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Learning complex dependency 
structure of gene regulatory 
networks from high dimensional 
microarray data with Gaussian 
Bayesian networks
Catharina E. Graafland* & José M. Gutiérrez

Reconstruction of Gene Regulatory Networks (GRNs) of gene expression data with Probabilistic 
Network Models (PNMs) is an open problem. Gene expression datasets consist of thousand of genes 
with relatively small sample sizes (i.e. are large-p-small-n). Moreover, dependencies of various orders 
coexist in the datasets. On the one hand transcription factor encoding genes act like hubs and regulate 
target genes, on the other hand target genes show local dependencies. In the field of Undirected 
Network Models (UNMs)—a subclass of PNMs—the Glasso algorithm has been proposed to deal with 
high dimensional microarray datasets forcing sparsity. To overcome the problem of the complex 
structure of interactions, modifications of the default Glasso algorithm have been developed that 
integrate the expected dependency structure in the UNMs beforehand. In this work we advocate 
the use of a simple score-based Hill Climbing algorithm (HC) that learns Gaussian Bayesian networks 
leaning on directed acyclic graphs. We compare HC with Glasso and variants in the UNM framework 
based on their capability to reconstruct GRNs from microarray data from the benchmarking synthetic 
dataset from the DREAM5 challenge and from real-world data from the Escherichia coli genome. We 
conclude that dependencies in complex data are learned best by the HC algorithm, presenting them 
most accurately and efficiently, simultaneously modelling strong local and weaker but significant 
global connections coexisting in the gene expression dataset. The HC algorithm adapts intrinsically to 
the complex dependency structure of the dataset, without forcing a specific structure in advance.

The reconstruction of Gene Regulatory Networks (GRNs) of gene expression data is an open problem and has 
attracted great deal of interest for decades. GRNs model interaction structure of genes in a network and are 
important to understand the biological functions in living organisms as well as the regulation of diseases in 
them. The increasing availability and improved systematic storage of gene expression data obtained with DNA 
 microarrays1 revolutionized the incorporation of mathematical and computational models to model GRNs in 
the past two  decades2–4. Mathematical models range from more complex models relying on sets of differential 
equations that directly describe dynamic changes in  GRNs5,6 to simpler models that describe GRNs building on 
a graph presentation (graphical models or network models). The latter attract attention due to their capacity of 
visualization of the complex interaction structure of microarray data in a graph. The most simple and widely 
used example of a graphical model are pairwise correlation  networks7, but lately more advanced Probabilistic 
Network Models (PNMs) that make use of machine learning algorithms to comprehensively model conditional 
and/or partial dependencies have gained in popularity.

One of the first applications of PNMs to reconstruct GRNs was done two decades ago in a seminal  work8 
using Bayesian Networks (BNs)—a subclass of PNMs relying on directed acyclic graphs— to analyze S. cerevisiae 
cell-cycle measurements using two approaches: multinomial BNs and Gaussian BNs. The former relies on dis-
crete data and therefore requires the discretization of continuous microarray data; the latter can directly handle 
continuous microarray data assuming a multivariate Gaussian distribution function. However, the subsequent 
use of BNs in this field has mainly focused on adapting and improving algorithms for multinomial  BNs8–12, while 
the application of Gaussian BNs have been left untreated (with some exceptions in a comparison  study13). The 
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Gaussian case though has been widely investigated in the subclass of PNMs that relies on undirected graphs, 
i.e., Undirected probabilistic Network Models (UNMs, also known as undirected Markov random fields or 
pairwise Markov networks)14. The most outstanding algorithm of the past decade to learn Gaussian UNMs was 
first applied on cell-signaling data from  proteomics15. This algorithm is called the Graphical lasso (Glasso) and 
estimates the inverse covariance matrix, also concentration or precision matrix, of the Gaussian distribution 
function. It was successfully applied in the high dimensional setting of gene interaction  networks16,17 and in 
network clustering in  bioinformatics18, but also in psychology  networks19, risk  management20,21, and  climate22.

The application of Gaussian UNMs to continuous microarray data has faced two main challenges. First, the 
large-p-small-n nature of the data. Microarray experiments contain expression levels of thousands of genes at 
the same time, but have relative small sample size. Glasso deals with high dimensional data by imposing sparsity 
on the precision matrix and thus on the undirected graph. Secondly, degrees of interaction among genes in gene 
networks are not uniform, but higher order. In GRNs, Transcription Factor encoding genes (TFs) regulate the 
expression of many target genes. However, only a few genes encode TFs, which can be seen as gene  hubs23,24 that 
confer GRNs with scale-free network characteristics, as suggested by previous research on the degree distribution 
of  GRNs25. Numerous modifications of the Glasso algorithm distribution have been proposed in recent years to 
better model this complex structure of interactions in microarray data (and other real-world datasets). Two of 
them were developed especially for gene regulatory networks that are expected to be scale-free26 or to consist of 
 hubs27. We will refer to them as the Scale-Free Glasso (SFGlasso) and the Hub Glasso (HGlasso). Both modifica-
tions of the Glasso algorithm force beforehand the expected structure in the estimation of the precision matrix 
and were shown to outperform Glasso on simulated data that had these characteristics.

As an alternative, in this paper we build on the initial work using Bayesian  Networks8 and propose the use of 
Gaussian Bayesian Networks (GBNs) to address the complex structure problem in GRNs. Our motivation stems 
from a recent paper showing the suitability of GBNs for modelling the complex (hub) interaction structure in 
complex high dimensional data, revealing the underlying probabilistic  backbone28. Here we use the score-based 
Hill Climbing (HC) GBN learning algorithm used in that work, which shows good performance when compared 
with other GBN learning  algorithms29, and assumes no specific structure beforehand. We compare HC with the 
default approach for learning sparse UNMs, the Graphical lasso (Glasso) and with its modifications SFGlasso and 
HGlasso using two different datasets. On the one hand, we use simulated data from an in silico gene regulatory 
network allowing for a comprehensive evaluation of the algorithm. On the other hand, we use (the most-up-to 
date version of) the  dataset30 from the Escherichia coli (E. coli) genome, which is entitled to be the best known/
encoded organism on earth and from which information on TFs is well documented.

This simultaneous study and intercomparison of direct and undirect structure learning algorithms for high 
dimensional complex data is, to our knowledge, new. First, we place the algorithms in the broader perspective 
of PNMs and analyse their learning method, the statistical criterion and form of presentation (directed or undi-
rected network). We then evaluate the algorithms in terms of accuracy and data explanation capabilities, paying 
attention to the compactness and sparsity of the learned networks and to the truthful balancing of dependencies 
of different orders.

Results
BNs and PNs in the general framework of Gaussian probabilistic network models. Gaussian 
probabilistic network  models31 consist of graph and parameterset. The parameterset fully determines the asso-
ciated Gaussian Joint Probability Density (JPD) function. The type of parameterset determines the presenta-
tionform of the graphical model, i.e. the ‘meaning’ of the edges in the graph. A Gaussian JPD function can be 
determined by different types of parametersets such as the covariance matrix (�) , its inverse, the precision or 
concentration matrix (�−1) , or linear regression coefficients in combination with local variation coefficients 
(β , ν) . Figure 1 shows two learning methods and their associated presentationforms of the Gaussian JPD func-
tion: Precision Networks or pairwise Markov networks (PN (�−1) ) and Bayesian Networks (BN (β , ν) ). In this 
study we leave out the analysis of correlation networks that rely on the (�) presentation generally generated 
from a thresholded sample correlation matrix, because they cannot properly regulate high dimensional data. 
We refer the interested reader to Graafland et al.28 for an extensive comparison study between BNs and cor-
relation networks. The representations of the Gaussian JPD function in terms of (�−1) and (β , ν) are described 
in “Methods” section “Gaussian probabilistic network models” and subsections “Probabilistic PN models” and 
“Probabilistic BN models”.

