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Optimised extreme gradient 
boosting model for short term 
electric load demand forecasting 
of regional grid system
Zhao Qinghe1, Xiang Wen1,2, Huang Boyan1, Wang Jong1 & Fang Junlong1*

Load forecast provides effective and reliable guidance for power construction and grid operation. It 
is essential for the power utility to forecast the exact in-future coming energy demand. Advanced 
machine learning methods can support competently for load forecasting, and extreme gradient 
boosting is an algorithm with great research potential. But there is less research about the energy 
time series itself as only an internal variable, especially for feature engineering of time univariate. 
And the machine learning tuning is another issue to applicate boosting method in energy demand, 
which has more significant effects than improving the core of the model. We take the extreme 
gradient boosting algorithm as the original model and combine the Tree-structured Parzen Estimator 
method to design the TPE-XGBoost model for completing the high-performance single-lag power 
load forecasting task. We resample the power load data of the Île-de-France Region Grid provided by 
Réseau de Transport d’Électricité in the day, train and optimise the TPE-XGBoost model by samples 
from 2016 to 2018, and test and evaluate in samples of 2019. The optimal window width of the time 
series data is determined in this study through Discrete Fourier Transform and Pearson Correlation 
Coefficient Methods, and five additional date features are introduced to complete feature engineering. 
By 500 iterations, TPE optimisation ensures nine hyperparameters’ values of XGBoost and improves 
the models obviously. In the dataset of 2019, the TPE-XGBoost model we designed has an excellent 
performance of MAE = 166.020 and MAPE = 2.61%. Compared with the original model, the two metrics 
are respectively improved by 14.23 and 14.14%; compared with the other eight machine learning 
algorithms, the model performs with the best metrics as well.

Load forecasting is a technique used by the energy-providing utility to predict the electrical power needed to 
meet the demand and supply  equilibrium1. The technique can provide a reference for the daily operation of 
regional power grids and the formulation of dispatching plans. According to the results of power load forecast-
ing, dispatchers can reasonably coordinate the distribution of the output of each power plant, maintain a balance 
between supply and demand, and ensure power grid stability. This determines the start-stop arrangement of 
the generator set, reduces the redundant generator reserve capacity value, and reduces the power generation 
 cost2,3. Time series forecasting with the Machine Learning technique is the application of a model to predict 
future values through experience and by the use of previously observed values automatically. In recent years, 
power load forecasting combining machine learning methods, as a special sequence with stable data sources 
from grid operators or energy utilities, has broad research prospects: Muzumdar etc. propose a mixed model 
for consumer’s short-term load forecasting, which contained random forest, support vector regressor, and long 
short-term memory as base predictors to handle varying traits of energy  consumption4. Deng etc. proposes a 
Bagging-XGBoost algorithm for short-term load forecasting model, which can warn the time period and detailed 
value of peak load of distribution  transformer5. Chen etc. proposes a short-term load forecasting framework 
integrating a boosting algorithm and combined a hybrid multistep method into the single-step  forecasting6. Tan 
etc. proposes a Long Short-Term Memory (LSTM) network based hybrid ensemble learning forecasting model for 
short-time industrial power loading  forecast7. Xian etc. proposed a multi-space collaboration (MSC) framework 
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for optimal model selection to finish the model selection with strong adaptability to in more candidate size of 
the parameter  domain8,9.

From a technical point of view, the regional power grid load has stronger periodic stability than smaller 
systems or bus-systems, but it has less periodicity than larger national-level  systems2. While from an application 
point of view, for the interconnection and transaction of the national or cross-border grid, the regional power 
grids are the smallest node unit. So, there is practical value to research its loading forecasting research on power 
systems. On the other hand, from the perspective of the development of the machine learning algorithm, all 
core model is usage and powerful enough in pure theory, especially for the boosting ensemble algorithms. But 
the feature engineering of the dataset or data and hyperparameters tuning of the models themselves will affect 
the application results greatly. However, the features of dataset and tuning process is interdependent and there 
is less research now on boosting methods for timeseries without external variable, which (external variable) in 
some application environment have more importance and the impact of the time series itself on forecast per-
formance would be  masked10.

