
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:18710  | https://doi.org/10.1038/s41598-022-21988-6

www.nature.com/scientificreports

Environmental pathways affecting 
gene expression (E.PAGE) 
as an R package to predict 
gene–environment associations
Sachin Muralidharan1,4, Sarah Ali2,4, Lilin Yang1,4, Joshua Badshah1, Syeda Farah Zahir3, 
Rubbiya A. Ali2, Janin Chandra1, Ian H. Frazer1,5, Ranjeny Thomas1,5 & Ahmed M. Mehdi1,3,5*

The purpose of this study is to manually and semi-automatically curate a database and develop an 
R package that will act as a comprehensive resource to understand how biological processes are 
dysregulated due to interactions with environmental factors. The initial database search run on the 
Gene Expression Omnibus and the Molecular Signature Database retrieved a total of 90,018 articles. 
After title and abstract screening against pre-set criteria, a total of 237 datasets were selected and 522 
gene modules were manually annotated. We then curated a database containing four environmental 
factors, cigarette smoking, diet, infections and toxic chemicals, along with a total of 25,789 genes that 
had an association with one or more of gene modules. The database and statistical analysis package 
was then tested with the differentially expressed genes obtained from the published literature 
related to type 1 diabetes, rheumatoid arthritis, small cell lung cancer, COVID-19, cobalt exposure 
and smoking. On testing, we uncovered statistically enriched biological processes, which revealed 
pathways associated with environmental factors and the genes. The curated database and enrichment 
tool are available as R packages at https://​github.​com/​Ahmed​Mehdi​Lab/E.​PATH and https://​github.​
com/​Ahmed​Mehdi​Lab/E.​PAGE respectively.

Organisms are constantly being exposed to a wide range of environmental triggers that influence gene expres-
sion, resulting in several diseases. Environmental factors, such as drugs, toxic chemicals, smoke, temperature, 
dietary components and infections are considered modifiable causes of disease through their effects on biological 
processes, and in response, the expression of many genes is altered1. It is estimated that environmental factors 
account for approximately 70% percent of all autoimmune diseases and 80% of all chronic diseases2. These large 
proportions indicate that environmental exposures are an important contributor to disease, and there is ample 
evidence to support complex interrelationships between various environmental and genomic factors for disease 
causation3. Manipulation of environmental triggers and the host immune system during the clinical and preclini-
cal stages of a disease will offer significant insight and guide early intervention for many disorders4.

In the era of Big Data technologies, several genomic databases exist to explore differential expression of genes 
under various clinical conditions5,6. However, to our knowledge there is currently no computational tool that can 
use information from existing large-scale databases to predict gene–environment relations. Therefore, in this 
study we formulated an integrated and comprehensive database that will provide insights of how environmental 
factors are associated to gene expression and disease, and leading to the identification of potential therapeutic 
strategies for the prevention and control of diseases attributable to both environmental and genetic factors.
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Methods
We followed a two-step approach to conduct this study. First, we conducted a systematic review using a stand-
ard approach to identify all studies that used integrated datasets containing comprehensive information about 
environmental and genetic risk factors for various diseases. Second, we curated a database and developed a 
statistical analysis package to enable the user to understand the relationships between differentially expressed 
genes and select environmental factors.

Step 1: Systematic review.  The aim of this step was to identify the relevant published literature from 
where we could obtain existing data pertinent to gene expression changes in response to an environmental fac-
tor. In detail the systematic review was conducted as follows:

Search strategy.  We undertook a comprehensive literature and database search using PubMed, Gene 
expression omnibus (GEO), and Gene set enrichment analysis (GSEA) databases7. All databases were searched 
from their inception until 16th October 2020. The reference lists of all the retrieved studies were examined to 
identify additional studies.

The search terms and their synonyms related to environmental factors and gene expression. The keywords 
used included medical subject headings (MeSH) terms, e.g., ("Diet"[MeSH Terms] OR diet [All Fields]) AND 
("gene expression"[MeSH Terms] OR gene expression [All Fields]). Table 1 details the search strategy and date 
of searches for various databases.

Inclusion/exclusion criteria.  Pre-set inclusion criterion for studies to be considered eligible were:

•	 Only articles written in English
•	 Participants of any age group and both genders.
•	 Since most of the experimental trials involving environmental factors were carried out in humans or mice, 

we included hits for Homo sapiens and Mus musculus.
•	 Four specific environmental factors were chosen, based on the previous published evidence for major con-

tribution as an environmental factor affecting gene expression8. Specifically,

o	 Cigarette smoking—Includes data related to the practice of tobacco smoking and inhalation of tobacco 
smoke.

p	 Diet—Includes data on the various types and quantities of food consumed by a person.
q	 Infections—Includes data on infections caused by pathogenic organisms such as viruses, bacteria, fungi, 

protozoa and parasites.
r	 Toxic chemicals—Includes data on substances such as metals or other chemical agents that are hazard-

ous to human health if inhaled, ingested or absorbed.

•	 We included published data from datasets, series and platforms. Samples were excluded if they consisted of 
unpublished data. We did not limit the search specific for any disease.

We did not include any dataset relating to mRNA, protein, CDS or small non-coding RNAs like miRNA or 
siRNA.

Literature review method.  Two reviewers SM and SA screened the abstracts and citations independently 
at the same date and time and using the same search parameters. We identified articles that met the inclusion 
criteria. After title and abstract screening, studies were selected for full-text review. After the full length article 
review, those studies that met the inclusion criteria were selected for data extraction7.

Harmonization step.  Names of Differentially expressed genes were extracted from GEO and MSigDB C7 data-
bases. Pre-set inclusion criteria were used to select studies to be included in the database. Overlapping studies 
from the two databases were considered and coded as one study into the spreadsheet. We have further illustrated 
the harmonization steps in Supplementary SP4 and Figure S1.

Table 1.   Search strategies used for database searching.

Search term Number of hits (total) Date of search hits

Cigarette smoking AND Gene expression 324 16/10/2020

Diet AND Gene expression 25,440 16/10/2020

Infection AND Gene expression [GEO Database] 59,338 16/10/2020

C7 Immunologic gene sets [GSEA] 4872 16/10/2020

Toxic chemical AND Gene expression 44 16/10/2020
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Data extraction.  Two reviewers SM and SA independently extracted data. The specific features extracted 
from each article were: (1) Differential gene expression data; (2) specific description of the type of data collected; 
(3) specific keywords related to the differentially expressed genes for each dataset, including disease, sample 
condition and pathways. These were manually searched in the abstract, demographics and result sections of 
each publication.

Data coding.  Data were extracted and coded in a spreadsheet to collate information from each study. The data 
were combined and any anomalies between reviewers were resolved by a third reviewer (LY).

Differential gene expression data were obtained from the results section as well as from the supplementary 
section of the article. The differentially expressed genesets were annotated based on the information provided 
in the results section of the article on specific biological processes and/or molecular function regulated. The 
differentially expressed genes were coded into a spreadsheet and each geneset was provided a unique geneset 
number. In another spreadsheet the same geneset numbers were provided with annotations extracted from the 
article and a short description was given to describe the geneset module.

To remove potential bias of manual annotations, E.PAGE also provides functionality to annoSP1tate each 
geneset using GO, KEGG and MeSH annotations9–11 and users have an option to use either of methods or all. 
Further description on manual curation is provided in supplementary .

Quality and data validity assessment.  The methodological quality was checked before including the 
data, using the Q-Genie tool12. We recorded whether the study used a standard microarray procedure and 
descriptions of the sample data, causes of up- and downregulation of genes and any other specific changes in the 
gene expression.