As illustrated in Fig. 1, the algorithms under subject of study, Glasso (and modifications) and Hill climbing, 
differ in the parameterset (and hence the presentationform) they have as an objective to learn. They do however 
coincide on their machine learning spirit; both algorithms attempt to find a parameterset that optimizes a score 
function in which a statistical criterion (penalization) is integrated. The score functions and their statistical 
criteria are described in more detail in “Methods” sections “Learning PN structure from data” and “Learning 
BN structure from data”. Learning methods (the steps in the algorithms) are chosen to efficiently execute this 
optimization task and are described in “Methods” section “Learning with hill climbing and glasso”. In the case of 
Hill Climbing the search space is restricted to that of Directed Acyclic Graphs (DAGs) and in the case of Glasso 
to that of symmetric positive definite precision matrices, which, converted to binary format, are translated into 
undirected graphs. These constraints procure that the edges in the networks respectively are associated with the 
regression coefficients β in the (β , ν) parametrization of the JPD function and with the entries of the precision 
matrix �−1 in the (�−1) parametrization.

Once learned, a PNM is in general not bound to its initial parametrization/presentationform. At some cost, 
an analytical transformation of the parameterset can transform the presentationform of the PNM. In Fig. 1 the 
purple arrow represents a direct transformation between parametersets from BNs to PNs for which an analytical 
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formula exists. The analytical transformation is described in “Methods” section “Transformation of probabilistic 
BN model to probabilistic PN model”. The transformation makes the initial BN loosing some information on its 
independency structure (see how the graphs of BNs and PNs encode independence statements about the JPD 
function in “Methods” section “Dependencies in BN and PN structure”), but allows us to compare Hill Climbing 
and Graphical lasso under the same UNM framework.

Data, reference networks and algorithm settings. In this study we use two gene expression data-
sets, a synthetic benchmark dataset and a real-world dataset. The former is a gene expression dataset generated 
from an in silico network provided in one of the DREAM (Dialogue on Reverse Engineering Assessment and 
Methods) challenges (https:// dream chall enges. org). DREAM is a community-driven initiative to promote open, 
reproducible, and collaborative scientific research in biomedicine, supplying challenges that address a broad set 
of questions in healthcare and the life sciences. A significant part of the challenges is oriented to train machine 
learning models that could predict gene expression from sequences. The in silico network in the DREAM5 
challenge consists of a total amount of 1548 genes of which 178 genes encode TFs and count as the origin of all 
transcriptional regulation interactions. Since all interactions go from TF encoding genes to target genes, the in 
silico network is by nature a directed network consisting of 4012 edges (unique interactions) without self-loops. 
This gold standard was used to generate a simulated gene expression dataset (with sample size n = 805 ) using 
the Gene Net  Weaver32, including random expression levels for 95 additional genes (17 decoy TFs and 78 decoy 
target genes).

The real-world dataset is constructed from two public available datasets for the Escherichia coli (E. coli) 
genome. On the one hand we use the E. coli microarray dataset that is available from the Many Microbe Micro-
arrays database (M3D)1. This dataset contains the uniformly normalized expression levels of 4297 genes in E. 
coli measured under 466 experimental conditions using Affymetrix arrays. Expression levels from the same 
experimental conditions are averaged and their mean expression provides one of the 466 sample points in the 
dataset. In particular we use the latest version at this moment: E_coli_v4_Build_6. On the other hand, a reference 
network to evaluate the learned PNMs is constructed from a dataset containing evidence about transcriptional 
regulations (i.e. interactions that arise from TF encoding genes and their target genes). For the E. coli genome, a 
number of studies generated information on transcriptional regulations. The Regulon Data Base (RegulonDB) 
is the primary  database33 in which this information is gathered. We use the most complete file in the RegulonDB 
called network_tf_gene.txt.

We quire the algorithms to construct networks using only the expression levels in M3D of the 1683 genes 
from which evidence is reported in the RegulonDB. The known interactions in the RegulonDB will then really 
act like a reference network that enables us to evaluate the accuracy of the learned GRNs from the microar-
ray data. A similar strategy is applied  in30. The RegulonDB network has similar characteristics as the in silico 
network in DREAM5. However, in contrast to the in silico network, the RegulonDB network is not ‘perfect’, i.e. 
there are ‘false negatives’ in the gold standard due to undiscovered relationships. The 1683 genes in the reduced 
M3D dataset contain a total of 173 TF encoding genes of which 172 count as the origin of all transcriptional 
regulation interactions in the reference network. Together they are good for 3381 unique interactions without 

Figure 1.  Schematic illustration of the presentationforms of Gaussian probability density function P in terms 
of conditional parameters (β , ν) and precision matrix (�−1) , associated with Bayesian Networks (BNs) and 
Precision Networks (PNs), respectively. Brown and red arrows refer to the associated learning algorithms 
(brown; score-based Hill Climbing algorithm, red; Graphical lasso) together with the type of integrated 
statistical criterion ( l0 or l1 penalization). The purple arrow refers to the analytical transformation of the 
parameterset from BNs (learned with Hill Climbing) to PNs.

https://dreamchallenges.org
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self-loops. As interactions go from TF encoding genes to target genes, the reference RegulonDB network is by 
nature a directed network.

The number of edges that is needed to construct a PNM from the microarray dataset plays an important role 
in the quality and the practical possibilities of a structure learning algorithm. With this in mind we generate 
networks of different sizes for all algorithms. To vary the amount of edges |E| we vary the initial parameters � , and 
�1, �2, �3 , and α for Glasso, HGlasso, and SFGlasso, respectively (see “Methods” section “Learning PN structure 
from data”). For Hill Climbing we obtain networks of different amount of edges by varying the amount of itera-
tions while using the standard BIC score (an action that give similar results as application of the BICγ score and 
varying the parameter γ29). The directed BNs learned by Hill Climbing are transformed to UNMs for evaluation. 
This process, described in “Methods” section “Transformation of probabilistic BN model to probabilistic PN 
model”, has a small penalty (extra, unnecessary parameters/edges will be added), but allows for a fair comparison 
with other algorithms (SF-, H- and Glasso) as the transformed edges will encode the same type of parameters.

Results for in silico benchmark network in DREAM5. We first assess the performance of the algo-
rithms using the amount of True Positive edges (TPs) according to the benchmark in silico network. To this aim, 
an undirected edge in the learned network is a TP if there exists an associated directed edge in the in silico net-
work. Moreover, the amount of connected Transcription Factors (TFs) in the estimated network is measured as 
an indication of the hub structure of the learned networks. These measures are analyzed as a function of the net-
work size |E| to assess the capability of the methods to produce accurate, though compact and sparse networks.