Gradient boosting is a state-of-the-art Machine learning algorithm. The Extreme Gradient Boosting is an 
important applicated popular algorithm developed by Tianqi in 2014. And because of its excellent performance 
on regression and classification problems, it is recommended as the first choice in many cases, such as industry 
and the Internet applications, which is even implemented in machine learning platforms. However, there are 
still many challenges in applying it for load forecasting. First, the Extreme Gradient Boosting algorithm relies 
on many hyperparameters to tune during the model building, and the reasonable hyperparameters directly 
determine the final prediction effect of the model. For the reason that an optimisation algorithm that can balance 
both data characteristics and model characteristics is very  vital11,12. Secondly, when transforming time series into 
a general supervised regression problem in machine learning, it is complex to construct the data to have both 
historical memories and ensure the model has sufficient generalization ability after  training13,14. The Two issues 
above are the key to combining Extreme Gradient Boosting even for all Machine learning algorithms with load 
forecasting tasks or time series.

In this study, (1) we completed data exploration for regional power grid consumption demand load data in 
the Ile-de-France region of France, ensured the best width of the sliding window for the machine learning model 
by the Discrete Fourier Transform and Pearson Correlation Coefficient methods, and added 5 date features in 
the dataset for feature engineering work. (2) We designed the TPE-XGBoost algorithm by combining the Tree-
structured Parzen Estimator method and the Extreme Gradient Boosting model. By comparing with the original 
unoptimised model and other 8 machine learning algorithms, our proposed model can effectively improve the 
prediction performance for power demand load forecasting in the individual testing dataset. (3) We conducted 
a model evaluation on the TPE-XGBoost model we designed and discussed in detail the feature engineering of 
the dataset and the modelling effect of the TPE optimisation for the XGBoost model.

Material and methods
Loading forecasting dataset and data exploring. Île-de-France (literally "Isle of France") is one of 
the 13 administrative regions in mainland France and the capital circle of Paris. The average temperature is 
11 °C, and the average precipitation is 600 mm. Île-de-France is the most densely populated region of France. 
According to the 2019 report, this region provides France with a quarter of jobs in total employment, of which 
the tertiary sector accounts for near nine-tenths of jobs. Agriculture, forests and natural areas cover nearly 80% 
of the surface. As well, the region, as the first industrial zone in France, includes electronics and ICT, aviation, 
biotechnology, finance, mobility, automotive, pharmaceuticals and aerospace.

We analysed the power load in the Île-de-France region with a 30-min sampling rate with a total of 70,128 
records over four years, from 2016 to 2019. The data is from the éCO2mix API provided by the RTE (Réseau 
de Transport d’Électricité)15. The original data were resampled as the maximum daily power into 1461 records 
in Fig. 1, whose y-axis is the real-time demand load power (unit: MWatt). As shown below, the trend between 
the years of the series is similar and has an evident periodicity; each cycle is V-shaped with visible seasonality. 
Due to the characteristics of power load and the region’s actual situation, each cycle’s trend is stable without an 
apparent growth or decay.

4000

5000

6000

7000

8000

9000

10000

2016 2017 2018 2019Ac
tu

al
 c

on
su

m
p


on
 d

em
an

d 
po

w
er

(M
W

a�
)

Resampled date (day)

train valid test

Figure 1.  Demand consumption of electrical power (daily, MWatt).
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The dataset we collected from éCO2mix is divided into three parts, the blue training dataset (2016, 2017), the 
orange validation dataset (2018) and the red testing dataset (2019) in Fig. 1. The training one builds the main 
models, and the validation one is analysed for optimisation eval. And testing one will check the models’ perfor-
mance on several different metrics. The data exploring part of the time series will be finished in the validation 
one in 2018 to avoid data leakage.

In the following Table 1, we use feature engineering to transform time series into a supervised learning dataset 
for machine learning as the additional date  feature16.

Finally, loading forecast values at the first N moments will be added to the dataset as a memory feature in the 
form of a sliding window called momery_feature_1 ~ momery_feature_N. However, the choice of N, the memory 
length or the time lag is not casual. We will use a method combining Discrete Fourier Transform and Pearson 
Correlation Coefficient to complete the memory length determination.

The best width of windows analysis. Data-driven loads forecasting issues of machine learning require 
the datasets to be produced in the form of sliding windows. Then, the time series issue transforms into a super-
vised regression in machine learning. And there is a complex effect on the window width or called lags count of 
the dataset. The longer width of the window, the more abundant the memory information as more features in the 
sample. However, for the machine learning algorithms based on statistics experience, more features would cause 
unideal results for practical application by too many irrelevant features. On the other hand, too short a window 
means fewer features, which might be underfitting for insufficient information.