Step 2: Software generation.  The statistical analysis package E.PAGE (Environmental Pathways Affect-
ing Gene Expression) (https://​github.​com/​Ahmed​Mehdi​Lab/E.​PAGE) was written in R version 4.0.313 and 
developed using RStudio14. Using publicly available packages tidyverse15 , Seurat16 as dependencies, the package 
performs enrichment analysis as previously described by Mehdi and colleagues17.

Mathematically, we represent the collection of annotated modules as M = {m1,m2, . . .mn} and the universal 
set of genes (background) as U = {g1, g2, ..gw}with total of w(U) genes. For each query list of genes 
g ⊆ Ucontainingn(g)genes in query list, we perform statistical enrichment of each module m where 
m ∈ {m1,m2, ..mN} with Ntot

m  genes associated with m . We compared the number of genes Ng
m that had a specific 

annotation for gene module m against those that did not. A hypergeometric distribution was used to determine 
a probability (p-value) that Ng

m or more belong to the module m can be calculated using fisher exact test18. The 
p-value was corrected using false discovery rate (FDR) for multiple hypothesis testing using the Benjamini and 
Hochberg correction method19 to determine the adjusted p-value ( padj ). The results are filtered based on the padj 
are displayed to the user. Fold enrichment was calculated by taking the ratio of a set of genes containing a specific 
gene modules, and the total set of genes was obtained by taking the union of all the collected gene modules17 as 
follows; F.E =

Ngm/n(g)
Ntot

m /w(U)
 . The adjusted fold enrichment was measured as a ratio of the fold enrichment value to 

the negative log of padj . An odds ratio then was measured to determine the probability of finding the set of 
enriched genes specific to an gene module20. We determined the percentage of interactions for four environmental 
variables ( Im̃) where m̃ = {cigarette smoking, diet, infections, toxic chemicals} ,  m̃ ⊆ M ,  as follows; 
Im̃ =

N
g
m̃

Ntot
m̃

× 100 . We have provided examples of running E.PAGE in supplementary SP2.

Step 3: Case studies.  We used six case studies to test our enrichment tool, these studies were not used in 
database curation. Case study 1 involves gene expression data in peripheral blood mononuclear cells (PBMC) 
in children with type 1 diabetes21. Gene expression changes were identified using microarray analysis from 43 
patients with new onset T1D compared with 24 healthy controls. The gene expression data set in case study 2 
is taken from the GEO database (microarray datasets; GSE12021, GSE55457, GSE55584 and GSE55235) that 
includes samples from 45 patients with rheumatoid arthritis, compared with 29 healthy control samples22. Case 
study 3 includes gene expression data from 23 small cell lung cancer samples and 42 healthy lung tissues23. The 
gene expression data from the case study 4 was taken from cobalt-exposed rat liver derived cells24. The final 
two case studies used differentially expressed genes extracted from single-cell expression data. Case study 5 was 
based on single-cell RNAseq data from COVID-19 patients, comparing severe and healthy cases in peripheral 
immune environments25, while case study 6 was based on a single-cell RNAseq-based atlas of epithelial cell-
specific responses to smoking26. For single-cell RNA seq data, E.PAGE used a Seurat object (with clustering 
performed) as an input and performs differential expression analyses between the clusters to uncover lists of 
genes to compute related enriched gene modules.

Results
Systematic review and E.PAGE structure.  The initial electronic search of GEO and MSigDB database 
identified a total of 90,018 studies (Fig. 1). Title and abstract screening of retrieved studies resulted in a total 
of 3547 studies which had potential data related to environmental factors. After full text examination of 3547 
studies, 3008 studies were excluded since they did not provide any differential gene expression data associated 
with any of the four environmental factors. A total of 237 datasets were obtained from 186 studies and the 
gene expression data were retrieved and collated to form a database. Figure 1 illustrates a flow chart of all the 
steps taken to obtain the data that satisfy the required parameters. The overall structure of E.PAGE is shown 
in Fig. 2. After literature screening, a database of 237 datasets was developed by linking each dataset with pub-

https://github.com/AhmedMehdiLab/E.PAGE
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Figure 1.   PRISMA flow chart representing the various stages of screening involved in the systematic review 
process.

Figure 2.   Flow chart representing the various parameters and their utilities provided on database query.
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Gene modules Number of modules Number of DE genes padj Fold enrichment

Dyslipemia 1 13 1.46E−08 12.88

Olive oil induced gene expression 3 15 7.52E−08 8.58

Diet intake: Olive oil 2 14 1.14E−07 8.96

Inflammation 31 82 6.87E−07 1.85

Infection type: Acute 58 112 7.46E−07 1.61

Transcription regulation 11 33 8.00E−07 3.09

Interferons 15 53 1.66E−06 2.22

IL-12 4 37 5.02E−06 2.60

Th1-mediated response 4 37 5.02E−06 2.60

Parasite killing 4 37 5.02E−06 2.60

Non-smoker vs Smoker 16 46 3.21E−05 2.13

Type 2 Diabetes 5 16 5.99E−05 4.24

Early Disseminated 1 12 1.11E−04 5.35

Immune response 46 83 1.20E−04 1.59

Cigarette smoking 36 61 1.57E−04 1.77

Monocytes 10 34 2.21E−04 2.26

Airway epithelium 26 58 2.21E−04 1.78

Reactive oxygen species 12 58 2.69E−04 1.76

Mycobacterium tuberculosis 3 14 3.67E−04 3.97

Smoking Status: Current, Never 23 36 6.22E−04 2.08

Chronic obstructive pulmonary disease 16 30 6.36E−04 2.26

Polymorphonuclear leukocytes 10 55 1.08E−03 1.70

Anaplasma phagocytophilum 10 55 1.08E−03 1.70

Granulocytic anaplasmosis 10 55 1.08E−03 1.70

Metabolism 7 35 1.27E−03 2.01

Epithelial gene expression 16 36 1.27E−03 1.98

Lyme disease 2 15 1.27E−03 3.24

Borrelia burgdorferi 2 15 1.27E−03 3.24

PBMCs 22 58 1.27E−03 1.65

DE genes expressed in Obese, Lean 3 94 2.28E−03 1.39

Obese vs Lean 2 94 2.28E−03 1.39

Apoptosis 34 85 4.29E−03 1.40

Protein catabolism 2 10 5.26E−03 3.63

Plasmodium falciparum 1 14 5.26E−03 2.83

Malaria 1 14 5.26E−03 2.83

Blood monocytes 1 14 5.26E−03 2.83

Hepatocellular carcinoma 1 29 5.26E−03 1.95

HBV Infection 1 29 5.26E−03 1.95

Infection type: Chronic 29 66 5.60E−03 1.47

Infection induced gene expression 110 148 6.10E−03 1.21

Pack-years: (10–20) 5 14 6.83E−03 2.74

Diet intake: Dietary energy restriction 3 25 7.21E−03 2.01

DE genes expressed in Obese 15 33 7.27E−03 1.80

Idiopathic pulmonary fibrosis 1 13 7.33E−03 2.82

Cytokines 4 12 1.00E−02 2.83

Lung cancer 8 23 1.00E−02 2.01

Viral response 9 25 1.00E−02 1.94

Mannose metabolism 1 88 1.00E−02 1.34

Insulin resistance 7 89 1.00E−02 1.33

Adipose tissue gene expression 3 88 1.05E−02 1.33

DE genes expressed in Healthy 11 31 1.09E−02 1.77

Before vs After diet intake 7 19 1.23E−02 2.13

Blood immune cells 20 37 1.23E−02 1.65

Influenza A Infection 20 37 1.23E−02 1.65

E. coli infection 20 37 1.23E−02 1.65

Staphylococcus aureus infection 20 37 1.23E−02 1.65

Continued
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lished lists of differentially expressed genes and the gene modules. Specifically, the text of these 186 publications 
and associated datasets were manually screened to develop gene modules representing the type of experiment, 
experimental conditions or disease type, experimental factors, demographics of subjects, and published path-
ways as previously described by Mehdi and colleagues17. The final database consisting of 237 datasets is obtained 
through GEO and MSigDB databases and includes 18,015 genes for diet, 13,259 genes for infections, 3841 genes 
for cigarette smoking and 644 genes for toxic chemicals.