Figure 2 shows the results on TPs and TFs with respect to the number of total estimated edges |E| for networks 
learned with the four algorithms. The dots indicate the amount of TPs and the dot labels, in the form of numbers, 
indicate the amount of TFs found in the corresponding network. This figure shows that the UNMs obtained with 
HC exhibits the best results (highest amount of TPs and TFs) for sparse networks up to 3000 edges. The biggest 
gain of TPs with respect to the amount of edges |E| occurs in the range from 500 to 1500 edges. In this range also 
the amount of recovered TFs is highest (more than 10 new TFs per 100 added edges). This simultaneous increase 
of TPs and TFs is intuitive as all 4012 edges in the in silico network consist of at least one TF. The standard Glasso 
algorithm recovers less TP edges than HC in sparse networks, with recovering rates particularly lower than HC 
in the range of 500–1500 edges; this could be related to the fact that in this range Glasso only recovers between 1 
and 5 new TFs per 100 edges. In bigger networks consisting of more than 3000 edges the amount of TPs exceeds 
HC values. Note that all Glasso variants exhibit a similar performance as the standard Glasso. However, their 

Figure 2.  True positives (dots) and amount of transcription factors (numbers) w.r.t. the networksize |E| 
as encountered from the in silico dataset by HC (purple), Glasso with � ∈ {0.98, 0.6} (red), HGlasso with 
�1 = �2 ∈ {0.98, 0.6} , �3 = 10 (green), HGlasso with �1 = 0.9 , �2 ∈ {0.61, 0.55} , �3 = 14 (orange), HGlasso 
with �1 ∈ {0.98, 0.6} , �2 = 0.95 , �3 = 7 (grey), and SFGlasso with α ∈ {0.43, 0.3} (blue). The inset shows the 
precision vs the recall values for HC and Glasso with numbers indicating the network size; note that the the 0.1 
recall value is indicated with a dashed line.
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search strategy is clearly different: the TPs of SFGlasso are originated by less TFs than Glasso, whereas the TPs 
of HGlasso are originated by more TFs than Glasso.

In addition to this analysis, we also evaluate learned networks using their precision and recall. The precision 
of a network shows how many of the predicted TF–target-gene links (edges in the learned network) are true 
positives (relative to all predicted positives), whereas the recall shows the rate of TPs relative to the total amount 
of positives. The use of the Precision-Recall curve (PR-curve) is in concordance with the methodology used in 
DREAM5 (see “Methods” section “Evaluation measures” for the formal definition of these measures). To bench-
mark our results in the framework of the DREAM5 challenge, we eliminated all links between two target-genes 
from the networks’ edgelist before calculating their precision and recall. Note that participants in DREAM5 
were provided with the names of the TFs in the set of genes and algorithms in DREAM5 were queried to search 
only for TF–target-gene relationships in the gene expression data; in this work we quire the algorithms to learn 
PNMs consisting of undirected edges in which, despite TF–target-gene relationships, also target-gene–target-gene 
dependencies are included. These edges are found in gene expression data due the existence of co-regulated genes 
by the same  TFs2. The inset of Fig. 2 displays the PR-curve for the HC and Glasso algorithms. Each network in 
the curve is labeled with its associated amount of retrieved (predicted positives) TF–target-gene relationships. 
The figure shows a trade-off between precision and recall for all learned networks. For a recall below 10%, HC 
finds sparse networks of high precision (i.e. much qualitative information in sparse networks). On the other 
hand, Glasso finds networks of lower precision for a recall below 10%, but shows a steadier decay in precision 
for recall above 10%. Variants of Glasso behave equally to Glasso and are not displayed in the inset.

Although many GRN inference algorithms that participated in DREAM5 used (lasso) regression techniques, 
none of these methods are comparable to Glasso and HC algorithms used in this work, because they mainly 
focus on the regression of TFs on individual target genes. HC and Glasso perform in the top 15 network infer-
ence methods used in DREAM5 for recall values below 10% as judged by Fig. S3a of Supplementary Note  42. 
This benchmarking is not perfect, as our algorithms did not receive information about the TFs in advance and 
are therefore at a disadvantage compared to the algorithms that participated in DREAM5.

Results for real-world gene expression data. The evaluation results for the in silico network highlight 
HC as an promising exploratory algorithm (finding sparse networks of high precision for recalls below 10 per 
cent), whereas Glasso and variants seem to have less exploratory ability (exhibiting lower precision for sparse 
networks) but to perform more steady after an initial exploration phase (medium precision for networks of grow-
ing size and higher recall). In this section we evaluate the algorithms on real-world M3D data using evaluation 
measures chosen in alignment with the nature of real-world datasets and the focus of this work: complex gene 
expression datasets of low sample size without background knowledge on which we want to chart the explora-
tory capability of the algorithms. We do not consider false positives in this case (and thus do not consider the 
PR-curve) since the networks are learned from gene expression data that also contain target-gene–target-gene 
dependencies that might not be in conflict with the evidence in the true network due to the existence of genes co-
regulated by the same TFs. As these dependencies are not reported in the true network, they would be regarded 
as false positives, although they might be correct. Moreover, in the case of real-world data, the algorithms may 
discover new TF–target-gene interactions that are currently missing in the gold standard. Again, these depend-
encies would be regarded as false positives. This problem has been already discussed in the  literature2 suggesting 
to use the false positive and true negative measures with caution for this reason.

Similarly to the previous analysis for the in silico dataset, Fig. 3 shows the results on TPs and TFs for the 
RegulonDB with respect to the number of total estimated edges |E| in the network for the four algorithms. Dots 
indicate the amount of TPs and the dot labels, in the form of numbers, indicate the amount of TFs found in the 
belonging network. Figure 3 shows that the UNMs obtained with HC contain the highest amount of TPs and TFs 
for sparse networks up to 5000 edges. The biggest gain of TPs with respect to the amount of edges |E| occurs in 
the range from 1000 to 1800 edges. In this range also the amount of recovered TFs is highest (around 20 new TFs 
per 100 added edges). The standard Glasso recovers less TP edges than HC in sparse networks. The recovering 
rate is especially low with respect to HC in the range of 1000–1800 edges and is probably related to the fact that 
in this range Glasso only recovers between 1 and 2 new TFs per 100 edges. Similarly to the case of the in silico 
dataset, the amount of TPs found with Glasso exceeds HC values for big networks (consisting of more than 5000 
edges). In the discussion we consider in more detail the strategy of Glasso and HC to discover TPs.

In contrast to the in silico network, Glasso and variants discover relatively few TFs in sparse networks. Moreo-
ver, the Glasso variants do not all perform equally well with respect to the evidence of the RegulonDB network. 
The performance of HGlasso (and whether it can outperform Glasso or not) depends on the network size and 
the combination of the values of the parameters �1, �2 , and �3 . Take for example the combination �1 = 0.9 , �2 
= variable, and �3 = 14 (orange dots). These networks consist of more TFs than standard Glasso networks, but 
less TPs are found. The impact of the relaxed penalty term in the score function for hubs is thus visible, but not 
realized through the caption of more TPs by the HGlasso algorithm. The best results of HGlasso are obtained with 
�1 = variable, �2 = 0.95 , and �3 = 7 (grey dots); medium networks (up from 3000 edges) with these parameters 
not only consist of more TFs, but also outperform the standard Glasso on TPs. Finally, we see that SFGlasso 
performs worse than the Glasso and HGlasso on both the amount of TPs and TFs. The discovery rate of TFs is 
slow and, in case of real-world data, this results in few added TPs. It seems that the power-law degree distribu-
tion imposed by the SFGlasso algorithm does not fit well to the dependency structure determined by TFs in the 
M3D microarray data.

The difference in sample size (n = 805 for in silico and n = 466 for RegulonDB) and/or the difference in 
underlying dependency structure of the in silico and RegulonDB could have caused the differences in behaviour 
of Glasso algorithms on the two datasets. Note that, in the end, data is our principle resource for analysing new 



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18704  | https://doi.org/10.1038/s41598-022-21957-z

www.nature.com/scientificreports/

unknown gene regulatory networks. This type of resource brings forward the need for computational methods 
that can extract a generalizable model from (a single) realisation(s) and, at the same time, faithfully reveal the 
various emergent phenomena like co-expression, that are relevant in the system.

