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Development of generalized 
Fourier and Fick’s law 
of electro‑osmotic MHD flow 
of sodium alginate based Casson 
nanofluid through inclined 
microchannel: exact solution 
and entropy generation
Dolat Khan1, Kanayo Kenneth Asogwa2, Nevzat Akkurt5, Poom Kumam1,3,4*, 
Wiboonsak Watthayu1 & Kanokwan Sitthithakerngkiet6

Electro-osmotic flow via a microchannel has numerous uses in the contemporary world, including 
in the biochemical and pharmaceutical industries. This research explores the electroosmotic flow of 
Casson-type nanofluid with Sodium Alginate nanoparticles through a vertically tilted microchannel. 
In addition, the transverse magnetic field is also considered. In this flowing fluid, the influence of 
heat and mass transmission is also explored. The aforementioned physical process is represented 
by partial differential equations. Utilizing suitable dimensionless variables for nondimensionalized. 
Furthermore, the non—dimensional classical system is fractionalized with the use of generalized 
Fourier and Fick’s law. Generalizations are made using the Caputo derivative’s description. The 
analytical solution of the velocity, temperature, and concentration profiles is obtained by combining 
the methods of Laplace and Fourier. Interestingly, the influence of several physical characteristics 
such as the fractional parameter, Casson fluid parameter, the thermal and mass Grashof numbers, 
and the zeta potential parameter is displayed. Moreover, the results show that the volume fractional 
of nanoparticles enhances the rate of heat transfer up to 39.90%, Skin friction up to 38.05%, and 
Sherwood number up to 11.11%. Also, the angle of inclination enhances the fluid velocity.

List of symbols
ρnf 	� Density of nanofluid
µnf 	� Dynamic viscosity of nanofluid
σnf 	� Electrical conductivity of nanofluid
B0	� Magnetic flux
g	� Gravitational acceleration
T0	� Amended temperature
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δ, γ	� Angle of inclinations
C0	� Amended concentration
EX	� Electric field
Cp	� Heat capacitance
D	� Coefficient of diffusion
Gm	� Mass Grashof number
Gr	� Thermal Grashof number
Pr	� Prandtl number
u(η, t)	� Velocity of the fluid
β	� Casson fluid
us	� Helmholtz-smoluchowski velocity
βT	� Coefficient of the thermal expansion
T	� Temperature profile
βC	� Concentration coefficient
C	� Concentration Profile
Rξ	� Ratio of zeta potential
ρe	� Net charge density
k	� Thermal conductivity
φ	� Volume fraction of nanofluid
Sc	� Schmidt number
M	� Magnetic parameter

Fractional calculus advances the concept of classical calculus. Fractional calculus has proven to be an indis-
pensable tool for mainstream science, as needful in optical fibers, electromagnetic, and plasma physics since it 
permits the formulation of differential equations that relate components and associated rates of growth. Owing 
to its inherited features and content memory repercussions, fractional operators have experienced a continual 
process of generalization and improvement over the past decades. Several fractional derivative applications exist 
in the fields of dynamics, chaos, chemical processes, rheological properties, and diffusion Hristov1. Incorporat-
ing the Caputo fractional (CF) operator with Fick’s and Fourier’s Laws led Khan et al.2 to the conclusion that 
the fractional technique is more realistic and useful than the traditional method since it provides a number 
of outputs that may improve the best fit of empirical data. Using Fourier’s and Fick’s generalized laws, Sheikh 
et al.3 looked into the flow of nanofluid. In their works, Rehman et al.4 and Ali et al.5 noted that conformable 
derivatives are used to approach the fractional differential equation. In light of a fractional-based model, Khan 
et al.6 came to the conclusion that the inclusion of hybrid nanoparticles rather than mono nanofluids controls 
the drilling fluid velocity. Moreover, the incorporation of different nanoparticle shapes into water increased the 
percentage of heat transfer by up to 11.149 percent. Jiang et al.7 used Fourier’s and Fick’s laws to assess the flow of 
nanofluid via a stretched surface. Through a comparison of fractional derivatives, Sheikh et al.8 investigated the 
flow of non-Newtonian fluids. Shah et al.9 study’s of the erratic convective flow of viscous liquids using fractional 
Caputo-Fabrizio derivatives. Laplace transform combined with the Fourier-Sine transform was used by Shao 
et al.10 to analyze the MHD convective fluids. In a work employing the CF fractional derivative, Baleanu et al.11 
conducted a mathematical investigation of the liver.