Querying E.PAGE.  An R package was developed to enable statistical enrichment and gene modules associ-
ated with datasets/genes of interest to a user. The package produces various data tables as shown in Fig. 2 and a 
user can search genes of interest for their statistical enrichment. To test the utility of the statistical analysis pack-
age, we performed six case studies as described hereafter.

Case studies 1 and 2: Immune response activation in type‑1 diabetes and rheumatoid arthri-
tis.  We first tested whether query signatures associated with T1D and RA could recover common pathways 
associated with these autoimmune disease. We used 291 DE genes uncovered from 43 patients with new-onset 
T1D as compared to 24 healthy controls8 (Table 2) and 229 DE genes from 45 samples from patients with RA, 
compared with 29 healthy control samples22 (Table 3). The statistical enrichment using E.PAGE identified that 
the genes in both datasets are involved in Immune response. Other significant gene modules that were common 
to both diseases include Interferons, IL-12 and Transcription regulation. These processes are all well known to be 
involved in RA and T1D27. Insulin resistance and Xenobiotic metabolism, which are both believed to be associ-
ated with T1D, were uncovered using E.PAGE and validate the utility of the platform (Table 2). Similarly, for RA, 
many smoking related gene modules such as Smoking history and Pack years (Smoking Status: Current, Never, 
Pack-years: (10–20), Pack-years: (20–30; Healthy smoker), (Above 40; Smoker with COPD)), were uncovered indi-
cating an important risk factor for this disease (Table 3). For both T1D and RA, a large number of gene modules 
related to infections, both viral and bacterial (Lyme disease, Borrelia burgdorferi, HBV Infection, Viral response, 
Bacterial infection, Zika virus, Influenza A Infection, HIV infection, Echovirus-30, Rhinovirus infection), were 
significantly associated with disease, indicating that similar responses are occurring in patients suffering from 
these chronic autoimmune diseases as in responses to infections.

Case study 3: Regulation of the cell‑cycle process in small cell lung cancer.  We next studied gene 
modules associated with small cell lung cancer. The query signature containing 71 DE genes was derived from 
23 clinical small cell lung cancer samples and 42 healthy control tissues23. We found that several lungs cancer 
associated gene modules were infections were was the most common environmental factor associated with the 

Gene modules Number of modules Number of DE genes padj Fold enrichment

Streptococcus pneumoniae infection 20 37 1.23E−02 1.65

T effector cells 2 11 1.39E−02 2.82

Helminth infection 2 11 1.39E−02 2.82

Macrophages 17 49 1.53E−02 1.50

Lipid metabolism 9 33 1.58E−02 1.68

Infection induced gene expression in mice 18 39 1.65E−02 1.58

Dendritic cells 20 73 1.65E−02 1.35

Vascularization 1 13 1.77E−02 2.42

Energy restriction associated gene expression 2 22 1.77E−02 1.90

Oxidative stress 11 24 1.89E−02 1.82

Hematopoiesis 2 13 1.95E−02 2.38

Vesicular traffic 1 12 2.10E−02 2.43

DE genes expressed in Insulin sensitive individuals 1 12 2.10E−02 2.43

Lipid induced gene expression 1 15 2.22E−02 2.15

Xenobiotic metabolism 4 13 2.66E−02 2.26

Bacterial infection 4 13 2.82E−02 2.24

Protein Metabolism 2 12 3.00E−02 2.31

Skeletal muscle gene expression 2 12 3.03E−02 2.30

Maternal cigarette smoking 2 13 3.03E−02 2.20

Mosquito-borne pathogen 7 21 3.58E−02 1.77

Signal Transduction 7 15 3.62E−02 2.01

Zika virus 8 21 4.12E−02 1.75

Pack-years: (20–30; Healthy smoker), (Above 40; Smoker 
with COPD) 4 12 4.50E−02 2.15

Table 2.   Collation of results obtained on query of E.PAGE with genes differentially expressed in Type 1 
Diabetes.
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Gene modules Number of modules Number of DE genes padj Fold enrichment

Infection type: Acute 58 131 8.49E−34 2.63

Immune response 46 107 1.03E−27 2.87

Infection induced gene expression 110 159 1.03E−27 1.82

Inflammation 31 91 5.26E−22 2.88

PBMCs 22 78 6.89E−20 3.10

Transcription regulation 11 44 1.16E−19 5.77

Interferons 15 63 3.98E−19 3.70

Central nervous system 4 27 4.96E−18 10.49

Infection type: Chronic 29 85 5.19E−18 2.65

Astrocytes 2 17 1.94E−17 24.50

Plasmodium falciparum 1 29 9.43E−17 8.21

Malaria 1 29 9.43E−17 8.21

Blood monocytes 1 29 9.43E−17 8.21

Dendritic cells 20 91 1.85E−16 2.36

Mycobacterium tuberculosis 3 25 2.53E−16 9.93

Infection induced gene expression in mice 18 59 4.97E−16 3.35

Pro-inflammatory response 1 15 1.72E−15 24.29

Chemokines 2 17 3.11E−15 17.76

Viral response 9 41 9.93E−15 4.46

Monocytes 10 43 7.69E−14 4.00

Olive oil induced gene expression 3 17 2.43E−13 13.61

Bacterial infection 4 27 2.79E−13 6.51

Dyslipemia 1 14 3.35E−13 19.40

Bone marrow monocytes 1 16 3.35E−13 14.78

Myelodysplastic syndromes 1 16 3.35E−13 14.78

Hematopoietic stem cell disease 1 16 3.35E−13 14.78

Lyme disease 2 24 7.14E−13 7.25

Borrelia burgdorferi 2 24 7.14E−13 7.25

IL-12 4 39 4.66E−12 3.84

Th1-mediated response 4 39 4.66E−12 3.84

Parasite killing 4 39 4.66E−12 3.84

Diet intake: Olive oil 2 15 7.67E−12 13.43

Airway epithelium 26 60 2.08E−11 2.57

DE genes expressed in Obese 15 43 3.55E−11 3.28

Blood immune cells 20 48 3.55E−11 2.99

Influenza A Infection 20 48 3.55E−11 2.99

E. coli infection 20 48 3.55E−11 2.99

Staphylococcus aureus infection 20 48 3.55E−11 2.99

Streptococcus pneumoniae infection 20 48 3.55E−11 2.99

Mosquito-borne pathogen 7 34 4.44E−11 4.02

Zika virus 8 34 6.48E−11 3.96

Tissue remodeling 1 10 1.04E−09 19.74

Immunoregulation 1 10 1.04E−09 19.74

Hepatocellular carcinoma 1 36 1.13E−09 3.38

HBV Infection 1 36 1.13E−09 3.38

Chronic obstructive pulmonary disease 16 33 3.61E−09 3.48

Lipid metabolism 9 41 3.98E−09 2.91

Cigarette smoking 36 57 4.61E−09 2.31

Macrophages 17 54 1.51E−08 2.31

HIV infection 9 30 1.59E−08 3.54

Non-smoker vs Smoker 16 42 1.60E−08 2.72

Metabolism 7 37 1.82E−08 2.97

Zika virus associated pDCs response 1 15 3.13E−08 7.21

Early Disseminated 1 13 8.80E−08 8.11

Apoptosis 34 78 9.83E−08 1.80

Type 2 Diabetes 5 16 1.40E−07 5.93

Continued
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Gene modules Number of modules Number of DE genes padj Fold enrichment