To chart networks on their data information content, in the next, we implement a simple probabilistic evalu-
ation measure that appreciates faithfulness of algorithms to observational data sources. We measure the relative 
probabilistic accuracy of a single learned UNM with respect to another learned UNM by their difference in 
log-likelihood. The log-likelihood quantifies how well the model explains the data in terms of the likelihood of 
the available data given the particular probabilistic model (see “Methods” section “Log-likelihood definition 
and calculation”). Figure 4 displays the log-likelihood of the networks versus the amount of total links in the 
networks. In the case of Gaussian PNMs the number of parameters in the probabilistic model grows linearly in 
function of the amount of edges. Hence, the log-likelihood relative to the number of edges of Gaussian PNMs 
also provides information on models’ parsimony. For easy comparison with Fig. 3, we again placed the number 
of integrated TFs as dotlabels.

Figure 4 shows that the log-likelihood curve of HC rapidly improves until 2000 edges and establishes between 
2000 and 7000 edges. Note that the same is true for the number of found TFs, growing rapidly until 2000 edges, 
reaching 153 TFs, and than slowing down until 7000 edges, reaching the total amount of 173 TFs. The true posi-
tives curve in Fig. 3 also begins to flatten around 2000 edges. Hence, in the case of HC, the validation measures 
TPs and TFs can be directly associated with the amount of information that is extracted from the microarray 
data and captured in the network.

In the case of H-, SF-, and Glasso the relation between log-likelihood and evaluation measures is more com-
plex. The Glasso log-likelihood curve remains far apart from the HC curve for small and medium networks. 
From Fig. 3 we learn that Glasso values of evaluation measures finally approach HC values when including more 
and more edges. Figure 4 illustrates that this is not true (or in any case not true for regularized networks) for log-
likelihood values. In the discussion we go into the relation between log-likelihood and TPs for Glasso and HC.

All HGlasso networks score better on log-likelihood values than the standard Glasso. For HGlasso networks 
that improve Glasso networks on TPs (e.g., HGlasso networks up from 3000 edges with �2 = 0.95 and �3 = 10 ; 
grey dots) this betterment is even more pronounced. Still, however, HC log-likelihood values are not reached 
neither at small nor at medium edge size by the adapted HGlasso algorithm. Similar to the case of TPs, SFGlasso 
scores worse than Glasso on log-likelihood values for small to medium networksizes. We do observe that the 
more edges are added to the SFGlasso network, the closer log-likelihood values become to Glasso values.

Illustration of network structure. To illustrate the above results on the performance of the methods, we 
zoom into a part of the reference RegulonDB network that contains the two TF encoding genes hyfR and fhlA—

Figure 3.  True positives (dots) and amount of transcription factors (numbers) w.r.t. the networksize |E| as 
encountered from the M3D microarray dataset by HC (purple), Glasso with � ∈ {0.98, 0.6} (red), HGlasso with 
�1 = �2 ∈ {0.98, 0.6} , �3 = 10 (green), HGlasso with �1 = 0.9 , �2 ∈ {0.61, 0.55}, �3 = 14 (orange), HGlasso 
with �1 ∈ {0.98, 0.6} , �2 = 0.95, �3 = 7 (grey), and SFGlasso with α ∈ {0.43, 0.3} (blue).
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there is a similar performance in other portions of the network—and we compare with the networks learned 
from M3D with the four structure learning algorithms. Panel (a) in Fig. 5 shows the two TF encoding genes hyfR 
and fhlA (coloured in red) and their direct neighbours in the RegulonDB network (among the direct neighbours 
are three other TFs that are also colored in red: crp, fnr and nsrR).

The RegulonDB is a directed network and symmetric dependencies that could exist between children of hyfR 
and/or fhlA due to their common parent are not documented in the RegulonDB and hence are not displayed in 
panel (a). Panels (b–e) show the same subset of nodes as panel (a) and form part of networks that are learned 
from M3D by respectively HC, Glasso, HGlasso, and SFGlasso. These networks are all (converted to, in the 
case of HC) UNMs in which edges are undirected and represent direct dependency between two variables (the 
edges represent non zero entries in the symmetric precision matrix). The exact encoding of dependencies in the 
networks is described in the “Methods” section “Dependencies in PN”. The grey nodes indicate genes that are 
integrated in the network and red edges indicate edges that find their direct counterpart in the reference network 
in panel (a), i.e. edges that are denominated TPs. The edge-labels display the weight of the edges, the estimated 
partial variation. In panel (d) blue edges and blue vertex closure indicate edges and vertex that are included in 
the HGlasso network but not in the Glasso network in panel (c) of similar size, whereas grey edges and black 
vertex closures indicate edges and vertices that exist in both networks.

The results in the above subsections are illustrated in the subnetworks. In a sparse network, Hill Climbing 
(panel (b)) discovers both TF encoding genes, hyfR and fhlA and with them two TP edges between respectively 
hyfR and hyfJ and fhlA and hypE. Glasso, HGlasso, and SFGlasso (panels (c)–(e)) discover only one TF, hyfR, 
and find one TP related to hyfR.

Despite finding the most TPs, HC also discovers the most unique child–child dependencies between the 
target genes that are regulated by the transcription factors HyfR and FhlA. Child–child dependencies are not 
considered as TPs in the RegulonDB network, but do improve quality of UNM network structure. For exam-
ple, the community {hyfA, hyfB, . . . , hyfJ} and the TP between hyfR and hyfJ can be an indication that the set 
{hyfA, hyfB, . . . , hyfJ} \ {hyfJ} is also progeny of HyfR.

Glasso finds less variety of child–child dependencies between nodes that are regulated by HyfR and FhlA. 
Instead, the sub groups of children are interconnected with more edges between them. These edges are probably 
true, but, from an information theoretic perspective, are redundant in the sense that they lower entropy of the 
community structure in the network (see  also28). Moreover, the values of the parameters, the partial variation, 
in Glasso differ in magnitude with the values of the parameters in HC. The low partial variation as estimated by 
(H)Glasso lower log-likelihood values with respect to HC. In the discussion we come back to the estimation of 
the magnitude of the parameters and its impact on log-likelihood values.

In panel (d), HGlasso improves the network structure with respect to Glasso with an additional connected 
gene hyfG while using the same amount of edges. Also, parameter estimation seems more accurate as HGlasso 

Figure 4.  Log-likelihood values (dots) and amount of transcription factors (numbers) w.r.t. the networksize |E| 
as encountered from the M3D microarray dataset by HC (purple), Glasso with � ∈ {0.98, 0.6} (red), HGlasso 
with �1 = �2 ∈ {0.98, 0.6} , �3 = 10 (green), HGlasso with �1 = 0.9 , �2 ∈ {0.61, 0.55} , �3 = 14 (orange), 
HGlasso with �1 ∈ {0.98, 0.6} , �2 = 0.95 , �3 = 7 (grey), and SFGlasso with α ∈ {0.43, 0.3} (blue).
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includes higher partial variation values. In general, the inclusion of more significant edges (for some combina-
tions of �1, �2, �3 ) and more precise parameter estimation alter the log-likelihood values of HGlasso with respect 
to Glasso, showed in Figs. 3 and  4.

The SFGlasso in panel (e) on the other hand excludes four more genes than the Glasso. Not many dependen-
cies are found in this part of the sub network. Thereby, the estimation of parameters is worse in this part of the sub 
network. Partial variations are of even smaller magnitude with respect to Glasso. These results are in accordance 
with Fig. 3 showing that SFGlasso networks are less complete than (H)Glasso networks and with Fig. 4 showing 
that the least amount of information can be induced from SFGlasso networks.

