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Deep learning application 
of the discrimination of bone 
marrow aspiration cells in patients 
with myelodysplastic syndromes
Nuri Lee1,2*, Seri Jeong1, Min‑Jeong Park1 & Wonkeun Song1

Myelodysplastic syndromes (MDS) are a group of hematologic neoplasms accompanied by dysplasia of 
the bone marrow hematopoietic cells with cytopenia. Detecting dysplasia is important in the diagnosis 
of MDS, but it takes considerable time and effort. Also, since the assessment of dysplasia is subjective 
and difficult to quantify, a more efficient tool is needed for quality control and standardization of bone 
marrow aspiration smear interpretation. In this study, we developed and evaluated an algorithm to 
automatically discriminate hematopoietic cell lineages and detect dysplastic cells in bone marrow 
aspiration smears using deep learning technology. Bone marrow aspiration images were acquired from 
34 patients diagnosed with MDS and from 24 normal bone marrow slides. In total, 8065 cells were 
classified into eight categories: normal erythrocytes, normal granulocytes, normal megakaryocytes, 
dysplastic erythrocytes, dysplastic granulocytes, dysplastic megakaryocytes, blasts, and others. 
The algorithm demonstrated acceptable performance in classifying dysplastic cells, with an AUC of 
0.945–0.996 and accuracy of 0.912–0.993. The algorithm developed in this study could be used as an 
auxiliary tool for diagnosing patients with MDS and is expected to contribute to shortening the time 
required for MDS bone marrow aspiration diagnosis and standardizing visual reading.

Myelodysplastic syndromes (MDS) are a group of hematologic neoplasms accompanied by dysplasia of the bone 
marrow hematopoietic cells with cytopenia. Dysplasia of MDS is divided into dyserythropoiesis, dysgranulopoie-
sis, and dysmegakaryocytopoiesis. Dysplasia is characterized by abnormalities in cell size, nucleation, segmenta-
tion, and  granulation1–3. Diagnosis of MDS with single lineage dysplasia or MDS with multi-lineage dysplasia is 
possible only when dysplasia satisfies the criteria of 10% or more cells in each lineage. Although the detection 
of dysplasia plays a key role in the diagnosis of  MDS4, it requires considerable time and effort by a hematologist 
for reading. In addition, since the assessment of dysplasia is subjective and difficult to quantify, a more efficient 
tool is needed for quality control and standardization of bone marrow aspiration smear  interpretation5.

Recently, deep learning technology is being used to increase the accuracy of diagnoses in various medical 
fields. Research using artificial intelligence (AI) related to images of bone marrow specimens has mainly focused 
on the detection of blasts in various types of leukemia and the differentiation of normal bone marrow  cells6–11. In 
the case of bone marrow aspiration specimens, research has not been conducted actively so far due to limitations 
of the specimen itself, including variable slides, peripheral blood dilution, and dry  tap12. Although AI in MDS 
could be utilized to improve the accuracy and speed of reading and quantification of dysplastic cells, research 
in this field is still lacking.

In studies using deep learning for MDS so far, ‘decreased granule,’ one of the dysplasia in granulopoiesis was 
analyzed using the convolutional neural networks (CNN) method conducted by Mori et al.13. In another study, 
Kimura et al. developed an automated image analysis system using CNN that distinguishes MDS and aplastic 
anemia (AA) in peripheral  blood14. In previous studies, only dysplasia related to decreased granules was targeted 
as the subject of the study. Most of the studies utilized peripheral blood or biopsy, and only a few studies used 
bone marrow aspirate. Further studies are needed as previous studies did not consider various cell types in bone 
marrow aspiration smears, which are the criteria for diagnosis. In this study, we developed and evaluated an 
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algorithm to automatically discriminate hematopoietic cell lineages and detect dysplastic cells in bone marrow 
aspiration smears in patients with MDS using deep learning technology.