Reactive oxygen species 12 52 1.44E−07 2.21

Fusobacterium nucleatum 3 10 1.58E−07 11.53

Oral pathogen 3 10 1.58E−07 11.53

Diet intake: Low calorie diet 4 23 1.60E−07 3.98

Epithelial gene expression 16 36 1.63E−07 2.77

Smoking Status: Current, Never 23 35 1.67E−07 2.82

DE genes expressed in Healthy 11 35 1.97E−07 2.80

Echovirus-30 1 13 2.33E−07 7.35

Blood‚ÄìCerebrospinal Fluid Barrier 1 13 2.33E−07 7.35

Polar Infection 1 13 2.33E−07 7.35

Skeletal muscle gene expression 2 18 3.23E−07 4.83

Before vs After diet intake 7 23 8.32E−07 3.60

Pack-years: (20–30; Healthy smoker), (Above 40; Smoker 
with COPD) 4 18 8.72E−07 4.50

T effector cells 2 15 1.08E−06 5.38

Helminth infection 2 15 1.08E−06 5.38

Cell growth 7 15 1.37E−06 5.27

Macrophages gene expression 4 12 1.40E−06 6.89

Cell culture based smoking effect 3 13 1.62E−06 6.12

Cystic Fibrosis 1 24 1.62E−06 3.33

Rhinovirus infection 1 24 1.62E−06 3.33

Human choroid plexus epithelial cells 1 12 1.79E−06 6.70

Cytokines 4 15 2.70E−06 4.96

SIV infection 6 24 2.81E−06 3.22

Weight associated gene expression 10 16 2.90E−06 4.59

Polymorphonuclear leukocytes 10 48 2.90E−06 2.07

Anaplasma phagocytophilum 10 48 2.90E−06 2.07

Granulocytic anaplasmosis 10 48 2.90E−06 2.07

Ulcerative colitis 1 10 3.48E−06 7.92

Crohn’s disease 1 10 3.48E−06 7.92

Jurkat cells gene expression 1 10 3.48E−06 7.92

Pack-years: (10–20) 5 16 5.00E−06 4.38

Diet intake: Dietary energy restriction 3 26 5.00E−06 2.92

Viral infection 19 62 6.62E−06 1.78

Signal Transduction 7 19 9.18E−06 3.57

Vesicular traffic 1 15 1.32E−05 4.26

DE genes expressed in Insulin sensitive individuals 1 15 1.32E−05 4.26

Protein Metabolism 2 15 2.30E−05 4.04

Idiopathic pulmonary fibrosis 1 14 2.58E−05 4.26

Lung cancer 8 23 3.20E−05 2.81

Oxidative stress 11 25 3.26E−05 2.66

Non-smoker vs Smoker (Healthy smoker, Smoker with 
COPD) 11 18 4.67E−05 3.26

Zika virus associated CD4T cell response 1 10 1.23E−04 5.06

Diet intake vs Control 17 19 1.64E−04 2.83

Cytoskeletal function 3 21 1.72E−04 2.64

Pathogen sensing 6 14 3.90E−04 3.23

Antimicrobial defense 6 14 3.90E−04 3.23

Supression of T cell activation 6 14 3.90E−04 3.23

Enhanced bactericidal activity 6 14 3.90E−04 3.23

Inhibition of granuloma destruction 6 14 3.90E−04 3.23

Viral responses 4 11 4.20E−04 3.90

Genotoxic 2 14 4.28E−04 3.19

Carcinogen 2 14 4.28E−04 3.19

Chemical induced gene expression 3 14 5.13E−04 3.13

Energy restriction associated gene expression 2 20 7.40E−04 2.41

Calorie restriction effect on old vs young 1 14 1.07E−03 2.90

Continued
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DE genes statistically significant (Table 4). The effect of Cigarette smoking (Tumor tissue vs Non tumor tissue in 
Non-smoker vs Smoker, Cigarette smoking, Smoking Status: Current, Never) was also evident. As expected, Lung 
tissue gene expression and Adenocarcinoma were amongst the top five gene modules, along with Cytoprotective 
mechanism, Mitotic spindle formation genes and Cell cycle, which are important pathways dysregulated in cancer 
(Table 4). Other interesting gene modules that are known to be involved in lung cancer were also identified, 
including Lung cancer, Cigarette smoking, Airway epithelium and Immune response.

Gene modules Number of modules Number of DE genes padj Fold enrichment

Innate Immunity 5 46 1.11E−03 1.63

Regulatory T cells 2 10 1.38E−03 3.60

Immunopathology 2 10 1.38E−03 3.60

Helminth Infection 2 10 1.38E−03 3.60

Insulin resistance 7 67 2.63E−03 1.40

Diet intake: High-fat 13 19 3.42E−03 2.16

Non-genotoxic 1 12 3.47E−03 2.79

Hepatocarcinogens 1 12 3.47E−03 2.79

Liver-based in vitro models 1 12 3.47E−03 2.79

Immune response 2 36 4.56E−03 1.64

Dendritic cell maturation 2 36 4.56E−03 1.64

Newcastle disease virus 2 36 4.56E−03 1.64

Adipose tissue gene expression 3 64 7.85E−03 1.36

Mannose metabolism 1 63 1.14E−02 1.34

Hematogenous dissemination of virus 6 15 1.54E−02 2.04

Epidermal growth factor receptor/PI3K signaling 
pathway 6 15 1.54E−02 2.04

Obese vs Lean 2 63 1.89E−02 1.31

DE genes expressed in Obese, Lean 3 63 1.90E−02 1.31

Lipid induced gene expression 1 11 2.42E−02 2.21

CD4 + T cell 7 11 2.53E−02 2.19

Pack-years: (20–30) 9 16 3.38E−02 1.80

Table 3.   Collation of results obtained on query of E.PAGE with genes differentially expressed in Rheumatoid 
Arthritis.

Table 4.   Collation of results obtained on query of E.PAGE with genes differentially expressed in small cell 
lung cancer.

Gene modules Number of modules Number of DE genes padj Fold enrichment

Cytoprotective mechanism 1 21 7.28E−08 5.33

Mitotic spindle formation genes 1 10 1.95E−07 15.80

Cell cycle 4 10 8.49E−07 12.98

Lungs tissue gene expression 2 10 8.49E−07 12.62

Adenocarcinoma 2 10 3.62E−04 6.39

Tumor tissue vs Non tumor tissue in Non-smoker vs 
Smoker 3 10 6.78E−04 5.82

Apoptosis 34 34 9.36E−04 1.97

Smoking Status: Current, Former, Never 5 10 1.21E−03 5.27

Reactive oxygen species 12 23 1.31E−03 2.47

Polymorphonuclear leukocytes 10 22 2.30E−03 2.39

Anaplasma phagocytophilum 10 22 2.30E−03 2.39

Granulocytic anaplasmosis 10 22 2.30E−03 2.39

Cigarette smoking 36 23 2.30E−03 2.35

Macrophages 17 22 2.38E−03 2.38

Smoking Status: Current, Never 23 14 1.10E−02 2.85

Infection induced gene expression in mice 18 17 1.35E−02 2.44

Lung cancer 8 10 4.05E−02 3.08
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Case study 4: Genotoxicity associated with cobalt exposed gene expression.  We next used 
E.PAGE to understand the gene expression pathways involved in cobalt exposure. We used 27 DE genes uncov-
ered by measuring the effect of cobalt exposure on gene expression in two rat liver derived cell lines using 
microarray analysis24. Cobalt exposed DE genes were associated with chemical induced gene expression. Other 
significant gene modules include genotoxicity, carcinogen, non-genotoxic, hepatocarcinogens, and liver-based in 
vitro models (Table 5).