Discussion
Our results on sparse and medium-size networks showed high log-likelihood values for HC with respect to the 
standard Glasso and its modifications. Moreover, the results for sparse networks (up to 5000 edges) show that 
the HC algorithm finds most interactions for which evidence exists (in the form of TPs). We first discuss the 
log-likelihood and TP results in the light of the topology of the learned networks and the score functions that 
are integrated in the algorithms. Then, we analyze the results of HC in the framework of two additional partial-
variation learning algorithms (SPACE and ESPACE) that are evaluated in the  literature30 using the same E. coli 
dataset and an similar evaluation procedure. Finally, we discuss some generalities about GBNs that are learned 
with HC and applied on high dimensional real-world  data28.

When analyzing log-likelihood values, we should first keep in mind that not all interactions that can be 
inferred from the M3D are equally informative and thus not contribute equally to the log-likelihood. It is intui-
tive that TF–target-gene interactions determine the backbone structure of the M3D data, whereas local interac-
tion structure between children of the same TFs is less informative with respect to the complete M3D database. 
Therefore, the HC algorithm produces network topologies that contribute to high log-likelihood values, finding 
relatively more TPs and much more TFs than Glasso and its modifications in sparse networks, and just enough 
links to determine local interaction structure. Secondly, accurate estimation of the incorporated parameters 

Figure 5.  Reference and estimated networks. Panel (a) is the part of the reference RegulonDB network 
that contains the two TF encoding genes hyfR and fhlA and their direct neighbours. Panel (b–e) are the 
corresponding sub-networks of networks that are learned with respectively HC, (H)Glasso, and SFGlasso. In 
panel (a) TF encoding genes are coloured in red. In (b–e) TF encoding genes are coloured in red only when 
included in the network and connected genes are coloured grey. Red edges in (b–e) have a direct counterpart in 
panel (a) (i.e. red edges are TPs). In panel (d) blue edges and blue vertex closure indicate edges and vertex that 
are included in the HGlasso network but not in the Glasso network of the same size, whereas grey edges and 
black vertex closures indicate edges and vertices that exist in both networks.
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(or the weight of the edges) alters log-likelihood values. The HC algorithm is able to accurately estimate the 
parameters, thanks to the l0 penalty used in the score function that only penalizes the amount of parameters and 
not their values. The l1 regularization in Glasso, on the other hand, while penalizing the amount of parameters, 
also penalizes their values and, thus, imposes a structural bias on the selected parameters in the Gaussian JPD 
function, resulting in inaccurate parameter estimation and substantially lower log-likelihood values. The score 
functions including l1 or l0 penalization are described in detail in “Methods” sections “Learning PN structure 
from data” and “Learning BN structure from data”.

The reasons for HC being more efficient than Glasso and modifications in sparse networks have to do with 
the integrated score functions and the steps in the learning algorithms. In every iteration, HC incorporates a 
parameter/edge maximizing the score function composed by the log-likelihood and the l0 penalization terms. On 
the one hand, there are only a few high informative links (from TFs) that alter the log-likelihood substantively. 
HC is designed to optimize log-likelihood with the minimum amount of parameters and, thus, includes first 
TFs and informative local links that enlarge communities. On the other hand, the Glasso score function includes 
the log-likelihood part and the l1 penalization term. Local links generally have a stronger direct correlation (see 
Fig. 5) and Glasso includes more of them, whether informative or uninformative, as local links ‘remain’ under 
application of the statistical criterion. More informative links between TFs and target genes have weaker direct 
correlation and in sparse networks Glasso shrinks those links to zero.

The differences in results between Glasso and modifications can be explained using similar arguments. Due 
to the adapted l1 regularization, HGlasso performs better on log-likelihood values than the standard Glasso 
for every combination of initial parameters �1, �2, �3 . The new score function alleviates the penalization on 
parameters that are related to hubs, resulting in higher log-likelihood values with respect to the standard Glasso. 
HGlasso, however, still depends heavily on �1 (the penalty term for non hubs) to introduce overall sparsity, and 
thus can not reduce the mean parameter bias sufficiently to reach HC values for small and medium networks. 
With respect to the measure of true positives, the performance of HGlasso (including whether it outperforms 
Glasso) depends on the combination of tuning parameters and on the network size. A successful combination 
of tuning parameters leads HGlasso to finding more TPs. These networks generally contain more TFs than the 
associated Glasso network. However, the incorporation of more TFs does not always lead to more true positives 
in the network. We found no standard method to discover combinations of initial parameters with which Glasso 
could be outperformed. Finding such a combination is a time consuming trial and error process.

The algorithm SFGlasso does incorporate a hub structure, but the networks generally contain less TFs than 
Glasso and the combinations of HGlasso. As resulting from the low log-likelihood values, the algorithm thus 
selects ‘wrong’ hubs and also places great bias on the estimates of informative links. These results may have to 
do with the poor adjustment of SFGlasso to high dimensional data. Generally, in scale-free networks, the coef-
ficient α in the power-law with which the degree distribution decays lies between 2 and 3. However, we had to 
reduce α to values below 0.5 as otherwise the resulting networks resulted empty. For α ≤ 1 the degree distribu-
tion is not generally well-defined and requires the existence of a maximum degree kmax to be normalizable. In 
this work we only display results obtained with two iterations of the algorithm, because using more than two 
iterations the Glasso algorithm took extraordinary long time to converge. In this sense, one must be careful with 
the interpretation of the power-law resulting from SFGlasso.

The analysis of HGlasso and SFGlasso with respect to Glasso shows that the intrinsic complexity structure of 
the complex system is not (fully) represented by their ad hoc procedure to impose a hub structure and a power-
law degree distribution in the network. Therefore, we can conclude that the GRN underlying E. coli is either 
not fully characterized by a power-law degree distribution and/or hub nodes or the algorithms fail to faithfully 
model these characteristics from high dimensional complex data.

Besides the standard Glasso and variants used in this paper, other advanced algorithms such as SPACE and 
 ESPACE30 have been been applied on an older version of the microarray data. The algorithm SPACE uses sparse 
covariance selection techniques and was especially designed for the large-p-small-n data in the framework of 
GRNs and for powerful identification of  hubs34. The ESPACE algorithm is an extension of the SPACE method 
and explicitly accounts for prior information on hub genes, which, in the case of E. coli data, yields knowing 
in advance that TFs are the highly connected nodes in the true E. coli GRN. We can loosely compare the HC 
algorithm with the performance of the algorithms SPACE and ESPACE. In particular, SPACE reports a precision 
of 4.35% in a network of 386 edges, and ESPACE reports a precision of 12.89% in a network of 349  edges30. In 
our work, HC shows a precision of 4.85% in a network of 350 edges. We may conclude with some precaution, as 
both M3D and the RegulonDB has been extended and updated meanwhile, that HC outperforms the exploratory 
algorithm SPACE, but can not compete with ESPACE that starts with prior information about the true hubs, i.e. 
information about the transcription factors.

Finally, the great power of HC when exploring E. coli data with unknown structure is that one can extract 
information of the true deterministic underlying network structure from every edge, as was illustrated at hand of 
the graphs in Fig. 5. The fact that no edge is redundant with respect to the dataset enables us to learn from every 
‘false’ positive edge, whereas in the case of Glasso and variants this is not true: not every edge is data-significant 
neither tells us more about the network structure. The same conclusion was drawn for high dimensional climate 
data for which we found that HC provided an informative community structure that can be analyzed well with 
centrality measures (i.e. betweenness centrality,  see28). The HC approach prioritizes an efficient edge distribution 
by favouring heterogeneous selection of edges between communities over uniform selection of edges that lie in 
communities. The resulting network topology allows for analysis with complex network measures; in the case of 
climate data these measures revealed spatially distant communities interconnected by teleconnections. Complex 
network centrality measures also have high potential applied on the PNMs learned with HC from real-world 
microarray data, especially when TF encoding genes are not known (i.e. no database similar to the RegulonDB 
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exists); in this case to reveal candidate TFs and distinguish regulatory interactions from target-gene–target-gene 
interactions.