Results
Demographic and clinical characteristics. The characteristics of patients with MDS and normal slides 
are shown in Table 1. The median age of the patients with MDS was 71.5 and that of the normal group was 
66.5. There were no statistically significant differences in the median age and sex between the two groups. 
Among the MDS patients, MDS with excess blast (EB)-2 accounted for 12 patients (35.5%), MDS with multi-
lineage dysplasia (MLD) for 11 (32.4%), and MDS with EB-1 for 6 (17.6%). MDS with single lineage dysplasia, 
ringed sideroblasts-MLD, therapy-related-MDS, and MDS-unclassifiable accounted for 1, 2, 1, and 1 patient, 
respectively. Regarding cytogenetic characteristics, 15 patients (44.1%) had a normal karyotype, 10 (29.4%) had 
chromosomal gain and/or loss, and 4 (11.8%) had a complex pattern. As for the characteristics of dysplastic 
features, dyserythropoiesis was observed in 31 patients (91.2%), dysgranulopoiesis in 15 (44.1%), and dysmega-
karyopoiesis in 21 (61.8%) (Table 2). In the case of dyserythropoiesis, nuclear budding was observed in five 
patients, megaloblastic change in 9 patients, and multinuclearity in 12 patients. In the case of dysgranulopoiesis, 
decreased granules, nuclear hyposegmentation, and unusually large size were observed in 6, 10, and 3 patients, 
respectively. In the case of dysmegakaryopoiesis, micromegakaryocytes were observed in 13 patients, nuclear 
hypolobation in 8, and multinucleation in 10.

Detection of the cells in bone marrow aspiration slide. The total number of patch images used for 
the evaluation was 11,000. The manual labeling process of the nucleated cells was performed using 946 cells. A 
total of 756 (80%) cells were used as the training set, and 190 cells (20%) were used for validation. We achieved 
a Dice coefficient score of 74.7% for training and 71.1% for validation using U-net. With the same architecture, 
intersection over union showed 62.3% and 58.0% performance for training and validation, respectively. Using 

Table 1.  Characteristics and demographic statistics of enrolled patients.

Enrolled patients

P-value
Myelodysplasia syndromes (MDS) patients 
(n = 34) Normal bone marrow group (n = 24)

Age 71.5 (58.0–77.0) 66.5 (48.0–77.5) 0.182

Sex (male:female) 19:15 14:10 0.854

MDS classification N/A N/A

Single lineage dysplasia 1 (2.9%)

Multi-lineage dysplasia (MLD) 11 (32.4%)

Excess-blast-1 6 (17.6%)

Excess-blast-2 12 (35.5%)

Ring sideroblasts MLD 2 (5.9%)

Unclassifiable 1 (2.9%)

Therapy-related MLD 1 (2.9%)

Cytogenetics N/A N/A

Normal 15 (44.1%)

Loss and/or gain of chromosome 10 (29.4%)

Complex pattern 4 (11.8%)

Others 5 (14.7%)

Dysplastic features N/A N/A

Dyserythropoiesis 31 (91.2%)

Nuclear budding 5 (14.7%)

Megaloblastic changes 9 (26.5%)

Multinuclearity 12 (35.3%)

Others 7 (20.6%)

Dysgranulopoiesis 15 (44.1%)

Decreased granules 6 (17.6%)

Nuclear hyposegmentation 10 (29.4%)

Unusually large size 3 (8.8%)

Others 3 (8.8%)

Dysmegakaryopoiesis 21 (61.8%)

Micromegakaryocyte 13 (38.2%)

Nuclear hypolobation 8 (23.5%)

Mutinucleation 10 (29.4%)
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the labeling and segmentation results, the location of the cells was identified, and cell-specific cropping was 
conducted to obtain 555,052 cell images. We classified the 8065 cells into eight types [normal erythrocytes (EN), 
normal granulocytes (GN), normal megakaryocytes (MN), dysplastic erythrocytes (ED), dysplastic granulo-
cytes (GD), dysplastic megakaryocytes (MD), blasts, and others]. The number of images for each classified cell 
in the dataset is listed in Table 2. We randomly divided the 8065 cells into the training (80%), validation (10%), 
and test (10%) sets.

