs to be quantified for getting robust results. Our gap-filling of satellite ocean color 
is an attempt to make the long-term high-quality data more usable by computing parameters with uncertainty, 
quantitatively. Moreover, analyzing such datasets can lead to extracting timely information of the phenology 
of the ocean ecosystem, ocean–cyclone interactions and other biophysical interactions of a higher temporal 
frequency; thus proving beneficial for ocean model applications of ecological forecasting—presently a limita-
tion in many of the earth system models. We further aim to use this dataset for the detection and attribution of 
phytoplankton phenology to anthropogenic climate change in the Indian Ocean.

Data availability
Daily synoptic fields of remotely-sensed chlorophyll concentrations (in mg/m3) at a 4-km spatial resolution are 
obtained from the European Space Agency Ocean Color-Climate Change Initiative (OC-CCI) version 4.2 (https:// 
clima te. esa. int/ en/ proje cts/ ocean- colour/). Daily OLR fields are obtained from NOAA at one-degree resolution 
(https:// psl. noaa. gov/). Levy’s dataset used in the analysis is available at http:// www. nio. org. The in-situ Teledyne/
Webb APEX—Argo floats deployed in the Arabian Sea are used from Ravichandran et al.69. The gap-free climatol-
ogy of chlorophyll for the Indian Ocean generated in the current study is made available in GitHub repository 
(https:// github. com/ aditi modi/ Gap_ Free_ Ocean_ Color. git). And the 8-day composites of gap-free chlorophyll 
for the period 1998–2019 for the Indian Ocean are available from the corresponding author upon request.

Received: 1 July 2022; Accepted: 10 October 2022

References
 1. Banse, K. Seasonality of phytoplankton chlorophyll in the central and northern Arabian sea. Deep Sea Res. Part A Oceanogr. Res. 

Papers 34, 713–723 (1987).
 2. Kumar, S. P., Narvekar, J., Nuncio, M., Gauns, M. & Sardesai, S. What Drives the Biological Productivity of the Northern Indian 

Ocean? in Indian Ocean Biogeochemical Processes and Ecological Variability 33–56 (American Geophysical Union (AGU), 2013). 
https:// doi. org/ 10. 1029/ 2008G M0007 57.

 3. Kumar, S. P. et al. Physical forcing of biological productivity in the Northern Arabian Sea during the Northeast Monsoon. Deep 
Sea Res. Part II 48, 1115–1126 (2001).

 4. Schott, F. A. & Mccreary, J. P. The monsoon circulation of the Indian Ocean. Prog. Oceanogr. 51, 1–123 (2001).
 5. Shankar, D., Vinayachandran, P. N. & Unnikrishnan, A. S. The monsoon currents in the north Indian Ocean. Prog. Oceanogr. 52, 

63–120 (2002).
 6. Wiggert, J. D., Hood, R. R., Banse, K. & Kindle, J. C. Monsoon-driven biogeochemical processes in the Arabian Sea. Prog. Oceanogr. 

65, 176–213 (2005).
 7. Cabré, A., Marinov, I. & Leung, S. Consistent global responses of marine ecosystems to future climate change across the IPCC 

AR5 earth system models. Clim. Dyn. 45, 1253–1280 (2015).
 8. Falkowski, P. G. Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200–206 (1998).
 9. FAO. The State of World Fisheries and Aquaculture 2016. In Contributing to food security and nutrition for all 200 pp. (Rome, 2016).
 10. Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: Integrating terrestrial and 

oceanic components. Science 281, 237–240 (1998).

https://climate.esa.int/en/projects/ocean-colour/
https://climate.esa.int/en/projects/ocean-colour/
https://psl.noaa.gov/
http://www.nio.org
https://github.com/aditimodi/Gap_Free_Ocean_Color.git
https://doi.org/10.1029/2008GM000757


10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18395  | https://doi.org/10.1038/s41598-022-22087-2

www.nature.com/scientificreports/

 11. Lemke, P. et al. IPCC, 2007. Climate Change 2007. Synthesis Report. Contribution of Working Groups I, II & III to the Fourth Assess-
ment Report of the Intergovernmental Panel on Climate Change. Geneva (IPCC, 2007).

 12. Cheng, L. et al. Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv. 3, e1601545 (2017).
 13. IPCC, 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. European Envi-

ronment Agency. https:// www. eea. europa. eu/ data- and- maps/ indic ators/ heati ng- degree- days-2/ ipcc- 2007- contr ibuti on- of- worki 
ng.