Conclusions
The use of the Hill Climbing algorithm that arises in the context of Gaussian Bayesian networks offers a sound 
approach for the reconstruction of gene regulatory networks of high-dimensional-low-sample-size microar-
ray data when no initial information is at hand about the underlying complex dependency structure. The HC 
algorithm picks only the most significant dependencies from the Gaussian data and in this manner naturally 
includes the complex dependency structure of the complex GRN that may consist of hubs, a scale-free degree 
distribution, outliers, a combination of the former or of other real-world characteristics. The algorithm naturally 
leaves out uninformative dependencies and variables.

The Bayesian network can easily be transformed to an undirected Gaussian probabilistic network model (i.e. a 
Gaussian Markov network or precision network), paying the price of some loss of information on the independ-
ence structure with respect to its initial directed Bayesian network. If one prefers an undirected PNM over a 
directed PNM—for easy interpretation due to symmetric links or for sparse estimation of the inverse covariance 
matrix—this study shows that the transformation from BN to PN is worth this loss of information for sparse 
networks as the PNs obtained by Hill Climbing outperform PNs obtained by state of the art PN-structure learn-
ing algorithms when applied to high-dimensional-low-sample-size (microarray) data that contains an unknown 
complex dependency structure.

This conclusion is drawn with respect to state-of-the-art PN structure algorithms that arise in the context 
of undirected Gaussian network models: the Glasso algorithm and variants of Glasso that are developed to 
integrate complex dependency structure. These algorithms model unnecessary dependencies at the expense of 
the probabilistic information in the network and of a structural bias in the probability function that can only be 
relieved including many parameters. In the case of the E. coli gene expression data used in this work, unneces-
sary dependencies also go at the expense of the amount of true positive edges, the last as judged by a reference 
network compounded of evidence gathered in the RegulonDB.

Methods
Gaussian probabilistic network models. The term refers to the choice of a multivariate Gaussian Joint 
Probability Density (JPD) function to associate graph edges with model parameters in a given PNM, such that 
the probabilistic model encodes in the JPD function a large number of random variables that interact in a com-
plex way with each other by a graphical model. The multivariate Gaussian JPD function can take various repre-
sentations in which dependencies between the variables are described by different types of parameters. The best 
known representation of the Gaussian JPD function is in terms of marginal dependencies, i.e. dependencies of 
the form Xi ,Xj|∅ as present in the covariance matrix � . Let X be a N-dimensional multivariate Gaussian variable 
then its probability density function P(X) is given by:

where µ is the N-dimensional mean vector and � the N × N covariance matrix. In the following we describe 
in some detail two types of Gaussian PNMs, in which parameters reflect respectively direct dependencies 
Xi ,Xj|X\{Xi ,Xj} and general conditional dependencies Xi|S with S ⊆ X (direct dependencies are the least 
restrictive case of conditional dependencies).

Probabilistic PN models. The Gaussian JPD function in Eq. (1) can be formulated more generally using a 
set of factors � = {φ1(S1), . . . ,φk(Sk)} that describe dependencies between arbitrary (overlapping) subsets of 
variables S1, . . . ,Sk which comply with ∪kSk = X . This representation of the JPD is called the Gibbs function 
and written  as31

with

The Gibbs distribution where all of the factors are over subsets of single variables or pairs of variables is called 
a pairwise Markov network. The factors in a pairwise Markov network correspond to direct dependencies, i.e., 
dependencies of the form Xi ,Xj|X\{Xi ,Xj} . In a Gaussian distribution these dependencies are present in the 
inverse covariance matrix or precision matrix �−1 . The information form of the Gaussian JPD function in terms 
of the precision matrix � = �−1,

is equivalent to the Gibbs function in Eq. (2) with factors defined on every variable and every pair of variables, 
i.e. � = {�n,�e} with φn

i = exp{− 1
2 θiiX

2
i } and φe

ij = exp{θijXiXj}.
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The corresponding Gaussian PNM in which the notion of variables and pairs of variables is extended to 
the notion of nodes and undirected edges in a graph is called the probabilistic PN model. The graph of a PN 
encodes the probability function in Eq. (4) as follows. Each node corresponds to a variable Xi ∈ X , the presence 
of an edge Xi − Xj implies the presence of the factor φe

ij in P(X) and direct dependency of Xi and Xj . Moreover, 
the absence of an arc between Xi and Xj in the graph implies the absence of the factor φe

ij in P(X) and, thus, the 
existence of a set of variables S ⊆ X\{Xi ,Xj} that makes Xi and Xj conditionally independent in  probability31.

The graph structure of PNs in this work is estimated simultaneously with the values of the parameters in � 
that define this structure. This simultaneous learning process is explained in “Methods” section “Learning PN 
structure from data”.

Probabilistic BN models. Alternatively, the P(X) in Eq. (1) can be characterized with conditional depend-
encies of the form Xi|S with S ⊆ X . The representation of the JPD is then a product of conditional probability 
densities:

with

whenever the set of random variables {Xi|�Xi }i∈N is  independent35. In this representation N  is the normal dis-
tribution, µi is the unconditional mean of Xi , νi is the conditional variance of Xi given the set �Xi and βij is the 
regression coefficient of Xj , when Xi is regressed on �Xi . We call �Xi the parentset of variable Xi.

The corresponding Gaussian PNM in this case is the probabilistic BN model. The graph of a BN model is a 
DAG encoding the corresponding probability distribution as in Eq. (5). Each node corresponds to a variable 
Xi ∈ X , the presence of an arc Xj → Xi implies the presence of the factor Pi(Xi| . . .Xj . . . ) in P(X) , and thus 
conditional dependence of Xi and Xj . Moreover, the absence of an arc between Xi and Xj in the graph implies the 
absence of the factors Pi(Xi| . . .Xj . . . ) and Pj(Xj| . . .Xi . . . ) in P(X) and, thus, the existence of a set of variables 
S ⊆ X\{Xi ,Xj} that makes Xi and Xj conditionally independent in  probability31,36.

The graph structure of the BN identifies the parentset �Xi in Eq. (5). With this structure available, one easily 
learns the corresponding parameter set (β , ν) ; in our case parameters βij and νi are a maximum likelihood fit of 
the linear regression of Xi on its parentset �Xi . To estimate parameter values from graph structure we use the 
appropriate function in the R-package bnlearn37. The challenge of learning the graph structure is explained in 
“Methods” section “Learning BN structure from data”.

Learning PN structure from data. A Precision Network (PN) is learned with the help of a structure 
learning algorithm that estimates the inverse covariance matrix, i.e. the precision matrix �−1 of the underlying 
Gaussian distribution. Converted into binary format, the estimate � of �−1 provides the undirected adjacency 
matrix A of a pairwise Markov Network. From the adjacency matrix A of the graph of a PN the structure of the 
factor-set � = {�n,�e} of the associated Gaussian JPD function (outlined in Eq. (4)) can be directly read off. 
In the “Methods” section “Probabilistic PN models” is explained how pairwise Markov networks encode the 
corresponding Gaussian PNM.