Discrimination performance of bone marrow cells with normal and dysplasia. Table 3 presents 
the performance of this study, including sensitivity, specificity, accuracy, positive predictive value (PPV), nega-
tive predictive value (NPV), area under the receiver operating characteristic curve (AUC), F1 score, and average 
precision for the eight cell types. The AUC for GD was 0.996, with a sensitivity of 90.0% and a specificity of 
99.9%. The sensitivities of ED and MD were 79.0% and 89.9%, respectively. Specificity was much higher at 99.2% 
for ED and 94.8% for MD. Cells with normal patterns showed decreased sensitivity and specificity compared 
to those with dysplastic patterns. EN, GN, and MN presented 64.0%, 79.7%, and 70.7% sensitivity and 95.0%, 
99.3%, and 98.8% sensitivity, respectively. Figure 1 presents the receiver operating characteristic curve for each 
cell type. The figure also shows dependable results for GN (0.993), ED (0.972), MD (0.971), MN (0.955), and EN 
(0.945) (Table 3, Fig. 1).

Analysis of true and false. The confusion matrix of the labeled cells and the prediction of cells are listed 
in Table 4. Among the dysplastic cells, the highest proportion of cells that the algorithm missed was normal 
cells of the same lineage, with 24% of ED (24/100) predicted as EN, 9.2% of GD (12/130) read as GN, and 5.3% 
of MD (1/19) predicted as MN. In the case of ED, 9 cells (9%) were incorrectly predicted as GD, and 7 (5.4%) 
were incorrectly predicted as ED in the case of GD. In the case of MD, the number of incorrectly predicted cells 
was one each for ED, GD, and others. Among the normal cells, megakaryopoietic cells were all read as mega-
karyopoietic lineage cells, and MN was predicted as MD in 5 cases (10.0%). In the case of granulopoietic cells 
and erythropoietic cells, 17 cases (5.9%) were incorrectly predicted as GD despite being GN, and 16 (13.4%) 
were predicted as ED despite EN. Supplementary Fig. 1 shows examples of correctly detected and incorrectly 
predicted cells using the deep learning (DL) algorithm.

Table 2.  Number of cell images used in the study.

Classification by algorithm

TotalTraining set Validation set Test set

Total no. of cell images 6453 806 806 8065

Cell classification

Normal erythrocytes (EN) 1075 (16.7%) 138 (17.1%) 119 (14.8%) 1332 (16.5%)

Normal granulocytes (GN) 2323 (36.0%) 283 (35.1%) 288 (35.7%) 2894 (35.9%)

Normal megakaryocytes (MN) 354 (5.5%) 41 (5.1%) 50 (6.2%) 445 (5.5%)

Dysplastic erythrocytes (ED) 788 (12.2%) 125 (15.5%) 100 (12.4%) 1013 (12.6%)

Dysplastic granulocytes (GD) 930 (14.4%) 103 (12.8%) 130 (16.1%) 1163 (14.4%)

Dysplastic megakaryocytes (MD) 153 (2.4%) 18 (2.2%) 19 (2.4%) 190 (2.4%)

Blasts 529 (8.2%) 54 (6.7%) 59 (7.3%) 642 (8.0%)

Others 301 (4.7%) 44 (5.5%) 41 (5.1%) 386 (4.8%)

Table 3.  Summary of performance including area under the receiver operating characteristic curve for each 
finding in database.