Case study 5: Single‑cell COVID‑19 dataset.  From a single-cell RNA sequencing dataset25, we first 
conducted a standard Seurat pipeline to determine the graph based clusters16. We then analysed enrichment of 
gene modules based on DE genes in Seurat clusters in COVID-19 and healthy cases. As expected, we identified 
COVID-19, SARS-COV2 modules. Significant enrichment was also observed for the Inflammation, Infection-
type: Acute, Immune response, Infection induced gene expression and Cigarette smoking amongst the top modules 
that were previously shown to be COVID-19-related25,28,29 (Table 6).

Case study 6: Single‑cell smoking dataset.  As a sixth case study, we attempted to identify enriched 
gene modules related to smoking using a single cell RNA sequencing dataset which contained data of smok-
ers vs non-smokers26. After processing the data using the Seurat pipeline and analyzing the single-cell expres-
sion data, gene set enrichment identified Epithelial gene expression, Cigarette smoking, Airway epithelium, and 
Chronic obstructive pulmonary disease as the top gene modules with highly significant p-values, confirming that 
smoking-related pathways were correctly predicted using E.PAGE (Table 7). Furthermore, smoking associated 
with gene signatures of lung-associated diseases such as Lung cancer, Cystic fibrosis, as well as with Carcinogen 
and respiratory infections such as Influenza and COVID-19.

User‑defined annotations.  The E.PAGE do not currently incorporate genetic data. However, to demonstrate 
its feasibility, we separately used two genetic datasets30,31 associated with Parkinson’s disease (PD) and devel-
oped automatic annotations using E.PAGE (Supplementary SP3). An independent transcriptomic dataset asso-
ciated with PD was queried32. We uncovered annotations such as Genetic Association [Parkinson’s Disease, 
GWAS + eQTL] and cellular response to interferon-gamma.

Discussion
Environmental factors are known to influence the development of disease, with or without combination with 
genetic factors, however there is currently no curated database and enrichment tool to identify the genes and 
the corresponding biological processes associated with these environmental conditions. We developed E.PAGE, 
a database and enrichment tool to understand the gene–environment relationship. Our database was developed 
based on experimental evidence obtained from the published literature to establish a relationship between 
environmental factors, differentially expressed genes and specific biological processes associated with the genes.

To set up the database, we used cigarette smoking, infections, toxic chemicals and diet, as they constitute the 
primary environmental factors influencing disease outcomes4. We made every effort to ensure completeness, 
accuracy and currency of the database. The current database has 237 datasets which consists of 25,789 genes in 
total. Traditional methods assume a linear relationship between environment and the genes33. In our study, the 
annotations such as Cigarette smoking have a direct relationship with environmental variables whereas the Viral 
response may have direct or indirect relationship with environmental variables depending on each experiment. 
Thus the annotations included in the study are a combination of linear and non-linear environment variables33. 
The largest number of datasets relate to diet and infections due to the long research history of these two environ-
mental factors and disease. We manually curated each dataset using specific keywords and a brief description, 
abstract published with these datasets. We then developed an enrichment tool that uncovers modules associated 
with genes of interest using the methods we previously published17. In six case studies, we tested E.PAGE with 
sets of DE genes available from the literature. Specifically, we tested two gene lists associated with autoimmun-
ity—T1D and RA—along with those related to small cell lung cancer, COVID-19 and smoking subjects. To 
confirm the effect of toxic chemicals on differential gene expression, we also used gene expression data from a 
study on cobalt exposure.

On testing T1D and RA associated DE genes, we found a large number of gene modules related to immune 
responses, which supports previous studies on how malfunction in the adaptive immune response results in 

Table 5.   Collation of results obtained on query of E.PAGE with genes differentially expressed in cobalt 
exposure.

Gene modules Number of modules Number of DE genes padj Fold enrichment

Genotoxic 2 8 1.84E−05 12.09

Non-genotoxic 1 8 1.84E−05 12.33

Carcinogen 2 8 1.84E−05 12.09

Hepatocarcinogens 1 8 1.84E−05 12.33

Liver-based in vitro models 1 8 1.84E−05 12.33

Chemical induced gene expression 3 8 1.84E−05 11.87
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Gene modules Number of modules Number of DE genes padj Fold enrichment

Inflammation 31 188 1.18E−60 3.39

Infection type: Acute 58 225 1.02E−56 2.58

Immune response 46 187 7.61E−49 2.86

Infection induced gene expression 110 273 1.41E−44 1.79

Interferons 15 123 1.89E−43 4.11

Cigarette smoking 36 143 6.85E−41 3.31

Chronic obstructive pulmonary disease 16 90 1.80E−39 5.42

PBMCs 22 139 3.93E−37 3.15

DE genes expressed in Obese 15 99 2.19E−35 4.30

Mycobacterium tuberculosis 3 49 9.60E−35 11.09

Non-smoker vs Smoker 16 105 4.88E−34 3.88

Infection type: Chronic 29 151 3.17E−33 2.69

Monocytes 10 87 6.19E−33 4.61

Macrophages 17 126 5.42E−32 3.08

IL-12 4 83 1.20E−31 4.66

Th1-mediated response 4 83 1.20E−31 4.66

Parasite killing 4 83 1.20E−31 4.66

Viral response 9 78 1.05E−30 4.84

Macrophages gene expression 4 39 4.60E−30 12.77

Lung cancer 8 73 5.74E−30 5.09

Mosquito-borne pathogen 7 74 6.99E−30 4.99

Zikavirus 8 74 1.72E−29 4.92

Reactive oxygen species 12 121 1.30E−28 2.93

Diet intake: Dietary energy restriction 3 74 1.55E−28 4.74

Airway epithelium 26 118 4.15E−27 2.88

Plasmodium falciparum 1 46 3.05E−25 7.43

Malaria 1 46 3.05E−25 7.43

Blood monocytes 1 46 3.05E−25 7.43

Metabolism 7 82 4.91E−25 3.76

Pack-years: (10–20) 5 46 1.16E−24 7.19

Polymorphonuclear leukocytes 10 112 7.05E−24 2.76

Anaplasma phagocytophilum 10 112 7.05E−24 2.76

Granulocytic anaplasmosis 10 112 7.05E−24 2.76

Bone marrow monocytes 1 28 1.65E−23 14.75

Myelodysplastic syndromes 1 28 1.65E−23 14.75

Hematopoietic stem cell disease 1 28 1.65E−23 14.75

Apoptosis 34 159 4.18E−23 2.09

Energy restriction associated gene expression 2 64 8.15E−23 4.40

Idiopathic pulmonary fibrosis 1 42 8.63E−23 7.28

Smoking Status: Current, Never 23 78 1.41E−22 3.59

Epithelial gene expression 16 79 5.50E−22 3.47

Dendritic cells 20 144 5.52E−21 2.13

Lyme disease 2 40 7.47E−21 6.89

Borrelia burgdorferi 2 40 7.47E−21 6.89

Hepatocellular carcinoma 1 69 1.70E−20 3.69

HBV Infection 1 69 1.70E−20 3.69

Blood immune cells 20 85 5.45E−20 3.02

Influenza A Infection 20 85 5.45E−20 3.02

E. coli infection 20 85 5.45E−20 3.02

Staphylococcus aureus infection 20 85 5.45E−20 3.02

Streptococcus pneumoniae infection 20 85 5.45E−20 3.02

Chemokines 2 24 5.79E−20 14.29

Central nervous system 4 35 5.94E−20 7.75

Zika virus associated pDCs response 1 32 7.36E−20 8.77

Pack-years: (20–30; Healthy smoker), (Above 40; Smoker 
with COPD) 4 42 1.05E−19 5.99