 14. Annamalai, H., Taguchi, B., McCreary, J. P., Nagura, M. & Miyama, T. Systematic errors in South Asian monsoon simulation: 
Importance of equatorial Indian Ocean processes. J. Clim. 30, 8159–8178 (2017).

 15. Beal, L. et al. IndOOS-2: A roadmap to sustained observations of the Indian Ocean for 2020–2030. https:// doi. org/ 10. 36071/ clivar. 
rp.4. 2019 (2019).

 16. Cai, W. et al. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature 510, 254–258 (2014).
 17. Roxy, M. K. et al. Indian Ocean warming. Assessment of Climate Change over the Indian Region 191–206. https:// doi. org/ 10. 1007/ 

978- 981- 15- 4327-2_ 10 (2020).
 18. Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).
 19. Sarmiento, J. L. et al. Response of ocean ecosystems to climate warming. Glob. Biogeochem. Cycles 18 (2004).
 20. Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science (New York, N.Y.) https:// doi. 

org/ 10. 1126/ scien ce. 11525 09 (2007).
 21. Wilkinson, C. R. Global and local threats to coral reef functioning and existence: Review and predictions. Mar. Freshw. Res. 50, 

867–878 (1999).
 22. Gittings, J. A. et al. Evaluating tropical phytoplankton phenology metrics using contemporary tools. Sci. Rep. 9, 1–9 (2019).
 23. Hughes, I. Biological consequences of global warming: Is the signal already apparent?. Trends Ecol. Evol. 15, 56–61 (2000).
 24. Fuentes-Yaco, C., Koeller, P. A., Sathyendranath, S. & Platt, T. Shrimp (Pandalus borealis) growth and timing of the spring phyto-

plankton bloom on the Newfoundland-Labrador Shelf. Fish. Oceanogr. 16, 116–129 (2007).
 25. Koeller, P. et al. Basin-scale coherence in phenology of shrimps and phytoplankton in the North Atlantic Ocean. Science (New 

York, N.Y.) 324, 791–793 (2009).
 26. Cushing, D. H. Plankton production and year-class strength in fish populations: An update of the match/mismatch hypothesis. in 

Advances in Marine Biology vol. 26 249–293 (Elsevier, 1990).
 27. Henson, S. A., Robinson, I., Allen, J. T. & Waniek, J. J. Effect of meteorological conditions on interannual variability in timing and 

magnitude of the spring bloom in the Irminger Basin, North Atlantic. Deep Sea Res. Part I 53, 1601–1615 (2006).
 28. World Meteorological Organization (WMO), United Nations Educational, Scientific and Cultural Organization (UNESCO), United 

Nations Environment Programme (UNEP), International Council for Science (ICSU). GCOS, 154. Systematic Observation Require-
ments for Satellite-based Products for Climate Supplemental details to the satellite-based component of the Implementation Plan for 
the Global Observing System for Climate in Support of the UNFCCC: 2011 update (WMO, 2011).

 29. Blondeau-Patissier, D., Gower, J. F. R., Dekker, A. G., Phinn, S. R. & Brando, V. E. A review of ocean color remote sensing methods 
and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Prog. 
Oceanogr. 123, 123–144 (2014).

 30. Platt, T., White, G. N., Zhai, L., Sathyendranath, S. & Roy, S. The phenology of phytoplankton blooms: Ecosystem indicators from 
remote sensing. Ecol. Model. 220, 3057–3069 (2009).

 31. Sathyendranath, S. & Platt, T. Analytic model of ocean color. Appl. Opt. AO 36, 2620–2629 (1997).
 32. Hollmann, R. et al. The ESA climate change initiative: Satellite data records for essential climate variables. Am. Meteorol. Soc. Bull. 

94, 1541–1552 (2013).
 33. Sathyendranath, S. et al. An ocean-colour time series for use in climate studies: The experience of the ocean-colour climate change 

initiative (OC-CCI). Sensors 19, 4285 (2019).
 34. Henson, S. A. et al. Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeo-

sciences 7, 621–640 (2010).
 35. Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences 10, 

6225–6245 (2013).
 36. Demarcq, H. Trends in primary production, sea surface temperature and wind in upwelling systems (1998–2007). Prog. Oceanogr. 

83, 376–385 (2009).
 37. Roxy, M. K. et al. Indian Ocean Warming. In Assessment of Climate Change Over the Indian Region: A Report of the Ministry of 

Earth Sciences (MoES), Government of India (eds Krishnan, R. et al.) 191–206 (Springer, 2020). https:// doi. org/ 10. 1007/ 978- 981- 
15- 4327-2_ 10.

 38. Roxy, M. K. et al. A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean. Geophys. 
Res. Lett. 43, 826–833 (2016).