Figure 2 above is the effect of different window widths in the testing dataset of the XGBoost model and Linear 
Regression (OPLS), whose x-axis is the window’s width of data features and the y-axis is the mean absolute error 
(units: MWatt) in the testing dataset (2019), and the models indexed 1 mean no date features adding. It can be 
seen that the relationship between the performance and window width is not a simple linear relationship. This 
figure shows a dramatic decline in MAE with wider windows, it reached a low point, and then the MAE fluctu-
ates within a specific range and worsens when the windows widen.

The Fourier Transform is a practical tool for extracting frequency or periodic components in signal analysis. 
Generally, the synthetic signal f (t) can be converted to frequency domain component signals g(freq) as below 
if it satisfies the Dirichlet conditions in the range of (−∞,+∞):

the power loads time series in this paper are sampled discretely with limited length, and the Fast Discrete 
Fourier method proposed by  Bluestein17 is used instead as below:

where N = 365 is from the validation dataset in 2018, and the freq series contain the frequency bin centers in 
cycles per unit of the sample spacing with zero at the start. The second half of freq series is the conjugate of the 
first half, only the positive is saved. And bring period = 1

freq back as below:
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Table 1.  The date features added in the dataset.

Feature index Data type Description

Date_feature_1 Integer Day of the week (Monday = 0 and Sunday = 6)

Date_feature_2 Integer Day of the month (from 1 to 28 ~ 31)

Date_feature_3 Integer The day of the year (from 1 to 365/366)

Date_feature_4 Integer The week of the year (from 1 to 53/54)

Date_feature_5 Integer The month this year falls on (from 1 to 12)
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Figure 2.  MAE metrics with wider windows of testing dataset.
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Remove the inf  and the period = N item g(period) , and the first eight amplitude of period − g
(

period
)

 bar 
plots as shown in Fig. 3a18. Some of the periods are related to the natural time cycle: 121 as a quarter of a year, 
182 as a semi-annual. And not all of the meaning is clear, such as 3, 24 and 26, which are difficult to have suf-
ficient explanation.

Further, the Pearson correlation coefficient (PCCs) are used to calculate a more detailed period. The PCCs 
measure the linear relationship between two datasets as below:

where the x(t0) is the series to predict as y target of dataset and the x(t0 − δ) is the δ lag series of t0 . The larger 
PCC means there are more correlated relationships between two series.

In Fig. 3b, the X-axis is the time interval numbers and the Y-axis is the Pearson’s Correlation Coefficient val-
ues (blue) and Two-tailed p-value (orange). According to experience in the general statistical  sense19, when the 
Pearson Coefficient is greater than 0.80 (blue dotted line), it can be considered that the two series have a strong 
correlation; when the p-value is less than 0.05 (orange dotted line), the hypothesis is established. The orange 
curve shows that the about first 50 memory features have a positive correlation with the predicted target, so the 
minimum period should be less than 50. Furthermore, Memory-feature 1 ~ 5 have Pearson’s correlation coefficient 
values greater than 0.80; that is, the values within 5 are strongly correlated. And the number of periods in the 
FFT to satisfy this value requirement is 3, therefore, our model will use 3 as the window width.

We will further compare the three kinds of widths, 7, 14 and 28, as a control to complete the sequential 
modelling.

Extreme gradient boosting optimised by tree-structured Parzen estimator. Gradient Boosting 
originates from the paper by Friedman in  201120. XGBoost is an open-source software library of extreme gradi-
ent boosting developed by CHEN  Tianqi21 that ensembles tree models by a series of strategies and algorithms 
such as a greedy search strategy based on gradient boosting. As an additive ensemble model, XGBoost considers 
the gradient of first-order derivative and second-order derivative in the Taylor series for the loss function and 
constructs in the case of probability approximately correct (PAC). The objective function is as follows:

where the t  means the rounds of ensemble processing and the ω  means the regularisation part.
Take a second-order Taylor expansion on the loss function and add the parameters of the tree structure in 

the regular term, Then the objective function transforms into below:

where the g and the h is the derivative term of the loss function; the T and ω are the parameters of ensembled 
decision trees’ structure parameters; γ is the minimum loss required for further partitioning on the leaf nodes 
of single tree; � is the L2 regularization term.