The Graphical lasso (Glasso) can be regarded as the default structure learning algorithm learning PNs for 
large-p-small-n datasets. Glasso is a score-based algorithm based on a convex score. This score is basically made 
up by the maximum likelihood estimate of the precision matrix of a Gaussian probability function to which an 
l1 penalty term is  added15:

Here � = �−1 , S is the sample covariance matrix calculated directly from the data D and � a scalar, the penali-
zation coefficient. Networks of different sizes can be generated by varying the penalization parameter � . In this 
work we generate networks with zero edges to complete networks by varying � from 1 to 0. A short outline of 
the steps in the Graphical lasso algorithm is given in “Methods” section “Learning with hill climbing and glasso”. 
The Glasso function is implemented in the R-package glasso15.

The Hub Graphical lasso (HGlasso) learns a PN that consist of hub nodes combining a lasso ( l1 ) penalty 
and a sparse group lasso ( l2 )  penalty38. The estimated inverse covariance matrix � can be decomposed as 
� = Z + V + t(V) , where Z is a sparse matrix and V is a matrix that contains hub nodes. The belonging score is

(5)P(X1, . . . ,XN ) =

N
∏

i=1
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(6)P(Xi|�Xi ) ∼ N
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with � restricted to � = V + V
T + Z . In this score �3 controls the selection of hub nodes, and �2 controls the 

sparsity of each hub nodes’ connections to other nodes. We obtain networks of different sizes by varying �1, �2 , 
and �3 . The HGlasso function is implemented in the R-package hglasso38.

The Scale-Free Graphical lasso (SFGlasso) aims to include even more structural information than mere 
sparsity or  hubs26. Hubs are expected in this type of network but the focus lies on learning models that possess 
the so-called scale-free property; a property often claimed to appear in real-world networks. This feature is 
mathematically expressed by a degree distribution p(d) that follows a powerlaw: p(d) ∝ d−α (up from a certain 
degree d). In the score function of the standard Glasso, the l1 edge regularization is replaced with a power law 
regularization. The objective score function is:

with �¬i = {θij|j �= i} . This score function is not convex, a requirement to use Glasso, however can be proven 
to be monotone increasing. The score Score(�, S,α,β) is sequentially improved by elements of the sequence �n 
that iteratively maximize the following re-weighted convex l1 regularization problems:

where �ij = α( 1
��n

¬i�1+εi
+ 1

��n
¬j�1+εj

). This re-weighting reduces regularization coefficients of nodes with high 
degree, encouraging the appearance of hubs with high degree.

Following the set up in the experiment section of Ref.26 we take βi = 2α/εi and εi equal to θii estimated in the 
last iteration, in this way εi is of the same magnitude of ��n

¬j�1 . To optimize Eq. (10) and find �n+1 we iteratively 
use the glasso function in the R-package glasso with � = �(�n) , defined above.

Learning BN structure from data. The graph of a BN is estimated with the help of a structure learning 
algorithm that finds the conditional dependencies between the variables and encodes this information in a DAG. 
Graphical (dis)connection in the DAG implies conditional (in)dependence in probability (see “Methods” sec-
tion “Dependencies in BN”). From the structure of a BN a factorization of the underlying JPD function P(X) of 
the multivariate random variable X (as given by Eq. (5)) can be deduced. In the “Methods” section “Probabilistic 
BN models” is explained how networks can be extended to their corresponding probabilistic network model.

In general there are three types of structure learning algorithms: constraint-based, score-based, and hybrid 
structure learning algorithms—the latter being a combination of the first two algorithms.

Constraint-based algorithms use conditional independence tests of the form Test(Xi ,Xj|S ;D ) with increas-
ingly large candidate separating sets SXi ,Xj to decide whether two variables Xi and Xj are conditionally independ-
ent. All constraint-based algorithms are based on the work of Pearl on causal graphical  models39 and its first prac-
tical implementation was found in the Principal Components  algorithm40. In contrast, score-based algorithms 
apply general machine learning optimization techniques to learn the structure of a BN. Each candidate network 
is assigned a network score reflecting its goodness of fit, which the algorithm then attempts to  maximise41. In 
Ref.29 we compared structure learning algorithms belonging to the three different classes on accuracy and speed 
for high dimensional complex data. We found that score-based algorithms perform best. Algorithms in this class 
are able to handle high-variable-low-sample-size data and find networks of all desired sizes. Constraint-based 
algorithms can only model complex data up to a certain size and, as a consequence, for climate data they only 
reveal local network topology. Hybrid algorithms perform better than constraint-based algorithms on complex 
data, but worse than score-based algorithms.

In this work we use a simple score-based algorithm, the Hill Climbing (HC)  algorithm41, to learn BN struc-
ture. The HC algorithm starts with an empty graph and iteratively adds, removes or reverses an edge maximizing 
the score function. This algorithm is formalized in “Methods” section “Learning with hill climbing and glasso”. 
HC is implemented in the R-package bnlearn.

We used the Bayesian Information Criteria (BIC) (corresponding to BIC0 in Ref.29) score, which is defined as:

where G refers to the graph (DAG) for which the BIC score is calculated, P refers to the probability density func-
tion that can be deduced from the graph (see “Methods” section “Probabilistic BN models”), �Xi refer to the 
parents of Xi in the graph (i.e. nodes Y with relation Y → Xi in the graph) and |�Xi | is the amount of parameters 
of the local density function P(Xi|�Xi ).

Dependencies in BN and PN structure. In the following we describe how a BN (or DAG) and a PN (or 
pairwise Markov network) encode conditional dependencies. New nomenclature is indicated with an asterisk 
and illustrated in Fig. 6a–c.

(9)
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Dependencies in BN. In a BN two nodes X and Y are conditionally dependent given a set S (denoted by 
D(X,Y |S ) ) if and only if they are graphically connected, that is, if and only if there exists a path U∗ between X 
and Y satisfying the following two conditions:

• Condition (1): for every collider∗ C (node C such that the part of U that goes over C has the form of a 
V-structure, i.e. → C ← ) on U, either C or a descendant∗ of C is in S.

• Condition (2): no non-collider on U is in S.

If the above conditions do not hold we call X and Y conditionally independent given the set S (denoted by 
I(X,Y |S ) ). Marginal dependency between two nodes can be encoded by any path U with no V-structures. In 
Fig. 6b six conditional (in)dependence statements are highlighted in a simple DAG. In the caption of Fig. 6 one 
of the statements is proved at the hand of conditions (1) and (2).

Dependencies in PN. In a PN two nodes X and Y are conditionally dependent given a set S (denoted by 
D(X,Y |S ) ) if and only if there exists a path U∗ between X and Y satisfying: No node Z ∈ S is on U . If the above 
condition do not hold we call X and Y conditionally independent given the set S (denoted by I(X,Y |S ) ). Mar-
ginal dependency between two nodes can be encoded by any path U. In Fig. 6d four conditional (in)dependence 
statements are highlighted in a simple pairwise Markov network.

Learning with hill climbing and glasso. 