 39. Sapiano, M., Brown, C., Schollaert Uz, S. & Vargas, M. Establishing a global climatology of marine phytoplankton phenological 
characteristics. J. Geophys. Res. Oceans 117, 8026 (2012).

 40. Liu, X. & Wang, M. Filling the gaps of missing data in the merged VIIRS SNPP/NOAA-20 ocean color product using the DINEOF 
method. Remote Sens. 11, 178 (2019).

 41. Moore, T. S., Campbell, J. W. & Dowell, M. D. A class-based approach to characterizing and mapping the uncertainty of the MODIS 
ocean chlorophyll product. Remote Sens. Environ. 113, 2424–2430 (2009).

 42. Steinmetz, F., Deschamps, P.-Y. & Ramon, D. Atmospheric correction in presence of sun glint: Application to MERIS. Opt. Express 
OE 19, 9783–9800 (2011).

 43. Roth, P. L. & Switzer, F. S. A Monte Carlo analysis of missing data techniques in a HRM setting. J. Manag. 21, 1003–1023 (1995).
 44. Cole, H., Henson, S., Martin, A. & Yool, A. Mind the gap: The impact of missing data on the calculation of phytoplankton phenol-

ogy metrics. J. Geophys. Res. Oceans 117, C08030 (2012).
 45. Remote Sensing Geology | Ravi P. Gupta | Springer. https:// www. sprin ger. com/ gp/ book/ 97836 42077 418.
 46. Pushpanjali, B., Venkata Subrahmanyam, M. & Murty, K. Relation between outgoing longwave radiation and findlater jet over 

Arabian Sea during summer monsoon and influence on Indian monsoon rainfall. Indian J. Geo-Mar. Sci. 49(03), 428–435 (2020).
 47. El Philander, S. G. H. Niño and La Niña. J. Atmos. Sci. 42, 2652–2662 (1985).
 48. King, M., Platnick, S., Menzel, W., Ackerman, S. & Hubanks, P. Spatial and temporal distribution of clouds observed by MODIS 

onboard the terra and aqua satellites. IEEE Trans. Geosci. Remote Sens. 51 (2013).
 49. Sullivan, S. C., Schiro, K. A., Stubenrauch, C. & Gentine, P. The response of tropical organized convection to El Niño warming. J. 

Geophys. Res. Atmos. 124, 8481–8500 (2019).
 50. Sasaoka, K., Chiba, S. & Saino, T. Climatic forcing and phytoplankton phenology over the subarctic North Pacific from 1998 to 

2006, as observed from ocean color data. Geophys. Res. Lett. 38 (2011).
 51. Racault, M.-F., Sathyendranath, S. & Platt, T. Impact of missing data on the estimation of ecological indicators from satellite ocean-

colour time-series. Remote Sens. Environ. 152, 15–28 (2014).
 52. Land, P. E., Shutler, J. D., Platt, T. & Racault, M. F. A novel method to retrieve oceanic phytoplankton phenology from satellite data 

in the presence of data gaps. Ecol. Ind. 37, 67–80 (2014).
 53. Racault, M.-F., Le Quéré, C., Buitenhuis, E., Sathyendranath, S. & Platt, T. Phytoplankton phenology in the global ocean. Ecol. Ind. 

14, 152–163 (2012).

https://www.eea.europa.eu/data-and-maps/indicators/heating-degree-days-2/ipcc-2007-contribution-of-working
https://www.eea.europa.eu/data-and-maps/indicators/heating-degree-days-2/ipcc-2007-contribution-of-working
https://doi.org/10.36071/clivar.rp.4.2019
https://doi.org/10.36071/clivar.rp.4.2019
https://doi.org/10.1007/978-981-15-4327-2_10
https://doi.org/10.1007/978-981-15-4327-2_10
https://doi.org/10.1126/science.1152509
https://doi.org/10.1126/science.1152509
https://doi.org/10.1007/978-981-15-4327-2_10
https://doi.org/10.1007/978-981-15-4327-2_10
https://www.springer.com/gp/book/9783642077418


11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:18395  | https://doi.org/10.1038/s41598-022-22087-2

www.nature.com/scientificreports/

 54. Levy, M., André, J.-M., Shankar, D., Durand, F. & Shenoi, S. A quantitative method for describing the seasonal cycles of surface 
chlorophyll in the Indian Ocean. Proc. SPIE Int. Soc. Opt. Eng. https:// doi. org/ 10. 1117/ 12. 693587 (2006).