A greedy strategy to solves the obj(t) for a local optimal solution ω = − G
�+H

  then Bring back:

With the meta, weak learner t  generated in each round, bestobj(t) is used as the basement strategy for the 
growth of the decision tree, which controls the generalisation ability for the boosting process.

Most specific detail for XGBoost can refer to the paper, XGBoost: A scalable tree boosting system21.
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XGBoost is a powerful ensemble algorithm, and there are numerous hyper-parameters to tune for the best 
performance in application, however, it is a black-box process widely  recognised22. We adopt the Tree-structured 
Parzen  Estimator23 (TPE), one of the sequential model-based optimisation methods (SMBO) based on the Bayes-
ian theorem, to optimise our XGBoost model for time-series forecasting. The TPE pseudocode as below shown 
in Fig. 4:Where the z is the set of hyperparameters of the search space, the s is the metrics score of XGBoost with 
z in the validation dataset, and the H is the history of validation scores and the selected z.

The EI is the core of TPE, which builds a probability model of the objective function and uses it to select the 
most promising hyperparameters to evaluate in the true objective  function23:

the l(z) is the value of the objective function less than the threshold k , and g(z) is the objective function 
greater than the threshold.

We first build the XGBoost model (XGBoost) by default values in Table 2, and then nine hyper-parameters in 
Table 2 are going to be optimized in the searching space below by the TPE algorithm for TPE-XGBoost models.

Alpha: a regularization parameter in meta learners’ ensemble; Decreasing it will give model looser constraints. 
And this is the only hyperparameter in this paper to control model in the ensemble level by regularization.

Learning rate: a weight parameter for new meta learners to slow down the boosting ensembles; smaller learn-
ing rate would make ensemble slower but more conservative.

Max depth of single tree: a parameter of meta models struction; deeper tree would more complex but more 
likely overfitted.

Minimized child weight: a parameter of meta models struction by controlling leaf nodes. If a leaf node with 
the sum of instance weight less than it, the node will be given up as a leaf; Too small weight would make ensem-
bled model easy to underfit.

Minimized split loss: a parameter for meta models building by leaf nodes construction. The nodes would be 
abandoned if the loss less than this parameter; The larger it is, the more conservative the algorithm would be.

Subsample: it is samples counts ratio of subset for training; A balanced Subsample can prevent overfitting, 
but too small subsample would make models hard to satisfy application.

Col sample by tree/level/node: it is a subsample for features as Subsample above did.
We limit the tuning iterations to 500 and the target of each iteration will be set of the MAPE in the validation 

dataset (2018). And the Fig. 5 is the whole flow process in this paper.

Results
Prediction models of testing dataset. XGBoost and TPE-XGBoost we recommended have been mod-
elled in four kinds of windows width data: 3d, 7d, 14d and 28d in train dataset (2016, 2017). In addition to this, 
eight other below machine learning algorithms have been conducted as comparative experiments on at the same 
time, including:

EI =
∫+∞
−∞ max (s∗ − s[Hi−1], 0)p(s[Hi−1])ds

k +
(1−k)g(z[Hi−1])

l(z[Hi−1])

Algorithm. TPE algorithm (with XGBoost) 
1: Ini�aliza�on  and 
2: for 1 do
3:        ,

4:        XGB modelling and valida�on for 
5:        Update ,

6: end for
7: Return

Figure 4.  Pseudocode of Tree-structured Parzen Estimator optimising XGBoost.

Table 2.  Hyperparameters to be optimised of XGBoost in paper.

Hyperparameter to tuning Data type Default value Searching space

Alpha Float 0 0.01–1.00

Learning rate Float 0.3 0.01–0.20

Max depth of single tree Integer 6 2–5

Minimized child weight Float 1 0.50 to 0.60

Minimized split loss Float 0 1e-10–1.00

Subsample Float 1 0.90–1.00

Col sample by tree/level/node Float 1 0.90–1.00
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• Three ensemble models: Gradient Boosting Decision Tree models (pGBDT) and Adaptive Boost models 
(Adaboost) based on scikit-learn; Random Forest models (RandomForest) based on XGBoost.

