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Investigation on factors related 
to poor CPAP adherence using 
machine learning: a pilot study
Kana Eguchi  1,6*, Tsutomu Yabuuchi 2, Masayuki Nambu 3, Hirofumi Takeyama 4,7, 
Shozo Azuma 1, Kazuo Chin 4,8,9 & Tomohiro Kuroda 5

To improve patients’ adherence to continuous positive airway pressure (CPAP) therapy, this study 
aimed to clarify whether machine learning-based data analysis can identify the factors related to poor 
CPAP adherence (i.e., CPAP usage that does not reach four hours per day for five days a week). We 
developed a CPAP adherence prediction model using logistic regression and learn-to-rank machine 
learning with a pairwise approach. We then investigated adherence prediction performance targeting 
a 12-week period and the top ten factors correlating to poor CPAP adherence. The CPAP logs of 219 
patients with obstructive sleep apnea (OSA) obtained from clinical treatment at Kyoto University 
Hospital were used. The highest adherence prediction accuracy obtained was an F1 score of 0.864. 
Out of the top ten factors obtained with the highest prediction accuracy, four were consistent with 
already-known clinical knowledge. The factors for better CPAP adherence indicate that air leakage 
should be avoided, mask pressure should be kept constant, and CPAP usage duration should be longer 
and kept constant. The results indicate that machine learning is an adequate method for investigating 
factors related to poor CPAP adherence.

Obstructive sleep apnea syndrome (OSAS) is a highly prevalent sleep disorder that can cause sleep deprivation 
and excessive daytime sleepiness. OSAS is characterized by repetitive episodes of partial or complete upper 
airway obstruction during sleep1. Treatment is crucial because OSAS is known to negatively impact quality 
of life (QoL)1 and is associated with an increased risk of cardiovascular disease2,3. Continuous positive airway 
pressure (CPAP) therapy4 is the standard treatment for OSAS5. Although CPAP therapy is known to suppress 
excessive daytime sleepiness, improve QoL6, and decrease the risk of cardiovascular outcomes7,8, a significant 
proportion of patients underuse or discontinue CPAP9. Therefore, ensuring CPAP adherence still remains an 
important clinical issue. Because CPAP machines can record several usage-related parameters on a daily basis 
(see “Preprocessing” section for details), Schwab et al.10 stated that studies should examine the usefulness of the 
CPAP logs and how the parameters affect OSA outcomes.

However, the relationship between CPAP usage-related parameters and CPAP adherence has yet to be investi-
gated. Most clinical studies have only evaluated a single factor or a few factors to determine a method for ensuring 
CPAP adherence5,10–14. Meanwhile, machine learning-based data analysis has been gaining attention; using a large 
amount of data, machine learning enables predictive analytics while uncovering hidden patterns and unknown 
correlations. Several studies have shown its usefulness for the management of chronic disease treatment. For 
example, a study targeting the hospital visits of diabetic patients15 revealed factors possibly correlated to missed 
scheduled clinical appointments while also predicting whether a target patient will miss a scheduled clinical 
appointment. Although Araujo et al.16 and Scioscia et al.17 applied machine learning to CPAP logs, their studies 
focused on predicting CPAP adherence rather than investigating usage-related factors associated with adherence.
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In our study, we aim to clarify whether machine learning-based data analysis is effective for identifying CPAP 
usage-related parameters associated with adherence while also predicting adherence. In particular, we focus on 
revealing factors possibly correlated to poor adherence which can be avoided.

Methods
We designed a machine learning model to verify the aforementioned hypothesis. Our study uses the same model 
for different purposes in its training phase and test phase. In the training phase, we use the model with a huge 
amount of training data (e.g., previously collected CPAP logs from many individuals) to investigate factors pos-
sibly correlated to poor CPAP adherence. In the test phase, we use the model with recent CPAP logs of a target 
patient to predict whether this patient’s CPAP adherence will become poor within a target period.

On the basis of the definition by the Centers for Medicare and Medicaid Services (CMS)5, this study defines 
good adherence as usage of the CPAP machine for more than four hours per night and more than five nights a 
week (i.e., 70% of nights in a week), whereas poor adherence is not good CPAP adherence.