Tissue remodeling 1 19 1.94E−19 21.39

Continued
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Gene modules Number of modules Number of DE genes padj Fold enrichment

Immunoregulation 1 19 1.94E−19 21.39

Sepsis 1 17 7.12E−19 25.40

CD14 + Monocytes 1 17 7.12E−19 25.40

Innate immune response 1 17 7.12E−19 25.40

Fatty acid metabolism 3 17 1.15E−16 19.41

Non-smoker vs Smoker (Healthy smoker, Smoker with 
COPD) 11 44 4.18E−16 4.54

Bacterial infection 4 38 7.17E−16 5.22

Early Disseminated 1 25 9.19E−16 8.89

Bronchoalveolar epithelium 1 13 1.04E−14 26.06

Olive oil induced gene expression 3 21 5.82E−14 9.59

HIV infection 9 51 8.54E−14 3.44

SARS-COV2 3 18 5.31E−13 10.88

COVID-19 3 18 5.31E−13 10.88

Infection induced gene expression in mice 18 76 5.83E−13 2.46

Astrocytes 2 16 6.21E−13 13.15

Citric acid cycle 1 13 8.34E−13 19.08

Complement system 1 13 8.34E−13 19.08

Diet intake: Milk fat and protein 1 13 8.34E−13 19.08

Apopotosis 1 13 3.39E−12 17.23

Human gingival fibroblasts 2 13 4.17E−12 16.96

Transcription regulation 11 45 6.79E−12 3.37

Diet intake: Olive oil 2 18 9.01E−12 9.19

Oxidative stress 11 50 1.57E−11 3.03

Dyslipemia 1 15 1.60E−11 11.85

Fusobacterium nucleatum 3 16 1.89E−11 10.52

Oral pathogen 3 16 1.89E−11 10.52

Pro-inflammatory response 1 14 2.47E−11 12.93

Atheroscleorsis 1 10 2.67E−11 24.91

Atherosclerotic cardiovascular disease (ASCVD) 1 10 2.67E−11 24.91

Aging 1 10 2.67E−11 24.91

T effector cells 2 26 3.15E−11 5.32

Helminth infection 2 26 3.15E−11 5.32

Smoking Status: Current, Former, Never 5 34 3.20E−11 4.05

Oxidative phosphorylation 3 13 2.25E−10 12.42

Tumor tissue vs Non tumor tissue in Non-smoker vs 
Smoker 3 31 2.34E−10 4.08

Xenobiotic metabolism 4 30 3.13E−10 4.16

Human choroid plexus epithelial cells 1 20 3.73E−10 6.37

Adenocarcinoma 2 29 5.47E−10 4.19

Pack-years: (20–30) 9 45 8.40E−10 2.89

Regulatory T cells 2 24 8.95E−10 4.93

Immunopathology 2 24 8.95E−10 4.93

Helminth Infection 2 24 8.95E−10 4.93

Cell culture based smoking effect 3 21 1.12E−09 5.64

Hematopoiesis 2 28 1.92E−09 4.09

Signal Transduction 7 33 2.01E−09 3.54

Cystic Fibrosis 1 39 2.33E−09 3.09

Rhinovirus infection 1 39 2.33E−09 3.09

Angiogenesis 2 14 2.35E−09 9.13

Extracellular matrix metabolism 1 10 3.66E−09 15.51

Autosomal-dominant hyper-IgE syndrome 1 10 3.66E−09 15.51

Immunodeficiency 1 10 3.66E−09 15.51

Lipid metabolism 9 58 3.95E−09 2.35

Vascularization 1 27 5.71E−09 4.01

Oxidant-related 2 13 9.38E−09 9.13

Zika virus associated mDCs response 1 19 2.74E−08 5.21

Continued
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Gene modules Number of modules Number of DE genes padj Fold enrichment

Maternal cigarette smoking 2 27 3.99E−08 3.65

Cell death 1 20 8.38E−08 4.60

Leptin resistance 1 11 9.12E−08 9.62

Weight loss 2 11 3.15E−07 8.53

Gene expression induced due to fasting 3 13 3.26E−07 6.76

Diet intake: Fasting 3 13 3.26E−07 6.76

DE genes expressed in Healthy 11 49 3.99E−07 2.24

Cytokines 4 21 4.55E−07 3.96

Diet intake: Low calorie diet 4 30 5.45E−07 2.96

SIV infection 6 35 5.45E−07 2.68

Zika virus associated CD8T cell response 1 16 1.24E−06 4.78

Type 2 Diabetes 5 19 1.44E−06 4.01

Ulcerative colitis 1 13 1.57E−06 5.87

Crohn’s disease 1 13 1.57E−06 5.87

Jurkat cells gene expression 1 13 1.57E−06 5.87

DNA damage 3 10 3.48E−06 7.54

Weight associated gene expression 10 21 4.12E−06 3.44

Obese vs Lean 2 123 4.99E−06 1.46

DE genes expressed in Obese, Lean 3 123 5.04E−06 1.46

Adipose tissue gene expression 3 121 5.21E−06 1.46

Chemical induced gene expression 3 24 5.25E−06 3.06

Insulin resistance 7 122 5.28E−06 1.46

Genotoxic 2 23 1.27E−05 2.99

Carcinogen 2 23 1.27E−05 2.99

Mannose metabolism 1 119 1.31E−05 1.44

Smoking History: > 19 years 2 12 1.59E−05 5.14

Pack-days: (1–1.21) 2 12 1.59E−05 5.14

Calorie restriction effect on old vs young 1 24 1.87E−05 2.83

Diet intake vs Control 17 29 2.83E−05 2.46

Non-genotoxic 1 22 2.84E−05 2.92

Hepatocarcinogens 1 22 2.84E−05 2.92

Liver-based in vitro models 1 22 2.84E−05 2.92

Cell cycle 4 14 3.19E−05 4.11

Zika virus associated CD4T cell response 1 14 3.81E−05 4.04

Viral responses 4 17 3.81E−05 3.43

Cigarette smoking in women 3 13 4.07E−05 4.29

Lungs tissue gene expression 2 14 4.20E−05 4.00

HIV-1 infection 9 30 4.20E−05 2.36

Smoking Status: Current, Former 2 14 5.33E−05 3.90

Tumor tissue vs Non tumor tissue in Current smoker vs 
Former Smoker 2 14 5.33E−05 3.90

Zika virus induced B cell response 1 14 6.10E−05 3.84

Zika virus associated B cell response 1 14 6.10E−05 3.84

Zika virus associated monocytes response 1 14 6.10E−05 3.84

Mitotic spindle formation genes 1 12 7.90E−05 4.29

Skeletal muscle gene expression 2 19 1.04E−04 2.91

Metabolic pathways 2 10 1.64E−04 4.70

Innate Immunity 5 75 2.77E−04 1.52

Pulmonary nontuberculous mycobacterial disease 1 10 6.57E−04 3.93

T cell signaling 1 10 6.57E−04 3.93

Before vs After diet intake 7 24 1.03E−03 2.14

Protein Metabolism 2 16 2.17E−03 2.46

Vesicular traffic 1 15 3.42E−03 2.43

DE genes expressed in Insulin sensitive individuals 1 15 3.42E−03 2.43

DNA Methylation 5 11 4.73E−03 2.80

CD4 + T cell 7 17 1.54E−02 1.93

Hematogenous dissemination of virus 6 22 2.11E−02 1.71

Continued
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activation of self-reactive T cells. We also obtained a substantial number of environmental modules associated 
with viral and bacterial infections, which supports recent findings on how bacterial and viral infections are 
implicated in immune response signaling in autoimmune disease pathogenesis. The T1D and RA associated 
DE genes were found to be primarily enriched in infection-associated gene modules and less in gene modules 
associated with the environmental factors diet, cigarette smoking or toxic chemicals. This information supports 
the hypotheses that infection-associated immune responses are major contributors to the development of T1D 
and RA34–36. A substantial number of genes involved in the central nervous system were also related to RA, 
consistent with other evidence37.