 55. Lévy, M. et al. Basin-wide seasonal evolution of the Indian Ocean’s phytoplankton blooms. J. Geophys. Res. Oceans 112, C12 (2007).
 56. Brody, S. R., Lozier, M. S. & Dunne, J. P. A comparison of methods to determine phytoplankton bloom initiation. J. Geophys. Res. 

Oceans 118, 2345–2357 (2013).
 57. Campbell, J. W. The lognormal distribution as a model for bio-optical variability in the sea. J. Geophys. Res. Oceans 100, 13237–

13254 (1995).
 58. Krasnopolsky, V., Nadiga, S., Mehra, A., Bayler, E. & Behringer, D. Neural networks technique for filling gaps in satellite measure-

ments: Application to ocean color observations. Comput. Intell. Neurosci. 2016, e6156513 (2015).
 59. Mélin, F. et al. Assessing the fitness-for-purpose of satellite multi-mission ocean color climate data records: A protocol applied to 

OC-CCI chlorophyll-a data. Remote Sens. Environ. 203, 139–151 (2017).
 60. Müller, D. et al. The Ocean Colour Climate Change Initiative: I. A methodology for assessing atmospheric correction processors 

based on in-situ measurements. Remote Sens. Environ. 162, 242–256 (2015).
 61. Siegel, D. A., Doney, S. C. & Yoder, J. A. The North Atlantic spring phytoplankton Bloom and Sverdrup’s critical depth hypothesis. 

Science 296, 730–733 (2002).
 62. Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 

https:// doi. org/ 10. 4319/ lo. 1997. 42.1. 0001 (1997).
 63. Epa, U. Guiding principles for Monte Carlo analysis (1997).
 64. Evans, M., Hastings, N. & Peacock, B. Statistical distributions. 2nd edn, (Wiley, New York, 1993). Appl. Stochastic Models Data 

Anal. 10, 297–297. https:// doi. org/ 10. 1002/ asm. 31501 00411. ISBN-0-471-55951-2.
 65. Livezey, R. E. & Chen, W. Y. Statistical field significance and its determination by Monte Carlo techniques. Mon. Weather Rev. 111, 

46–59 (1983).
 66. Multivariate Density Estimation | Wiley Series in Probability and Statistics. https:// doi. org/ 10. 1002/ 97804 70316 849.
 67. Rubin, D. B. An overview of multiple imputation 6 (1988).
 68. Yuan, Y. Multiple Imputation for Missing Data: Concepts and New Development (2005).
 69. Ravichandran, M., Girishkumar, M. S. & Riser, S. Observed variability of chlorophyll-a using Argo profiling floats in the south-

eastern Arabian Sea. Deep Sea Res. Part I 65, 15–25 (2012).
 70. Pappas, C., Papalexiou, S. M. & Koutsoyiannis, D. A quick gap filling of missing hydrometeorological data. J. Geophys. Res. Atmos. 

119, 9290–9300 (2014).
 71. de Carvalho, J. R. P., Almeida Monteiro, J. E. B., Nakai, A. M. & Assad, E. D. Model for multiple imputation to estimate daily rainfall 

data and filling of faults. Rev. Bras. Meteorol. 32, 575–583 (2017).
 72. Beal, L. M. et al. A road map to IndOOS-2: Better observations of the rapidly warming Indian Ocean. Bull. Am. Meteorol. Soc. 101, 

E1891–E1913 (2020).

Acknowledgements
The authors acknowledge the European Space Agency’s Ocean Color Climate Change Initiative (OC-CCI) project 
for providing the long-term chlorophyll (Chl-a) dataset. We sincerely thank Prof. Subhankar Karmakar and Dr. 
Manasa Ranjan Behera of Indian Institute of Technology (IIT) Bombay, India for their valuable suggestions.

Author contributions
A.M. conceived the study, performed the analysis, and prepared the manuscript. M.K.R. provided his useful 
advice throughout the study. S.G. provided the idea of the method used. Both M.K.R. and S.G. supervised the 
study.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 22087-2.

Correspondence and requests for materials should be addressed to A.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://doi.org/10.1117/12.693587
https://doi.org/10.4319/lo.1997.42.1.0001
https://doi.org/10.1002/asm.3150100411
https://doi.org/10.1002/9780470316849
https://doi.org/10.1038/s41598-022-22087-2
https://doi.org/10.1038/s41598-022-22087-2
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Gap-filling of ocean color over the tropical Indian Ocean using Monte-Carlo method
	Data and methods
	Gap-filling algorithm. 
	Step I: Optimal Linear Interpolation. 
	Step II: Monte-Carlo Filling. 

	Results
	Discussion
	References
	Acknowledgements