The proposed model comprises two parts: preprocessing and a machine learning-based model. The details 
of each part are described below.

Preprocessing.  Preprocessing comprises feature calculation and data standardization.
First, a total of eighteen weekly features are calculated as shown in Table 1. Although a CPAP machine pro-

vides a set of measured data per day, in this study we calculate all features from every seven consecutive days to 
suppress night-to-night variability. The CPAP machine used in this study was made by ResMed (ResMed Inc., 
San Diego, CA, USA). The daily recorded data comprises two qualitative values (sex and CPAP mode: auto-
titration (auto) or fixed-titration) and five quantitative values (usage duration, air leakage, apnea index (AI), 
apnea hypopnea index (AHI), and daily average mask pressure). In addition to the original qualitative values 
provided by the CPAP machine, we calculate two additional qualitative features, daily severity based on AHI 
(Normal, Mild, Moderate, Severe)18 and the daily presence of OSAS based on AI as defined by Guilleminault 
et al.19. To calculate these two qualitative features, we first identify the daily value of each one and then set the 
most frequent value in a week as the weekly feature value.

The last step of preprocessing is data standardization. When targeting several different types of quantitative 
values, the difference in each data range causes different updating volumes of the weight corresponding to each 
feature in the training phase. Data standardization converts the data to a standardized value with the same scale. 
We use Eq. (1) to calculate the standardized value ã, whose mean value is 0 and standard deviation is 1. In Eq. 
(1), μ denotes the mean value of feature a, whereas σ denotes its standard deviation.

Table 1.   List of features obtained from CPAP logs. CPAP continuous positive airway pressure; OSAS 
obstructive sleep apnea syndrome; AI apnea index; AHI apnea–hypopnea index.

Number Feature name Unit Value

Qualitative values obtained from the original CPAP log

1 Sex Male/female

2 CPAP mode (i.e., pressure control) Auto/fixed

Summaries of quantitative values obtained from CPAP log: usage duration

3 Percentage of days in a week with more than 4 h of CPAP usage %

4 Percentage of days in a week with CPAP usage %

5 Percentage of days in a week without CPAP usage %

6 Average daily usage duration in a week min

7 Standard deviation of daily usage duration in a week min

8 Total usage duration in a week min

Summaries of quantitative values obtained from CPAP log: air leakage

9 Average daily air leakage from CPAP mask in a week L/sec

10 Standard deviation of daily air leakage from CPAP mask in a week L/sec

Summaries of quantitative values obtained from CPAP log: AI

11 Average daily AI in a week events/h

12 Standard deviation of daily AI in a week events/h

Summaries of quantitative values obtained from CPAP log: AHI

13 Average daily AHI in a week events/h

14 Standard deviation of daily AHI in a week events/h

Summaries of quantitative values obtained from CPAP log: average mask pressure (from auto mode only)

15 Average of daily average mask pressure in a week cmH2O

16 Standard deviation of daily average mask pressure in a week cmH2O

Additional qualitative values

17 Severity of OSAS18 Normal/Mild/Moderate/Severe

18 Presence of OSAS19 Normal (AI < 5)/OSAS (5 ≤ AI)
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Machine learning‑based model.  We built a prediction model using logistic regression and a learn-to-
rank (LTR) machine learning algorithm with a pairwise approach20. In the training phase, the proposed model 
aims to rank all patients in accordance with the risk of poor CPAP adherence, giving a higher rank to a patient 
whose CPAP adherence worsens within a shorter period. Through this ranking process, the proposed model 
calculates a weight vector that indicates the correlation between each parameter and poor CPAP adherence. 
In the test phase, the proposed model with the calculated weight vector identifies the target patient among all 
patients used in the training phase. Because the order of patients reflects the number of weeks until poor CPAP 
adherence, we can predict whether the target patient’s CPAP adherence becomes poor within a target period by 
determining a threshold for the rank. The details of the model are described below step by step.

Auxiliary parameter used for model training.  Ensuring a sufficient amount of data for the training is quite 
important when applying machine learning for a limited amount of data. In general, we cannot use data shorter 
than the target period. Because of this, we may easily result in unsuccessful predictions due to a lack of training 
data.