When small cell lung cancer genes were tested, we found a large number of environmental modules for 
DE genes to be related to lung cancer, as expected. We also found an expected link to cell cycle, since cell cycle 
checkpoints are disrupted leading to tumour development and cancer progression. Genes relating to cytopro-
tective function, mitotic spindle formation are also generally dysregulated in cancer. Recent studies that show a 
high incidence of retrovirus in lung small cell cancer suggest a possible direct link between infections and small 
cell cancer38.

To further assess associations between environmental factors with toxic chemicals, we tested genes differen-
tially expressed due to cobalt exposure against the E.PAGE database. On testing, we found the modules Genotox-
icity and Carcinogen to be enriched. We also obtained a substantial number of genes differentially expressed due 
to toxic chemicals as environmental factors, supporting the validity of the tool to identify potential involvement 
of toxic chemicals on DE genes involved in critical functions in a relevant datasets.

On testing gene expression data sourced from patients with COVID-19, we found that genes differentially 
expressed in severe cases were linked to gene modules common between bronchoalveolar and peripheral immune 
environments25,29. This finding shows how the E.PAGE database can be used to find commonalities between two 
sets of differentially expressed genes, even if they may not have many genes in common.

On testing the single-cell gene expression data for smoking we found gene modules for Cigarette smoking, 
Airway epithelium, Epithelial gene expression, and Chronic obstructive pulmonary disease. Additional path-
ways that are well known to be altered by cigarette smoking were identified. Therefore, E.PAGE was able to find 
relevant significantly enriched gene modules.

From the above case studies, we found that our database is highly reliable and has the potential to establish a 
link between environmental factors and important biological processes. In the case studies, we generally obtained 
a higher number of DE genes related to infection as an environmental factor. Though this link with infection 
may be valid, there is a possibility of dataset bias due to limited type of input data such as gene list, similarities 
between infection and tissue damage -associated immune responses. Additionally, our study is limited to four 
types of environmental variables, therefore to increase usage towards wider community more environmental 
datasets need to be integrated. Our study is limited to the use of MeSH terms to query GEO database for differ-
ential gene expression data. Additional statistical tests such as joint odds ratio and interaction odds ratio could 
be included to increase the statistical representation of the datasets39. Our study is currently limited to four types 
of environmental variables, therefore to increase usage in the wider community more environmental datasets 
will be integrated over time. Further updates will be the addition of other statistical tests to cover genetic data 
such as Single Nucleotide Polymorphisms, Copy Number Variants and DNA Methylations40–42.

A key benefit of this research is to predict gene–environment interactions to identify novel associations 
between environmental factors and disease, and to inform hypothesis synthesis and target selection. Thereby, 
it allows scientists and epidemiologists to dissect which genes may be influenced by environmental exposures 
in different disease conditions. We illustrate this by using examples from type-1 diabetes, rheumatoid arthritis, 
small cell lung cancer and COVID-19 datasets.

The current study lends itself to future extension to additional environmental variables such as alcohol, 
physical activities, life-style factors, along with inclusion of other kinds of genetic data which could facilitate the 
development of disease risk prediction models. Additionally, variable selection methods could be employed to 
select candidates for gene–environmental variables associated with the disease43.

Gene modules Number of modules Number of DE genes padj Fold enrichment

Epidermal growth factor receptor/PI3K signaling pathway 6 22 2.11E−02 1.71

Cytoskeletal function 3 23 2.54E−02 1.65

Cytoprotective mechanism 1 27 3.10E−02 1.55

Cell-adhesion 3 16 3.67E−02 1.78

Diet intake: High-fat 13 24 4.03E−02 1.56

Table 6.   Collation of results obtained on querying E.PAGE with genes differentially expressed in severe 
COVID-19.
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Gene modules Number of modules Number of DE genes padj Fold enrichment

Epithelial gene expression 16 198 3.07E−87 5.16

Cigarette smoking 36 261 6.38E−85 3.58

Airway epithelium 26 254 7.98E−85 3.68

Non-smoker vs Smoker 16 206 3.08E−81 4.52

Idiopathic pulmonary fibrosis 1 103 2.05E−73 10.60

Chronic obstructive pulmonary disease 16 158 2.05E−73 5.64

Pack-years: (10–20) 5 105 4.99E−71 9.74

Lung cancer 8 136 4.78E−62 5.63

Smoking Status: Current, Never 23 141 3.87E−44 3.85

Pack-years: (20–30) 9 113 3.95E−39 4.31

Infection type: Acute 58 276 3.54E−31 1.88

Infection induced gene expression 110 390 1.15E−30 1.51

Inflammation 31 207 2.15E−30 2.21

Immune response 46 214 1.04E−23 1.94

Infection type: Chronic 29 192 8.61E−23 2.03

Apoptosis 34 233 2.18E−22 1.82

Transcription regulation 11 77 8.42E−20 3.42

Cystic Fibrosis 1 74 1.82E−19 3.48

Rhinovirus infection 1 74 1.82E−19 3.48

Lyme disease 2 48 2.39E−18 4.91

Borrelia burgdorferi 2 48 2.39E−18 4.91

Non-smoker vs Smoker (Healthy smoker, Smoker with 
COPD) 11 62 4.36E−18 3.79

Lipid metabolism 9 106 4.56E−18 2.55

Reactive oxygen species 12 146 8.89E−18 2.10

PBMCs 22 152 1.48E−17 2.04

Mycobacterium tuberculosis 3 41 1.59E−17 5.51

Pack-years: (20–30; Healthy smoker), (Above 40; Smoker 
with COPD) 4 51 3.22E−17 4.32

Macrophages 17 143 6.22E−17 2.07

Infection induced gene expression in mice 18 119 6.23E−17 2.29

Interferons 15 115 3.24E−16 2.28

Polymorphonuclear leukocytes 10 138 2.89E−15 2.02

Anaplasma phagocytophilum 10 138 2.89E−15 2.02

Granulocytic anaplasmosis 10 138 2.89E−15 2.02

Central nervous system 4 38 6.33E−15 5.00

Oxidative stress 11 77 7.09E−15 2.77

HIV infection 9 72 9.37E−15 2.88

Signal Transduction 7 55 1.14E−14 3.50

Hepatocellular carcinoma 1 82 1.93E−14 2.61

HBV Infection 1 82 1.93E−14 2.61

Human choroid plexus epithelial cells 1 30 2.52E−13 5.67

IL-12 4 76 1.01E−12 2.53

Th1-mediated response 4 76 1.01E−12 2.53

Parasite killing 4 76 1.01E−12 2.53

Monocytes 10 78 2.14E−12 2.45

Dendritic cells 20 186 3.07E−12 1.63

Smoking Status: Current, Former 2 30 7.44E−12 4.96

Tumor tissue vs Non tumor tissue in Current smoker vs 
Former Smoker 2 30 7.44E−12 4.96

Bronchoalveolar epithelium 1 13 1.11E−11 15.46

Viral response 9 69 1.16E−11 2.54

Squamous cell lung carcinoma 1 26 2.11E−11 5.51

Smoking Years Quit: > 2 years 1 26 2.11E−11 5.51

Pack-years: (30–40) 1 26 2.11E−11 5.51

Metabolism 7 82 6.06E−11 2.23

Cytoprotective mechanism 1 70 1.35E−10 2.38
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Gene modules Number of modules Number of DE genes padj Fold enrichment