• One linear model: built by Ordinary Least Squares Method (OPLSR).
• One Support Vector Machine model: based on libsvm algorithm with a Radial basis function kernel (RBF-

SVR).
• One Neural Network model: Perceptron model (Perceptron) with triple hidden layers shaped (256, 128, 64) 

built by scikit-learn framework.
• One Neighbours Model: K-Nearest Neighbours model (KNN) with Euclidean distance metrics.
• Single Decision Tree model: Tree (SingleTree) model built by scikit-learn framework without max depth limit 

as the contrast of ensemble models.

Figure 6 shows mean absolute error values (MAE values) respectively, where the top model valued at 166.02 
is the XGBoost optimised by the TPE algorithm with data wide of 3d.

Obviously, TPE method does improve XGBoost performance. All MAE metrics of four XGBoost models 
trained with different windows width data are apparent to improve after being optimised by the TPE algorithm. 
They decrease from 193.57, 199.46, 197.82, 209.93 to 166.02, 184.11, 184.65, 185.09 respectively, whose optimiza-
tion achieves 14.23, 7.70, 6.66, and 11.83%.

The MAEs of Five ensemble learning methods (TPE-XGBoost, XGBoost, pGBDT, Random Forest and Ada-
boost) get a slight rise with longer windows. This proves from the side that proper selection of window width 
is vital for such ensemble learning models to predict time series correctly. However, OPLSR, Perceptron, and 
RBF-SVR models have the opposite trend after training with more previous features.
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But as Fig. 2 shown, this trend would reach a limit value not as good as TPE-XGBoost models’ scores and then 
it will begin fluctuating in ranges. The best MAE during the 1–81 is 178.539 (width = 31), which gaps obviously 
with our TPE-XGBoost with 166.02. We will discuss in-depth for this phenomenon in the next part of our paper.

Another three metrics (MAPE, R2 and MaxError) from the testing set are listed partly in Table 3. Shorter 
windows of our method can reach higher on two overall metrics: MAPE = 2.61%, R2 = 0.9471. And the max 
residual metrics don’t result in ideal results ranged 1183–1436. However, the 3d-TPE-XGBoost’s max residual is 
still in an acceptable value on par with the best 14d-OPLSR model, scored 895, and the TPE process suppresses 
it compared to XGBoost not optimised to a certain extent in 7d, 14d and 21d data.

Figure 7 is the sequence comparison figure of random selected 21-day predicted and real values among four 
seasons of 2019. The model of 3d we proposed can make excellent predictions of the periodic and frequency 
trend of the real time series, mutually confirmed by its better MAE, MAPE, and R2 metrics.

The TPE-XGBoost model performs well before December. A suppressing fixing by TPE can be observed 
compared to the unoptimised XGBoost method, especially in January, April and June. The December series 
forecast is terrible. This month, the negative impact of almost all models is contributed by the max residual of 
3d-TPE-XGBoost.

TPE optimisation processing for XGBoost models. Three tuning methods that were also applied to 
the Boosting method widely are chosen as the control group. All four methods have the same search space 

Table 3.  Results metrics from testing dataset of models. Significant values are in [bold].

TPE

XGBoost

Random

OPLSR Perceptron RBF-SVRXGBoost Forest

MAPE

3d 2.61% 3.04% 2.99% 3.19% 4.19% 4.80%

7d 2.88% 3.09% 3.16% 2.98% 3.82% 3.94%

14d 2.90% 3.06% 3.26% 2.84% 3.77% 3.49%

28d 2.90% 3.29% 3.28% 2.80% 3.36% 3.38%

R2 score

3d 0.9471 0.9328 0.9355 0.9307 0.8885 0.8430

7d 0.9389 0.9297 0.9317 0.9388 0.9052 0.8978

14d 0.9413 0.9319 0.9271 0.9419 0.8983 0.9153

28d 0.9387 0.9255 0.9261 0.9421 0.9198 0.9208

Maximum residual

3d 1183 1174 1294 975 1506 1448

7d 1436 1550 1305 979 1190 1125

14d 1209 1249 1226 895 1450 1216

28d 1257 1529 1230 919 1126 1082
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Figure 7.  Forecasting and true values of testing dataset in 2019.
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(Table 2), and the input feature of dataset are 3d, which is as the style with the results of above section. Three 
control group with XGBoost is as follows:

• Random  Search24: Random search, also called black-box methods, is a family of numerical optimization 
methods that do not require the gradient of the problem to be optimized, and RS can hence be used on 
functions that are not continuous or differentiable.