Making the best of the limited number of CPAP usage logs for training the model, this study uses the number 
of weeks of each patient’s CPAP adherence as an auxiliary parameter. This duration is calculated by either of the 
following two. The first is the number of weeks until the first instance of poor CPAP adherence PA (px, tx), where 
px is the patient and tx is the number of weeks from the first week until the week when poor CPAP adherence 
was observed for the first time. When a patient px exhibits poor CPAP adherence, we calculate PA (px, tx). The 
second is the number of weeks of continuous good CPAP adherence GA (py, ty), where py is the patient and ty is 
the number of weeks from the first week until the most recent week when good CPAP adherence was observed. 
When a patient py was able to continuously maintain good adherence without exhibiting poor CPAP adherence, 
we calculated GA (py, ty).

Basic design of logistic regression model.  This study modeled the probability ym,n that the CPAP adherence of 
patient pm at time tm would become poor earlier than another patient pn at tn using logistic function expressed 
as Eq. (2).

here, w is a weight vector, and xm and xn are feature vectors of patients pm and pn, respectively.
Mathematically, the logit of Eq. (2) is expressed as Eq. (3).

Because the logit is the inverse function of the logistic function, the logit value indicates the probability: 
logit(P) < 0 indicates P < 0.5, logit(P) = 0 indicates P = 0.5, and logit(P) > 0 indicates P > 0.5. Therefore, we substi-
tute y in Eqs. (2) and (3) for either +1 or − 1 depending on the duration until poor CPAP adherence, i.e., y = +1 
when PA (pm, tm) is shorter than PA (pn, tn) or when PA (pm, tm) is shorter than GA (pn, tn), and y = − 1 when PA 
(pm, tm) is longer than PA (pn, tn).

Model design and training with L2‑norm regularization.  The aim of the training process is to rank all patients 
in the training data in accordance with the duration until poor CPAP adherence by repeating the ranking on 
every pair of patients.

For this ranking, the model uses the logit value w∙xm as the PA risk score to measure the risk of a patient pm’s 
CPAP adherence becoming poor at tm. Here, the PA risk score is a specific case of Eq. (3) assuming y = +1 while 
setting an imaginary patient whose feature xn is 0. In other words, the proposed model aims to rank all patients 
in the training data through comparison with the same imaginary patient. This ranking is only conducted in the 
following two cases: when PA (pm, tm) is shorter than PA (pn, tn), and when PA (pm, tm) is shorter than GA (pn, tn). 
Through the training process, the model calculates w to match the value of the PA risk score and the number of 
weeks until poor CPAP adherence, giving a larger PA risk score to the earlier occurrence of poor CPAP adherence.

To mitigate overfitting to the training data set and improve the model’s generalizability for the new data, we 
used an L2-norm regularization as in the previous study15. The model estimates w as ŵ by using the following 
equation.

here, w2
2 is an L2-norm regularizer (i.e., the squared L2-norm of w), which acts as a penalty to provide large 

absolute weight values for certain features that occur frequently in the training data. The symbol λ is a hyperpa-
rameter for regularization. We need to tune hyperparameter λ while comparing the performance of the model.
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Predicting CPAP adherence using proposed model.  In the test phase, the model estimates CPAP adherence based 
on the PA risk score of the target patient using the estimated ŵ. Because we designed the PA risk score to reflect 
the number of weeks until poor CPAP adherence, we can predict whether the target patient’s CPAP adherence 
becomes poor within a target period by determining a threshold for the PA risk score.

Evaluation
We applied our model to the CPAP logs of the participants to predict whether their CPAP adherence became 
poor within twelve weeks (approximately three months). On the basis of a weight vector calculated through the 
training phase, we investigated the CPAP usage-related parameters possibly correlated with poor adherence.

In this study, we obtained the patient data with the opt-out consent, which is specified by Article 8-1-(2)-"a"-
"i" of Ethical Guidelines for Medical and Biological Research Involving Human Subjects of Japan. We posted the 
introduction of this evaluation on a webpage and set a waiver period. During this period, all participants were 
eligible to opt-out of this evaluation by declaring their waiver. All evaluations were conducted in accordance 
with the protocol approved by the Ethics Committee of Kyoto University Hospital (R1821).