In 1959, The Casson fluid model was developed by Casson to describe the flow behavior of suspensions. 
Such liquids are classified as viscoelastic fluids, and they have numerous applications in the drilling process 
Asogwa et al.12. Many biomechanical and industrial applications exist for the Casson fluid model. For materials 
like blood, chocolate, and other rheological properties, the Casson fluid model is better than older viscoelastic 
models. Casson fluid is an endlessly viscous shear-thinning liquid with zero shear rate. On the other hand, a 
nanofluid is a solution containing nanoparticles that are predominantly metal or metal oxide with diameters 
ranging from 1 to 100 nm in a base fluid such as oil, water, or ethylene glycol. Nanofluids are favorable heat 
transfer fluids for engineering and manufacturing applications, according to data indicating the rapid expan-
sion of nanofluids-related research. The evolution of heat transfer in nanofluids is mostly dependent on the heat 
conductivity of nanoparticles, particle volume concentration, and mass flow discharges. Using the Keller-box 
method, Rafique et al.13 explored the influences of Brownian motion on Casson nanofluids of boundary layer flow 
over an inclined stretched sheet, according to their findings, the improvement of Casson parameter slowed the 
velocity distribution and Nusselt number. Ghadikolaei et al.14 discussed the MHD Casson nanofluid flow over a 
sloped porous stretched sheet. Zeeshan et al.15 examined the MHD propagation of Casson Nanofluid across an 
enlarging permeable cylinder. They estimated that nanoparticle volume fraction dispersion decrease when the 
non-Newtonian fluid parameter improves, whereas friction increases by around 20 percent and the Sherwood 
number increases by about 0.5 percent. While the Nusselt number indicates a ten percent drop. Faisal et al.16 
discussed the boundary layer flow of a Casson nanofluid driven by a moving surface. They found that for a given 
prescribed surface temperature, higher levels of the Casson parameter increase heat transport and deplete mass 
transfer. Khan et al.17 explored the viscoelastic fluid flow across a vertical channel. Using the analytical method, 
Khan et al.18 conducted a comparative investigation of Titanium oxide, Sodium alginate with Silver, Copper, and 
Aluminum oxide conveying nanofluid of MHD flow. Other relevant works are cited in19–21

Magnetohydrodynamics (MHD) refers to fluids that conduct electricity, such as plasma fluxes and liquid 
metals. Due to its prominent engineering applications, it has become a popular subject of research among 
scientists. Hydroelectric power plants, astronomy, geophysics, metallurgical industries, nuclear power plants, 
plasma propulsion in astronautics, and MHD generators, molecular and cellular biology, genetic engineering, 
medicine, and the development of delivery technologies are all areas where MHD may trace its ancestry22,23. 
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The exact solution for the relative magnetic field was reported by Khan et al.24, for Casson fluid along with heat 
generation, chemical reaction, and Newtonian heating. Shah et al.25 reported the MHD free convection flow 
along with thermal memory. After that, the fractional analysis of the MHD flow of sodium alginate base fluid is 
reported by Khan et al.26, by implementing the definition of Atangana–Baleanu derivative of the non-local and 
non-singular kernel.