• Simulated  annealing25: Simulated annealing is a probabilistic technique for approximating the global optimum 
of a given function. Specifically, it is a metaheuristic to approximate global optimization in a large search 
space for an optimization problem.

• Evolution Strategy: We chose Lightweight Covariance Matrix Adaptation Evolution  Strategy26, where CMA-
ES is a stochastic, or randomized, method for real-parameter (continuous domain) optimization of non-
linear, non-convex functions.

Table 4 is the results of the optimisation processing. And the TPE row is the same as above sections. Compared 
with vanilla XGBoost + 3d (MAE = 194), the model optimized by tuning methods has better performance gener-
ally from metrics. This proves that tuning hyperparameters for model optimization has the effect of improving 
model performance without the changing of core Boosting algorithms generally.

The TPE method we recommended have achieved the best results in three of the four metrics and the sec-
ond best in the MaxError, which proves the effectiveness of the method. Indirectly, it can also be preliminarily 
demonstrated that the SMBO method has better applicability for regional loading forecast.

The visualization process of nine hyperparameter tuned by the TPE algorithm is shown in Fig. 8. The object 
value for loop iterations is set to the MAPE (mean absolute percentage error) from the validation dataset in 2018, 
which is neither included in the training nor the testing dataset. After 500 iterations of learning, the model can 
gain an acceptable excellent target in the validation set of MAPE = 0.02647. With the iterations increasing, the 
validation target is gradually distributed to a tight range. The max depth of the trees in XGBoost is selected to 3 
in a range from 2 to 5; the learning rate(eta) is around 0.11 from 0.02 to 0.2.

The best hyperparameter set appearing in the 499th iteration of 500 rounds is listed in Table 5. More searching 
rounds would gain a better MAPE of validation set but it needs more time to run.

As an ensemble algorithm based on the tree model, FI (feature importance rate) stands for the weights in the 
modelling of features in the dataset. Figure 9 shows the two different width series (3d we preferred and longer 7d) 
of TPE-XGBoost and the Unoptimized one. The models optimized have higher FI values of the features before 
tn1 time of 3d one: almost 40% FI values of tn2&tn3 but the unoptimized one’s less than 10%. Wider windows 
models focus more on tn6 and tn7, and the TPE processing rises the rate of FI values of them and suppresses 
the contribution of the tn2 ~ tn5.

Discussion

• The power load data has a clear time continuity. That is the load data will not change abruptly only in the 
case of extreme events (such as grid crashing, etc.). This is the reason why linear regression (OPLSR) and the 
simplest model perform still well for the wider windows. The XGBoost method, even most machine learning 
methods, is based on historical data and does not have the concept of temporal continuity. We make sliding 
windows to provide the memory for them and so transformed time series problems into regression problems, 
trains and forecasts data will reference through this window feature. As for the TPE method, from the dis-
cussion of FI above, it can be seen that it suppresses the modelling weight of the near memory features, and 
increases the model’s attention to farther ones. It is the immediate reason why the TPE method can improve 
modelling performance by hyperparameters controlling.

  We believe that it is necessary to use the minimum period as the window width, which is a targeted treat-
ment of the continuity characteristics of time series or load forecasting data. The window with the shortest 
period includes at least the complete memory of the data of interest and does not contain redundant informa-
tion of multiple periods. Although a wider window will provide richer historical information, the XGBoost 
algorithm’s focus on data continuity will suffer, which is regulated to control the risk of generalization.

  We believe that the main impact of adding the date features to the model is to ensure that the algorithm 
can have the ability to extract other periodicities. Time series data, including our load data, is of course highly 
cyclical, and the cycles it contains may be related to the real world with clear explanations. Monthly and 
weekly data are also cyclical, with stronger or weaker correlations between these cycles. Therefore, we have 
added five date features to the feature engineering. The five date features can help the algorithm to extract 

Table 4.  Results of optimisation processing. Significant values are in [bold].

MAE MAPE R2 MaxError

TPE 166 2.61% 0.9471 1183

Random search 169 2.65% 0.9465 1134

Simulated annealing 172 2.70% 0.9453 1246

Evolution strategy 171 2.68% 0.9456 1227
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information from multiple cycles as much as possible. If there is no data feature, machine learning methods 
will maybe not perform effective fitting and prediction on periodic time series.