Participants.  A total of 354 patients who used CPAP machines (ResMed Inc, San Diego, CA, USA) from 
January 1, 2007 to December 31, 2018, were eligible for this retrospective study. Note that their OSAS diagnosis 
criterion was an AHI greater than 20 in polysomnography reports.

The exclusion criteria included insufficient data quality and certain diseases (e.g., depression12), as shown in 
Fig. 1. Note that this study excluded participants transferred from other hospitals as a part of insufficient data 
quality because we cannot calculate an auxiliary parameter due to the lack of a CPAP initiation date.

After excluding participants on the basis of the aforementioned criteria, 219 patients were selected. Table 2 
summarizes the clinical background of these participants.

Data used for evaluation.  The CPAP logs obtained through the clinical CPAP treatment were used for ret-
rospective data analysis. We only used the data from nights when CPAP was used for more than thirty minutes. 
This is because AI and AHI can be erroneous when the CPAP usage duration is short as AI and AHI are indices 
showing the target event per hour.

Regarding the CPAP adherence of the target 219 patients, we confirmed that two patients had GA (i.e., 8 and 
101 weeks), 145 patients had PA, and the remaining 72 patients experienced poor CPAP adherence in the first 
week and cannot calculate either PA or GA. The histogram of the number of weeks until the first poor CPAP 
adherence among 145 patients who had PA is shown in Fig. 2. Technically, the following evaluation only targets 
the data of 147 patients who had GA or PA.

Evaluation methods.  We evaluated the results in terms of the prediction performance of CPAP adherence 
and the top ten CPAP usage-related parameters possibly correlated with poor CPAP adherence.

Before investigating both the prediction performance and the top ten CPAP usage-related parameters possibly 
correlated with poor CPAP adherence, technically, we need to determine the hyperparameter λ that optimizes 
ranking performance. As a pre-evaluation, this study evaluated whether the model correctly ranked the par-
ticipants in the test dataset using five-fold cross-validation. The k-fold cross-validation is a statistical validation 
method, where k is a user-specified number (usually 5 or 10)21. When performing five-fold cross-validation, the 
data is first partitioned into five subsets of approximately equal size, and then a sequence of models is trained and 
tested five times. For each test, one of the subsets is used as the test data and the rest of the four subsets are used 

Figure 1.   Flowchart of participant selection. Definition of abbreviations: CPAP = continuous positive airway 
pressure; EHR = electric health record.
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for the training data. After all trials, the accuracy is obtained as the average across all five trials. To determine 
the appropriate hyperparameter λ, we evaluated seven different hyperparameters (λ = 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 
10.0) in each cross-validation test.

After determining the hyperparameter λ, we evaluated the prediction performance of CPAP adherence using 
the PA risk scores and their corresponding duration until poor CPAP adherence. For this evaluation, we used 
the receiver operating characteristic (ROC) curve22 plotted in 0.5 increments of the PA risk score.

Regarding the top ten CPAP usage-related parameters possibly correlated with poor CPAP adherence, this 
study investigated a weight vector ŵ calculated with the optimal hyperparameter λ. Because a larger absolute 
value indicates a stronger correlation, we selected the features with the ten largest absolute value weights as the 
top ten factors and evaluated whether they are consistent with common clinical knowledge.

Results
Pre‑evaluation on ranking accuracy for determining Hyperparameter λ.  The ranking accuracy of 
our model was 0.692 ± 0.010 and reached the highest at 0.706 when the hyperparameter λ = 0.2. Therefore, we 
set the hyperparameter λ = 0.2 for the following evaluation.

Prediction performance.  Figure 3 shows the ROC curve. The area under the curve (AUC) of the ROC was 
estimated as 0.763, indicating moderate accuracy22. The optimal cut-off point of the PA risk score based on the 
Youden index22 was − 0.5, where the F1 score was 0.864, precision was 0.872, and recall was 0.856, respectively.