Metric

Sensitivity Specificity Area under curve Accuracy Positive predictive value Negative predictive value F1 score Average precision

Normal erythrocytes 0.640 0.950 0.945 0.912 0.647 0.949 0.643 0.694

Normal granulocytes 0.797 0.993 0.993 0.979 0.904 0.984 0.847 0.931

Normal megakaryocytes 0.707 0.988 0.955 0.974 0.763 0.984 0.734 0.781

Dysplastic erythrocytes 0.790 0.992 0.972 0.988 0.714 0.995 0.744 0.792

Dysplastic granulocytes 0.900 0.999 0.996 0.993 0.978 0.993 0.938 0.946

Dysplastic megakaryocytes 0.899 0.948 0.971 0.931 0.906 0.944 0.902 0.956

Blasts 0.831 0.951 0.973 0.932 0.766 0.967 0.797 0.884

Others 0.782 0.956 0.954 0.931 0.756 0.962 0.769 0.845
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Discussion
In this study, a DL-based algorithm for dysplastic cell classification in bone marrow aspiration of MDS patients 
was developed and validated. This algorithm showed favorable performance when applied to the classification 
of dysplastic and normal cells according to the three cell lineages, including erythropoiesis, granulopoiesis, and 
megakaryocytopoiesis. The overall performance of AUC ranged from 0.945 to 0.996.

Research related to automated cell detection and classification in bone marrow aspiration is not easy to apply 
to AI because of the limitations of the sample itself, including the variability of entire slides. Also, respective AI 
research has not been actively conducted as compared to other  fields12. Mori et al. analyzed a DL-based dysplasia 
assessment, specified for decreased granule detection system, one of the dysplastic features of MDS patients, and 
reported an AUC of 0.944 and an accuracy of 97.2%13. This study is the first cell discrimination analysis of MDS 
using bone marrow smear specimens. Our study expanded on previous studies to include dyserythropoiesis, 
dysmegakaryopoiesis, and dysgranulopoiesis. In addition, various types of dysgranulopoiesis, such as nuclear 
hyposegmentation and unusually large sizes other than GD, were included, and an improved algorithm could be 
developed. In addition, similar to the study by Mori et al., GD showed the most favorable performance among 
the three dysplastic cell lineages. GD showed the highest values for sensitivity, specificity, AUC, accuracy, PPV, 
NPV, and F1 scores. Dysgranulopoiesis accounts for the majority of nucleated cells in the bone marrow of most 
patients and is more specific in diagnosing MDS than  dyserythropoieisis15. From this perspective, GD can act 
as a key factor in the development of a DL-applied MDS diagnosis algorithm.

In this study, specificity, AUC, and accuracy were high, but sensitivity, F1 score, and AP showed relatively 
low values and did not reach the reading ability of an expert. This study is a multi-classification and imbalance 
model; therefore, among the performance evaluation tools, the F1 score, which is defined as the harmonic mean 

Figure 1.  Receiver operating characteristic curves for classification of normal and abnormal cells in patients 
with myelodysplastic. Eight types of cells: normal erythrocytes (EN), normal granulocytes (GN), normal 
megakaryocytes (MN), dysplastic erythrocytes (ED), dysplastic granulocytes (GD), dysplastic megakaryocytes 
(MD), blasts, and others.

Table 4.  Confusion matrix for disease diagnosis from dataset.