Due to the extensive medical applications of Electroosmosis and its aids in the treatment of diseases such as 
cellular abnormalities, sickle cells, and drug delivery employing diagnostic kits. The electroosmotic phenomena 
occur whenever a channel is packed with a liquid electrolyte and a sufficient voltage is applied, producing a charge 
on the inside wall of the container when the electrolyte gets into contact with the inner walls Haung et al.27. 
Arulanandam and Li28 explored microchannels using electroosmotic pumping. Chakraborty et al. 29 studied 
flow rate control in coupled pressure-driven microfluidic and electroosmotic processes. Yang et al.30 researched 
electroosmotic flow in microchannels, Horiuchi and Dutta31 evaluated electro osmotically driven microchannel 
flows. Using generalized Fick’s and Fourier’s law, Irshad et al.32 investigated the non-Newtonian fluid’s electro-
osmotic flow through a microchannel. They discovered that the velocity grows as the electrokinetic parameter 
values rise. This spike in velocity is attributed to the reason that a greater value of the electrokinetic parameter 
demonstrates an improvement in velocity. Hina et al.33 explored the electro-osmotic flow in a synchronous chan-
nel incorporating Carreau–Yasuda nanofluid They discovered that the quantity of confined boluses reduces as 
electro-osmotic force strength grows. In a simple microchannel, Zakeri34 evaluated electro-osmotic flow and 
polymerization characteristics. They revealed that increasing the electric field will enhance the mobility of the 
flexible polymer chain. Using the Debye-Hückel linearization, Oni and Jha35 examined the electroosmotic flow in 
a microchannel. The unsteady rotating electroosmotic flow of a paired stress fluid in a microchannel was studied 
by Siva et al.36 They discovered that as the couple stress characteristic rises, the axial electroosmotic flow velocity 
within the electrical double layer rises. Reddy et al.37 looked into the peristaltic Casson fluid motion caused by 
MHD electro-osmosis with energy transmission in a spinning asymmetric microchannel. They discovered that 
boosting electroosmotic force enhances the transport of heat rate.

From the perspective of the previously published work and considering the importance of non-Newtonian 
fluids and electro-osmotic flow in Engineering. The research aim of the recent study is to identify the behavior of 
the electroosmotic flow of Sodium Alginate Based Casson nanofluid fluid through a slanted vertical microchan-
nel applying generalized Fick’s and Fourier’s laws. The model is developed in terms of PDEs for the selected flow 
pattern. The generated model is then fractionalized in a Caputo-derivative, and then employing Laplace and 
finite Fourier’s methods is used to provide results for energy, velocity, and concentration fields.

Mathematical formulation.  In this research, we study the electro-osmosis-induced unsteady MHD flow 
of the Sodium Alginate-based Casson fluid in a vertically inclined microchannel. The direction of the fluid flow 
is along x-axis. The flow of the fluid is in an inclined microchannel to maintain irregular zeta potential ζ1, ζ2 . 
The magnetic field  B0 is also applied to the fluid with the angle of inclination. Firstly, the fluid is at rest with 
ambient temperature T0  and constant concentration C0 . After a period of time, the concentration and tempera-
ture are increased to C0 + (Cd − C0)At and T0 + (Td − T0)At respectively as shown in Fig. 1.

Using the preceding assumptions, the mathematical form of the velocity, temperature, and concentration 
are given by39,40

(1)
ρnf

∂u(η, t)

∂t
=µnf

(

1+
1

β

)

∂2u(η, t)

∂η2
− σnf B

2
0 sin(δ)u(η, t)+ (ρβT )nf g cos(γ )(T − T0)

+ (ρβC)nf g cos(γ )(C − C0)+ EXρe ,

Figure 1.   Geometry of the flow.



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18646  | https://doi.org/10.1038/s41598-022-21854-5

www.nature.com/scientificreports/

The dimensionless variables are:

where M =
σf B

2
◦
d2

µf
 is Hartman number, Gr = gd2βTf (Td−To)

vf uS
 for thermal Grashof number, Sc = vf

Df
 represent the 

Schmidt number, Gm =
gd2βCf (Cd−Co)

vf uS
 represent mass Grashof number, Pr = µf cpf

kf
 represent the Prandtl number, 

where A1 =
Rξ−e−k

2 sinh(k) , and A2 = 1− A1.