• TPE-XGBoost as mentioned above is a two-step process with modelling-then-validation, that is, given the 
hyperparameter search space of XGBoost, adjusted and optimized by TPE for finally taking the increase or 
decrease of a certain target objective value as the goal. In the optimization process, which kind of metrics to 
use and where the metrics are from are two crucial issues.

  Usually, the optimization target metrics are one of the metrics for evaluating the modelling. Such as MAE 
or RMSE, two reasonable targets can both describe the error value between predicted data and real data 
from a certain scale. However, the metrics for optimization are different from evaluating purposes. In our 
TPE-XGBoost algorithms, setting MAPE as the target value through the data modelling from 2016 to 2017 
and predicted of true values of 2018 by 500 iterations, the MAPE can effectively improve MAE\RMSE\R2, 

Figure 8.  Nine Tuning hyperparameters with MAPE values.

Table 5.  Best hyperparameters of XGBoost optimised by TPE in paper.

Eta Alpha Gamma Subsample Max depth

0.10411162943929 0.14962743583968 0.1513032788308 0.90727951205518 3

Min child weight Colsample by level Colsample by node Colsample by tree Iteration

0.52728463623425 0.99153864007020 0.95380256761024 0.95222870269938 499/500
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etc. Other evaluation metrics can only improve their own performance in an independent test dataset. Other 
metrics are not unchanged but are less obvious than MAPE.

  In addition, the usual source of objective values is the k-folds Cross-validation of the training set itself, this 
way can maximize the use of existing sequences for modelling and evaluation when the data is not sufficient. 
However, this method, as literally stated, needs to use 5 times the calculation of single modelling for repeated 
fitting, and the obtained k-folds have great differences in the dataset in this paper no matter what metrics are 
used, resulting in a slow and ineffective optimization process. In fact, for the load forecasting request itself, 
the data is abundant, and even several years of historical data can be traced back at power grid operators, 
and there is no problem of insufficient data. In the machine learning method, if such a dataset is used for 
the validation of the model, it is necessary to ensure that the training data and the validation data should 
be independent and identically distributed, and our training dataset, validation dataset and test dataset, no 
doubt, are all in the form of there is actually real-world data, and the data itself is consistent, so our approach 
of using an independent validation set is correct.

  Therefore, as described in this paper’s results and discussion, we propose to adopt MAPE metrics from a 
separate validation dataset as objective values in the optimization process of TPE-XGBoost.

• This paper does not consider the introduction of external variables, and only studies from the time series 
itself, but it also achieves reliable forecasting results. This is because the external variables such as temperature, 
wind speed and social practice commonly used in load forecasting problems can be replaced by the date 
feature we introduced. These external variables are also periodic and to be predicted, and the function of the 
date feature is to provide a calibration reference for the memory of the time series from another aspect. Such 
a calibration reference that has an independent and identical distribution in the dataset is more valuable than 
the actual wind speed and other data.

Conclusions
The results in this paper show that (1) fewer window features are capable to revert the power loads time series we 
are concerned about. The three-day width of windows analysed from FFT and Pearson correlation have enough 
information to do better than longer ones. (2) XGBoost as a practical and effective algorithm can achieve the fore-
casting task with fewer features, however, there is remarkable necessary to add optimising processing by the TPE 
method. Hyperparameters from TPE will get the most out of the performance of XGBoost with short windows.

In summary, the optimal window width of the time series data is determined in this study through Discrete 
Fourier Transform and Pearson Correlation Coefficient Methods, and five additional date features are introduced 
to complete feature engineering. And TPE optimisation ensures nine hyperparameters’ values of XGBoost and 
improves the models obviously. By fitting demand series from 2016 to 2018, the TPE-XGBoost model we designed 
has an excellent performance of MAE = 166.020 and MAPE = 2.61% in 2019 of single lagging. Compared with 
the original model, the two metrics are respectively improved by 14.23 and 14.14%; compared with the other 
eight machine learning algorithms, the model performs with the best metrics as well.

Data availability
Data are available from the éCO2mix of Français Réseau de Transport d’Electricité(French language) website 
at https:// www. rte- france. com/ eco2m ix , or get the copy at https:// github. com/ gniqeh/ TPE- XGB- TS by MIT 
License.

(a) 3d window dataset (b) 7d window dataset 
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Figure 9.  Feature importance percentages of XGBoost models.
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