Label

Prediction

Normal 
erythrocytes

Normal 
granulocytes

Normal 
megakaryocytes

Dysplastic 
erythrocytes

Dysplastic 
granulocytes

Dysplastic 
megakaryocytes Blasts Others Total

Normal erythro-
cytes 93 4 0 16 2 0 3 1 119

Normal granulo-
cytes 4 259 0 7 17 0 0 1 288

Normal megakaryo-
cytes 0 0 45 0 0 5 0 0 50

Dysplastic eryth-
rocytes 24 2 0 64 9 0 0 1 100

Dysplastic granu-
locytes 2 12 0 7 108 0 0 1 130

Dysplastic megakar-
yocytes 0 0 1 1 1 15 0 1 19

Blasts 0 4 0 1 2 1 47 4 59

Others 0 5 0 3 2 0 2 29 41

Total 123 286 46 99 141 21 52 38 806
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of the precision and recall values, may be suitable for interpretation. When referring to the F1 score, the perfor-
mance of this study was between 0.643 and 0.938. The gradient-weighted class activation mapping (Grad-CAM) 
heatmap-generating technique was applied to infer several reasons for false positives or  negatives16. The region 
of interest on a bone marrow-nucleated cell in the CNN was highlighted in this technique, and the significant 
region of the image for prediction could be focused on, aiding the interpretation of the algorithm. Through 
Grad-CAM, it was found that the images correctly predicted as ED was centered on the nucleus, which is the 
key to the detection of dyserythropoiesis. The Grad-CAM heatmap showed that GD and MD, which were cor-
rectly predicted, and also properly detected in the nucleus and cytoplasm, and hence were suitable for dysplastic 
features. In contrast, in the case of ED incorrectly predicted as EN, the cytoplasm was focused instead of the 
nucleus. In the case of megaloblastic changes in the ED, it was difficult to read because it was predicted to be an 
EN. GD with decreased granules was sometimes read as EN or ED due to the hypo-granular cytoplasm, and when 
the hypo-granularity was severe, it was also interpreted as others. In the case of GD, nuclear hyposegmentation 
showed difficulty in differentiating with erythroid cells as compared to that by the pseudo-Pelger–Huet anomaly 
shape and/or decreased granules.

Although DL-based dysplastic cell detection has not yet shown a performance that can replace hematolo-
gists, it is important as an auxiliary tool for bone marrow-based diagnosis. Until now, most differential studies 
of blood cells have been conducted on peripheral blood or bone marrow  biopsies10,14,17,18. However, in recent 
years, an algorithm for the differentiation of normal bone marrow cells has been developed and published, and 
research on dysplasia has begun, providing a basis for detecting MDS using  AI9,11,19. Because the bone mar-
row aspiration slide contains many nucleated cells, and the region to be read is wide, it has several advantages 
when the primary classification of DL is introduced. For example, it is possible to reduce the turnaround time 
of test reports and count more cells, thereby increasing the accuracy of calculating the percentage of nucleated 
cells. In addition, instead of the diagnosis of dysplasia being made by the subjective judgment of experts, more 
standardization can be achieved through AI. Recently, a paper related to whole-slide image detection has been 
published, and it is expected that DL reading and access to digital images will  increase20. In addition to the 
identification of overall normal bone marrow cells, more studies are needed to approach DL for each disease. 
MDS has characteristic cell morphologies and  properties4. It is necessary to build a database that includes cell 
images and genomic data according to various dysplasia and develop a new approach to classify diseases and 
predict prognosis. In this study, the InceptionV3 architecture, a commonly used deep learning network, was 
utilized and may potentially be expanded for various future studies. Subsequent follow-ups to this study, such 
as the investigation of fully automated diagnostic approaches at the disease level for each patient and application 
to the pathomics of dysplastic cells are needed.

The limitation of this study is that the detailed morphological manifestations of dysplasia in each cell lineage 
could not be trained separately. Nevertheless, it is inferred that effective differentiation was possible by securing 
a sufficient number of normal cells. If dysplasia is classified according to its detailed features in the future, it is 
expected to achieve higher performance. Next, the ratio of the number of cells in each class cannot be unified. 
Granulopoiesis had a relatively large number of cells compared to the cells of other lineages; thus, there is a pos-
sibility of better performance. Therefore, in the interpretation of this study, the performance of the lineage of 
each cell should be determined by considering numerical differences. Finally, only cell-based performance was 
analyzed in this study, and additional disease diagnostic performance needs to be developed for real-world clini-
cal application. Through follow-up research, we intend to develop an algorithm that will analyze the percentage of 
dysplastic cells for each lineage of all nucleated cells in bone marrow and be useful as a tool for diagnosing MDS.

In this study, we developed a classification algorithm that can distinguish between normal and dysplastic 
cells of three lineages in the bone marrow aspiration smear of patients with MDS. The algorithm developed in 
this study could be used as an auxiliary tool for diagnosing patients with MDS and is expected to contribute 
to shortening the time required for MDS bone marrow aspiration diagnosis and standardizing visual reading.