(2)
∂T(η, t)

∂t
= −

1
(

ρCp

)

nf

∂
⌢
q(η, t)

∂η
,

(3)
⌢
q(η, t) = −knf

∂T(η, t)

∂η
,

(4)
∂C(η, t)

∂t
= −

∂
⌢

j (η, t)

∂η
,

(5)
1

Dnf

⌢

j (η, t) = −
∂C(η, t)

∂η
,

(6)
u(η, 0) = u(0, t) = u(d, t) = 0

T(η, 0) = T(0, t) = T0, T(d, t) = T0 + (Td − T0)At,

C(η, 0) = C(0, t) = C0, C(d, t) = C0 + (Cd − C0)At







.

(7)
τ =

v

d2
t, ξ =

η

d
, u∗ =

u

us
, ϕ =

C − C0

Cd − C0

, θ =
T − T0

Td − T0

, k∗ = kd,

Rξ =
ξ2

ξ1
, � =

jd

D(Cd − C0)
, δ1 =

qd

k(Td − T◦)
, A =

v

d2















.

(

ρCp

)

nf
= (1− φ)

(

ρCp

)

f
+ φ

(

ρCp

)

s
, Dnf =

Df

1− φ
, µnf =

µf

(1− φ)2.5
,

knf = kf

(

ks + 2kf − 2φ(kf − ks)

ks + 2kf + φ (kf − ks)

)

, (ρβT )nf = (1− φ) (ρβT )f + φ(ρβT )s ,

σnf = σf

(

1+
3(σ − 1)φ

(σ + 2)− (σ − 1)φ

)

(8)

∂u(ξ , τ )

∂τ
=
m5

m4

(

1+
1

β

)

∂2u(ξ , τ)

∂ξ2
−M

m6

m4

sin(δ)u(ξ , τ)+ Gr
m7

m4

cos(γ )θ(ξ , τ)

+ Gm
m8

m4

cos(γ )ϕ(ξ , τ )+
1

m4

k2
(

A1e
kξ

+ A2e
−kξ

)

,

(9)
∂θ(ξ , τ )

∂τ
= −

m3

m2

1

Pr

∂δ(ξ , τ )

∂ξ
,

(10)δ1(ξ , τ ) = −
∂θ(ξ , τ)

∂ξ
,

(11)
∂φ(ξ , τ )

∂τ
= −

1

m1

1

Sc

∂�(ξ , τ )

∂ξ
,

(12)�(ξ , τ) = −
∂ϕ(ξ , τ )

∂ξ
,

(13)
u(ξ , 0) = u(0, t) = u(1, t) = 0

T(ξ , 0) = θ(0, τ ) = 0, θ(1, τ ) = τ ,

ϕ(ξ , 0) = ϕ(0, τ ) = 0, ϕ(0, τ ) = τ







,
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m1 =
1

1−φ
, m2 = (1− φ)+ φ

(ρCp)s
(ρCp)f

, m3 =
knf
kf
, m4 = 1− φ + φ

ρs
ρf
, m5 =

1

(1−φ)2.5
, m6 = 1+

3(σ−1)φ
(σ+2)−(σ−1)φ

 , 

m7 = (1− φ) + φ
(ρβT )s
(ρβT )f

, m8 = (1− φ) + φ
(ρβC)s
(ρβC)f

.

Generalized model.  The simplified Fick’s and Fourier law is utilized to fractionalize the model 38,40:

where cD1−α
t  represent the time fractional Caputo operator.

To obtain the second equation in a more accurate form, take its inverse operator of fractional Caputo deriva-
tive we have:

Problem solution.  Energy field solution.  By using transformation38,40

Equation (16) becomes

The corresponding conditions are given by

Apply the joint Laplace and Fourier transform we get:

Taking inverse we get:

The energy equation solution is as:

Concentration field solution.  By using transformation38,40

Equation (17) becomes

Using boundary and initial conditions as we have

Using joint Laplace and sine finite Fourier transform we have:

Taking inverse we get:

(14)
∂θ(ξ , τ )

∂τ
=

m3

m2

1

Pr

cD1−α
t

∂2θ(ξ , τ )

∂2ξ
,

(15)
∂ϕ(ξ , τ )

∂τ
=

1

m1Sc
cD1−α

t

∂2ϕ(ξ , τ)

∂ξ2
,

(16)cDα
t θ(ξ , τ ) =

m3

m2

1

Pr

∂2θ(ξ , τ)

∂2ξ
,

(17)cDα
t ϕ(ξ , τ ) =

1

m1Sc

∂2ϕ(ξ , τ )

∂ξ2
.