Mosquito-borne pathogen 7 63 1.57E−10 2.52

Zika virus associated pDCs response 1 28 2.84E−10 4.55

Zika virus 8 63 2.84E−10 2.48

SARS-COV2 3 19 4.46E−10 6.81

COVID-19 3 19 4.46E−10 6.81

Lungs tissue gene expression 2 27 5.51E−10 4.57

DE genes expressed in Obese 15 82 7.48E−10 2.11

Mucus overproduction 2 18 8.21E−10 7.02

Skeletal muscle gene expression 2 37 1.35E−09 3.36

Cell culture based smoking effect 3 27 2.03E−09 4.30

Obese vs Lean 2 208 2.03E−09 1.46

DE genes expressed in Obese, Lean 3 208 2.06E−09 1.46

SIV infection 6 55 3.91E−09 2.50

Cytokines 4 32 4.68E−09 3.58

Insulin resistance 7 205 4.75E−09 1.45

Adipose tissue gene expression 3 203 5.36E−09 1.46

Mannose metabolism 1 202 6.76E−09 1.45

Smoking Status: Current, Former, Never 5 41 1.02E−08 2.90

Early Disseminated 1 22 2.01E−08 4.64

Blood immune cells 20 88 6.63E−08 1.86

Influenza A Infection 20 88 6.63E−08 1.86

E. coli infection 20 88 6.63E−08 1.86

Staphylococcus aureus infection 20 88 6.63E−08 1.86

Streptococcus pneumoniae infection 20 88 6.63E−08 1.86

Macrophages gene expression 4 22 8.61E−08 4.27

Mitotic spindle formation genes 1 21 8.68E−08 4.45

Genotoxic 2 37 8.68E−08 2.86

Carcinogen 2 37 8.68E−08 2.86

Cell cycle 4 23 1.30E−07 4.01

Chemical induced gene expression 3 37 1.37E−07 2.80

Chemokines 2 16 1.61E−07 5.65

Dyslipemia 1 14 1.75E−07 6.57

DE genes expressed in Lean 3 10 4.35E−07 9.56

Zika virus associated mDCs response 1 23 4.37E−07 3.74

Vesicular traffic 1 31 4.60E−07 2.98

DE genes expressed in Insulin sensitive individuals 1 31 4.60E−07 2.98

Protein Metabolism 2 32 4.60E−07 2.92

Non-genotoxic 1 35 4.60E−07 2.75

Hepatocarcinogens 1 35 4.60E−07 2.75

Liver-based in vitro models 1 35 4.60E−07 2.75

Astrocytes 2 13 7.52E−07 6.34

DE genes expressed in Healthy 11 70 9.81E−07 1.90

Olive oil induced gene expression 3 17 1.08E−06 4.61

Weight associated gene expression 10 30 1.12E−06 2.91

Transport 3 15 1.18E−06 5.19

Diet intake: Olive oil 2 16 1.19E−06 4.85

Diet intake: Low calorie diet 4 41 1.30E−06 2.40

Pro-inflammatory response 1 12 1.39E−06 6.58

Regulatory T cells 2 26 1.39E−06 3.17

Immunopathology 2 26 1.39E−06 3.17

Helminth Infection 2 26 1.39E−06 3.17

Tumor tissue vs Non tumor tissue in Non-smoker vs 
Smoker 3 34 1.41E−06 2.66

Fusobacterium nucleatum 3 14 1.45E−06 5.46

Oral pathogen 3 14 1.45E−06 5.46

Diffuse large B-cell lymphoma 1 14 1.54E−06 5.42

Germinal center B-cell 1 14 1.54E−06 5.42
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Gene modules Number of modules Number of DE genes padj Fold enrichment

DNA repair 1 14 1.54E−06 5.42

Genomic stability 1 14 1.54E−06 5.42

Prostaglandin metabolism 1 10 3.94E−06 7.39

DE genes expressed in Low calorie diet 1 10 3.94E−06 7.39

Epithelial barrier integrity 1 11 3.94E−06 6.54

Cilia beat activity 1 11 3.94E−06 6.54

Cytoskeletal function 3 49 4.67E−06 2.09

Oxidant-related 2 12 2.20E−05 5.00

Diet intake: Dietary energy restriction 3 51 2.20E−05 1.94

Echovirus-30 1 18 2.49E−05 3.44

Blood‚ÄìCerebrospinal Fluid Barrier 1 18 2.49E−05 3.44

Polar Infection 1 18 2.49E−05 3.44

Adenocarcinoma 2 29 3.16E−05 2.49

Human papillomavirus 2 11 4.65E−05 5.06

Zika virus induced B cell response 1 19 6.29E−05 3.09

Zika virus associated B cell response 1 19 6.29E−05 3.09

Ulcerative colitis 1 14 9.73E−05 3.75

Crohn’s disease 1 14 9.73E−05 3.75

Jurkat cells gene expression 1 14 9.73E−05 3.75

Viral infection 19 141 1.10E−04 1.37

T effector cells 2 22 1.28E−04 2.67

Helminth infection 2 22 1.28E−04 2.67

Before vs After diet intake 7 38 1.45E−04 2.01

Cell growth 7 22 1.66E−04 2.62

Innate Immunity 5 116 3.50E−04 1.39

Xenobiotic metabolism 4 27 3.92E−04 2.22

Bacterial infection 4 27 4.44E−04 2.20

DNA Methylation 5 18 4.82E−04 2.72

Energy restriction associated gene expression 2 44 4.91E−04 1.80

Pack-years: Above 40 2 10 1.14E−03 3.75

Gene expression induced due to fasting 3 11 1.36E−03 3.40

Diet intake: Fasting 3 11 1.36E−03 3.40

Type 2 Diabetes 5 19 1.47E−03 2.38

Maternal cigarette smoking 2 25 2.60E−03 2.01

Immune reposne 2 89 3.69E−03 1.37

Dendritic cell maturation 2 89 3.69E−03 1.37

Newcastle disease virus 2 89 3.69E−03 1.37

Cell-adhesion 3 28 4.32E−03 1.85

Diet intake vs Control 17 34 4.93E−03 1.71

Viral responses 4 18 5.73E−03 2.16

Hematopoiesis 2 22 8.83E−03 1.91

Zika virus associated CD8T cell response 1 13 1.22E−02 2.31

Calorie restriction effect on old vs young 1 25 1.33E−02 1.75

Vascularization 1 21 1.41E−02 1.85

Host susceptibility 2 16 2.10E−02 1.95

Macrophage activation 2 16 2.10E−02 1.95

Inflammatory diseases 2 16 2.10E−02 1.95

Plasma insulin level 5 12 2.21E−02 2.19

Pathogen sensing 6 22 2.31E−02 1.72

Antimicrobial defense 6 22 2.31E−02 1.72

Supression of T cell activation 6 22 2.31E−02 1.72

Enhanced bactericidal activity 6 22 2.31E−02 1.72

Inhibition of granuloma destruction 6 22 2.31E−02 1.72

HIV-1 infection 9 32 3.48E−02 1.49

Plasmodium falciparum 1 18 3.91E−02 1.72

Malaria 1 18 3.91E−02 1.72
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Data availability
The E.PATH is freely available at https://​github.​com/​Ahmed​Mehdi​Lab/E.​PATH.

Code availability
The R package (E.PAGE) to process E.PATH is available as an R package is openly available at https://​github.​
com/​Ahmed​Mehdi​Lab/E.​PAGE.
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