CPAP usage‑related factors related to poor adherence.  Table 3 lists the top ten CPAP usage-related 
parameters possibly correlated with poor CPAP adherence and their interpretations obtained from the highest 
ranking accuracy (hyperparameter λ = 0.2). For the weights shown in Table 3, a positive number indicates a 

Table 2.   Clinical background of 219 participants and their CPAP usage characteristics during CPAP therapy. 
Data represent mean ± standard deviation. CPAP continuous positive airway pressure; AHI apnea–hypopnea 
index; PSG polysomnography; AI apnea index.

Variable Unit Value

Clinical background

Number of patients 219

Male % 86.8 (N = 190)

Age at CPAP start Year 61.5 ± 12.0

Body mass index kg/m2 27.5 ± 5.46

AHI at PSG at diagnosis events/h 47.3 ± 18.1

AHI at PSG at CPAP start events/h 7.34 ± 8.45

CPAP usage characteristics in CPAP logs

CPAP mode (auto/fixed) % 98.2/1.80

Daily mean mask pressure in auto mode cmH2O 8.57 ± 2.02

Daily usage duration min 334 ± 121

Daily AI events/h 1.35 ± 2.43

Daily AHI events/h 2.03 ± 2.74

Daily air leakage L/sec 0.10 ± 0.15

Figure 2.   Number of weeks until first poor CPAP adherence among 145 patients who exhibited poor CPAP 
adherence.
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positive correlation and a negative number indicates a negative correlation. For example, the top factor, average 
duration of usage in a week, has a strong negative correlation (− 9.38) with poor CPAP adherence. This indicates 
that participants using CPAP for shorter durations may have poor CPAP adherence in the future.

Discussion
To our knowledge, our study is the first to use machine learning to investigate CPAP usage-related parameters 
possibly correlated with poor CPAP adherence while also predicting future CPAP adherence. We developed a 
model using logistic regression and LTR machine-learning algorithm with a pairwise approach20, then applied 
it to the CPAP logs obtained from clinical treatment in one hospital. Overall, the results indicated that our 
model can be a fair method for both predicting CPAP adherence and investigating the factors correlated to 
poor adherence.

Regarding adherence prediction performance, our model using one week of CPAP logs was able to predict the 
risk of poor CPAP adherence within twelve weeks with an AUC value of 0.763, and its prediction performance 
at the optimal cut-off point yielded an F1 score of 0.864. Compared with the results of a previous study16, which 
used 13 days (approximately two weeks) of CPAP logs for predicting the risk of poor adherence within 180 days 
(approximately 26 weeks after) with an F1 score of 0.54, our proposed model showed good performance.

Figure 3.   Receiver operating characteristic (ROC) curve indicating prediction performance of proposed model.

Table 3.   List of top ten factors possibly correlated to poor CPAP adherence obtained with highest ranking 
accuracy. CPAP continuous positive airway pressure; AHI apnea–hypopnea index; AI apnea index; OSAS 
obstructive sleep apnea syndrome.

No Feature name Weight Implications Interpretation

1 Average duration of daily usage in a week − 9.38 Participants who used CPAP for shorter hours may have poor 
CPAP adherence Feasible. Consistent with13

2 Total duration of usage in a week − 8.89 Participants using CPAP for shorter hours may have poor 
CPAP adherence Feasible. Consistent with13

3 Auto mode 5.14 Participants using CPAP in auto mode may have poor CPAP 
adherence Possibly biased (auto = 98.2%)

4 Female 4.82 Female participants may have poor CPAP adherence Possibly biased (female = 13.2%)

5 Standard deviation of daily average mask pressure in a week 
(from auto mode only) 4.75 Participants whose CPAP mask pressure varies greatly in a 

week may have poor adherence Feasible

6 Standard deviation of daily usage duration in a week 4.66 Participants whose CPAP usage duration varies greatly in a 
week may have poor CPAP adherence Feasible

7 Average daily AHI in a week 4.16 Participants who had higher AHI may have poor CPAP 
adherence Feasible. Consistent with14

8 Presence of OSAS was “normal” 3.72 Participants whose AI was less than five (“normal”) may have 
poor CPAP adherence Possibly biased (“normal” = 96.3%)