Methods
Clinical samples and whole slide scanning. The workflow of the dataset preparation and deep learn-
ing construction is presented in Fig. 2. The study was conducted according to the guidelines of the Declaration 
of Helsinki and approved by the Institutional Review Board (IRB) of Kangnam Sacred Heart Hospital (IRB 
No. HKS 2021-07-023), which waived the need for informed consent owing to the anonymized nature of the 
study. The data used in the study is publicly available. Bone marrow aspiration images were acquired from 34 
patients diagnosed with MDS based on the WHO 2016 MDS diagnostic  criteria21, and 24 normal bone marrow 
slides were required for bone marrow examination. The normal bone marrows were obtained from patients 
who underwent initial routine staging for lymphoma and showed no signs of hematologic malignancy and/or 
reactive marrow. Bone marrow smears were stained with Wright–Giemsa stain. The whole scanning of the bone 
marrow aspiration slide was conducted using Motic Digital Slide Assistant software version 1.0.7.61 (Motic 
China Group Co. Ltd., Xiamen, China).

Automated identification of nucleated cells in bone marrow aspiration slide. Images contain-
ing the ideal zone of cell well-spread areas with nucleated cells were manually captured for the patch image. The 
total number of patched images was 11,000. Manual labeling of nucleated cells was performed for 946 cells and 
segmentation for the cell detection algorithm of patched images was developed (Fig. 3). This segmentation task, 
including the detection and delineation of bone marrow cells, was performed using U-Net. U-Net delineates the 
boundaries of nucleated cells and segments the cell area of interest from the background microenvironment.
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Development of cell identification algorithm by CNN. The cells were classified into eight types (EN, 
GN, MN, ED, GD, MD, blasts, and others). Normal and dysplastic cells were assigned to include and merge 
nucleated cells from both MDS patients and normal bone marrow specimens. All cell images were retrospec-
tively and independently reviewed following the published standard guidelines by two hematologists with 6 and 
23 years of experience in laboratory medicine, respectively. Each image was reviewed by both hematologists, and 
disagreements between them were resolved by consensus. We used 6453 cell images (80.0%) for training, 806 cell 
images (10.0%) for validation, and 806 images (10.0%) for testing. We used the metrics modules in DEEP:PHI 
(medical AI software: DEEPNOID, Seoul, Republic of Korea), which is an open platform that assists in DL 
model research. Statistical analyses were performed using the DEEP:PHI platform. We used the InceptionV3 
architecture, a well-known object detection DL framework, to perform per-image classification of bone marrow 
 cells22. The Grad-CAM technique was used for the interpretation and evaluation of the DL  outputs16. An adap-
tive moment estimation optimizer was used for the hyperparameter settings with a learning rate of 0.0001. The 
batch size was 32 and the number of epochs was 200.

Statistical and data analysis. Dice coefficient score, a statistical tool for measuring similarity, was uti-
lized to evaluate the performance of segmentation by U-net. The AUC, sensitivity, specificity, PPV, NPV, accu-
racy, F1 score, and average precision were estimated in order to evaluate the performance of cell classification. 
The values on the curve present the degree of performance as follows: no discrimination (AUC < 0.5), acceptable 
(0.5 ≤ AUC < 0.7), excellent (0.7 ≤ AUC < 0.9), and outstanding (0.9 ≤ AUC)23.

Figure 2.  Dataset preparation and proposed framework.

Figure 3.  Manual labeling process of nucleated cells. (A) Whole slide scanning of bone marrow aspiration slide 
(B) Web-based interface for assisted annotation that enables manual labeling of nucleated cells.
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Data availability
All relevant database described in this study has been deposited on the Harvard Dataverse website (Lee, Nuri, 
2022, “Dataset of deep learning application of the discrimination of bone marrow aspiration cells in patients with 
myelodysplastic syndromes,” https:// doi. org/ 10. 7910/ DVN/ VIRPNT, Harvard Dataverse, V1). The codes used in 
this study are available online (https:// github. com/ Nuril ee822/ MDS_ dyspl astic_ class ifica tion).

Received: 10 August 2022; Accepted: 5 October 2022
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