Figure 6.  (a) and (c): Nomenclature of elements in respectively a Bayesian Network (BN) and a Precision 
Network (PN). (b) and (d): Some (in)dependencies in simple BN and PN consisting of four nodes X, Y, Z and 
W. In (b) two sets of nodes are dependent given a third if conditions (1) and (2) in the main text are fulfilled. 
On the one hand, the conditional relationship X, Y|Z and the marginal relationships X,W |∅ and Y ,W |∅ satisfy 
conditions (1) and (2), so that we have D(X,Y |Z) , D(X,W |∅) , and D(Y ,W |∅) . On the other hand, the marginal 
relationship X,Y |∅ violates condition (1) and the conditional relationships X, W|Z and Y, W|Z violate condition 
(2), so that we have I(X,Y |∅) , and I(X,W |Z) and I(Y ,W |Z) . In (d) the conditional relationships X, Y|W, 
X, Y|Z, and X,Y |∅ satisfy the condition of graphical dependence in a PN, and hence the statements D(X,Y |W) , 
D(X,Y |Z) , and D(X,Y |∅) hold. On the other hand the conditional relation X, Y|W, Z does not satisfy the 
condition of graphical dependence; there does not exist a path U , such that neither W nor Z is not on U. Thus 
I(X,Y |W ,Z) holds. In the following we give a formal proof of D(X,Y |Z) in (b): The conditioning set S exists 
of Z. The only path between X and Y is the blue path. Hence we declare the blue path U. Z is a collider and Z is 
in S . There are no other colliders on U. Hence condition (1) is satisfied. Z is the only variable on U. And Z is a 
collider. Thus, U does not contain non-colliders. Hence condition (2) is satisfied. As condition (1) and (2) are 
satisfied we have that X and Y are dependent given Z, i.e. D(X,Y |Z).
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At the hand of Algorithms 1 and 2 we outline Hill Climbing and Graphical Lasso. For a more detailed descrip-
tion—and explanation of the equalities in Glasso—we respectively refer the reader to Refs.15,41. The input of both 
algorithms consists of the dataset D (the sample correlation matrix S in Algorithm 2 is just (1/(n− 1))D⊤D for 
standardized variables) consisting of n independent samples of the multi Gaussian variable X and a score func-
tion to optimize. The output of HC is a DAG, whereas the output of Glasso is the estimated precision matrix � , 
which, in binary format, is the adjacency matrix of the associated undirected graph.

Hill Climbing simply visits all (or some; ‘simple’ Hill Climbing) neighbouring networks that differ on one edge 
of the current network (step 1) and moves then to the network with highest score—or directly to the first network 
found with better score in the case of simple HC (step 2). The algorithm stops when no neighbouring network 
has higher score than the current network (this could be at a local optimum). The optimized implementation 
of HC in bnlearn that was used in this work uses score caching, score decomposability and score equivalence 
to reduce the number of duplicated tests. When datasets of higher dimensionality are addressed, other efficient 
versions of HC can be  considered42.

Glasso transforms the initial score function (Eq. 7) to a lasso problem and applies a coordinate descent 
approach to solve the problem: the algorithm fixes all dependencies in the current estimate of the correlation 
matrix W except those of one variable (coordinate), i.e. except one column and row (step 2a). Then it estimates 
the dependencies of this variable that best solves the element wise lasso regression problem (step 2b) and fills 
in the corresponding row and column in the updated correlation matrix W (step 2c). Next, it moves to the next 
coordinate and solves the same problem, this time with the former solution integrated in the fixed coordinates 
(integrated in W11 ). This process (step 2) is repeated until convergence. Finally, in the last cycle, the row θ12 and 
diagonal element θ22 in � are recovered from W and β (step 3).
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Transformation of probabilistic BN model to probabilistic PN model. The purple arrow in Fig. 1 
indicates that BNs can be transformed into PNs. The transformation of the DAG into an undirected graph is 
done applying moralization, i.e. including an undirected edge between any two nodes with a common child, 
and subsequently dropping edge directions. Thus, each set of parents and children {Xi ,�i} is a fully connected 
subset in the moral graph. The mapping may not be perfect and the dependencies of the resulting undirected 
moral graph may typically be an I-map of the original DAG (i.e. the moral graph is a minimum superset of the 
dependencies of the DAG meaning that there is no other undirected graph with less edges including all DAG 
dependencies but also that the inclusion of extra links and parameters in the transformation process slightly 
distorts the in-dependence structure of the network).

The moral graph of a BN can be asociated with more than one undirected PNM. To associate the moral 
graph with the special case of a probabilistic PN model that encodes the JPD formulated in Eq. (4), i.e. a pair-
wise Markov network, the parameterset of the initial BN has to be transformed in order to obtain the precision 
matrix. The following equality between the precision matrix � and the parameters (β , ν) of a Gaussian Bayesian 
Network  holds43:

The new weights of the edges and parameters of the pairwise Markov Network are the entries of the preci-
sion matrix:

The entry θij is zero if there is no edge i – j in the moral graph. Occasionally, θij can take the value of zero as 
a result of the matrix summation at the right hand side of Eq. (13).

In this work we moralize and obtain the precision matrix of all BNs that were learned with the Hill Climbing 
algorithm. In practice we use the R-packages bnlearn for the process of moralization and sparseBNutils44 for 
the extraction of the precision matrix.

Evaluation measures. Following2, we define the recall of a PNM with edge size |E| as

where TP is the number of true positives in the PNM, FN the number of false negatives in the PNM and P is 
the number of positives/edges in the directed RegulonDB network or the in silico network, i.e. P = 3387 and 
P = 4012 , respectively. Moreover, we define the precision of a PNM with edge size |E| as

where FP is the number of False Positives in the network.

Log-likelihood definition and calculation. The likelihood of the data D , given a model M is the density 
of the data under the given model M : P(D |M) . For discrete density functions the likelihood of the data equals 
the probability of the data under the model. The likelihood is almost always simplified by taking the natural 
logarithm; continuous likelihood values are typically small and differentiation of the likelihood function (with 
the purpose of a maximum likelihood search) is often hard. Log-likelihood values can be interpreted equally 
when the expression is used for model comparison and maximum likelihood search as the natural logarithm is 
a monotonically increasing function.

In the following we explain the calculation of the log-likelihood L (D |M) = log P(D |M) for a PNM 
( M = PNM ) for a dataset D formed by n independent data realizations Dk , k ∈ {1, . . . , n} , of the N-dimensional 
random vector X , with Dk = {dk1 . . . d

k
N } and dki  the k-th realization of variable Xi ∈ X . We have

with PPNM the probability density function as modelled by the corresponding PNM with a Gaussian multivariate 
probability. In this work we consider two types of PNMs, precision and Bayesian PNMs, deduced from PNs and 
BNs graphs, respectively. In the case of a Gaussian PNM given by a PN we get:

(12)� = �(β , ν) = (I − B)ν−1(I − B)⊤.

(13)θij = θji = −
βij(1− βjj)

νj
−

βji(1− βii)

νi
+

∑

k �=i,j

βikβjk

νk
.

recall =
TP

TP+ FN
=

TP

P
,

precision =
TP

TP+ FP
=

TP

|E|
,

(14)

log P(D |PNM) = log P(D1, . . . ,Dn|PNM) = log
n
∏

k=1

P(Dk|PNM)

=

n
∑

k=1

log P(Dk|PNM) =

n
∑

k=1

log PPNM(Dk)
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Entries in the sum are evaluations of the multivariate normal density function and executed with the R-pack-
age mvtnorm45.

In the case of a Gaussian PNM given by a BN, from Eq. (5), we have

where dk�Xi
 is a subset of Dk containing the k-th data realization of the parentset �Xi of Xi . From Eq. (6) we know 

that the conditional univariate densities in the sum in Eq. (16) are univariate normal and we execute them with 
the basic R-package stats.

Data availability
The in silico network and the simulated gene expression dataset analysed during the current study are available 
through the DREAM5  paper2 in Supplementary data 1. The microarray dataset ‘E_coli_v4_Build_6’ and the TF-
gene interaction network dataset ‘network_tf_gene’ are available in the Many Microbe Microarray  databases1, 
http:// m3d. mssm. edu/ norm/E_ coli_ v4_ Build_6. tar. gz and in the Regulon Data  Base33, http:// regul ondb. ccg. 
unam. mx/ menu/ downl oad/ datas ets/ files/ netwo rk_ tf_ gene. txt, respectively.
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