9 Average daily air leakage in a week 3.26 Participants who experienced larger air leakage from a CPAP 
mask may have poor CPAP adherence Feasible. Consistent with14

10 Severity of OSAS was “normal” 3.13 Participants whose AHI was less than five (“normal”) may 
have poor CPAP adherence Possibly biased (“normal” = 92.8%)
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We identified six factors regarding CPAP usage-related parameters possibly correlated to poor adherence. 
Among these six factors, four were consistent with previous clinical knowledge13,14: Factors 1 and 2 are consistent 
with the discussion presented by Chai-Coetzer et al.13, and Factors 7 and 9 are consistent with the discussion by 
Valentin et al.14. Thus, the results of our pilot study indicate that machine learning is an adequate method for 
investigating factors related to poor CPAP adherence. Overall, the feasible factors identified by this retrospec-
tive study indicated that the following would improve CPAP adherence: avoiding air leakage, keeping a constant 
mask pressure, and longer and constant CPAP usage duration. Meanwhile, a detailed analysis of the data used in 
this study indicated that the remaining four factors may be strongly biased. For Factor 3, 98.2% of the data were 
obtained from auto mode; for Factor 4, 86.8% of the data were from men; for Factor 8, 96.3% of data were clas-
sified as “normal”; and for Factor 10, 92.8% of data were classified as “normal.” In theory, machine learning may 
overvalue a feature when it repeatedly shows the same tendency; for example, machine learning may overvalue 
women more than men if the CPAP adherence in female patients is consistently poor, whereas it varies among 
male patients. At this moment, we cannot determine whether these four factors are surely correlated with poor 
CPAP adherence. Further studies on additional patients will be needed to clarify the relationship between the 
four factors and CPAP adherence. It should be noted that these imbalanced conditions were quite common under 
clinical OSAS treatment settings; these biases simply indicate that the applied dataset was not eccentric but can 
be considered a valid subset of Japanese real-world data.

To improve prediction accuracy, we need to modify the model in consideration of real-world CPAP usage. 
In this study, our model focuses on predicting poor CPAP adherence using weekly features. Although weekly 
features could reflect basic characteristics of night-to-night CPAP usage, they may unintentionally suppress 
specific characteristics that occurred within a week (e.g., temporarily discontinuation of CPAP use subsequent 
to the specific CPAP use in the previous night). In addition, the current model does not consider how to handle 
data that resumes after discontinuation (e.g., trip) as well as partial data (e.g., hospital transfer). In addition, the 
model may also need to consider the date of CPAP use. Physicians have pointed out that CPAP adherence can 
change depending on the season (e.g., adherence may worsen in the change of season from winter to spring due 
to pollinosis). Future studies should consider these perspectives to clarify CPAP use and improve adherence.

The main limitation of this research is the lack of causal relation analysis, which is a common limitation in 
retrospective research. Since this study was a pilot and retrospective study, the results only indicate correlations. 
Therefore, we first intend to verify whether the factors indicated in this study can improve clinical CPAP adher-
ence through a prospective study. Once the relationship between the factors and clinical CPAP adherence has 
been confirmed, patients of CPAP therapy can be advised on the basis of these parameters. Another limitation 
of our study is the small scale. All aforementioned implications were obtained from retrospective data analysis 
using previously collected clinical CPAP logs from only one hospital, so the calculated weight vector only con-
ceals characteristics inherent in this data theoretically. To verify the consistency of the results, a large-scale study 
including other hospitals is necessary for deeper investigation.

Conclusion
We developed a CPAP adherence prediction model using logistic regression and learn-to-rank machine learn-
ing, and then applied it to CPAP logs obtained from clinical treatment provided by one hospital. The results of 
retrospective data analysis indicate that machine learning is sufficient for investigating factors related to poor 
CPAP adherence. The factors obtained from retrospective data analysis support previous clinical knowledge for 
improving CPAP adherence.

In general, machine learning can be considered a promising method for uncovering medical knowledge. 
Although this study did not provide new findings, it shows the potential of machine learning for achieve the 
prospective goal. Towards this end, we will need to collect a larger amount of data with various parameters and 
apply machine learning predictors for deeper investigation.

Data availability
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