(18)χ1(ξ , τ) = θ(ξ , τ)− ξ f (τ ).

(19)cDα
t χ1(ξ , τ )+ ξ cDα

t f (τ ) =
m3

m2

1

Pr

∂2χ1(ξ , τ )

∂ξ2
.

(20)χ1(ξ , 0) = 0, χ1(0, τ ) = 0, χ1(1, τ) = 0.

(21)χ1 F
(

n, q
)

=
(−1)n

nπ

qα−2

qα +
m3

m2

(nπ)2

Pr

.

(22)χ1(ξ , τ) = 2

∞
∑

n=1

(−1)n

πn
sin (ξπn)

τ
∫

0

Eα,1

(

m3

m2

(πn)2

Pr
tα
)

(1− t) dt.

(23)θ(ξ , τ) = χ1(ξ , τ)+ ξ f (τ ).

(24)χ2(ξ , τ ) = ϕ(ξ , τ )− ξg(τ ).

(25)cDα
t χ2(ξ , τ)+ ξ cDα

t g(τ ) =
1

m1Sc

∂2χ2(ξ , τ)

∂ξ2
,

(26)χ2(ξ , 0) = 0, χ2(0, τ ) = 0, χ2(1, τ) = 0.

(27)χ2F
(

n, q
)

=
(−1)n

nπ

qα−2

qα +

(

(nπ)2

m1Sc

)dt.
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In last we get the equation of concentration as:

Velocity profile solution.  Using Laplace and Fourier transform as we have

where

Taking inverse we get:

where Eα,1 and H(τ ) are Mittag Leffler and unit step function.

Nusselt and sherwood number.  Nusselt and Sherwood are dimensionless numbers. Mathematically it 
can be written as:

Skin friction.  Mathematically Skin friction for the left place can be written as:

Similarly, skin friction in right place can be written as:

(28)χ2(ξ , τ ) = 2

∞
∑

n=1

(−1)n

πn
sin (ξnπ)

τ
∫

0

Eα,1

(

(πn)2

m1Sc
tα
)

(1− t) dt.

(29)ϕ(ξ , τ ) = χ2(ξ , τ )+ ξg(τ ).

(30)

uF
�

n, q
�

=
(−1)n+1H(q)

nπ
+

�

G3

q
+

G2

q+ G1

�

(−1)nqH(q)

nπ
+

Gr m7

m4
cos(γ ) θF(n, q)

q+ G1

+

Gm m8

m4
cos(γ ) ϕF(n, q)

q+ G1

+
1

q(q+ G1)







nπ
1
m4

k2 + (nπ)2











A1

�

(−1)n+1ek + 1

�

+A2

�

(−1)n+1e−k
+ 1

�
















,

G0 =
m5

m4

(

β + 1

β

)

,

G1 =
m6

m4

sin(δ)M + G0(πn)
2,

G2 =G0(nπ)
2,
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1 G0(nπ)

2.

(31)
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∞
�
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




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∞
�
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
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




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∞
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Entropy generation.  Entropy production for the flow of a Casson nano fluid in the presence of a magnetic 
field and without a mass concentration is described by42,43, taking into consideration the velocity from Eq. (23) 
and (31).

where � and Br is the dimensionless temperature difference and Brinkman number, denoted by,

Additionally, the Bejan number Be is known as,

where NH (ξ , τ ) = m3

(

∂θ(ξ ,τ )
∂ξ

)2

 is the entropy generation due to heat transfer.
The Bejan number is well recognized as a useful tool for describing how fluid fraction and magnetic field 

regulate thermal transfer.

Results and discussion
The velocity, energy, and concentration profiles of sodium alginate-based Casson nanofluid through an inclined 
microchannel, are examined in this section along with the effects of other factors. The results of this investigation 
are reported in Figs. 2 through 20.

Figure 2 depicts the effect of the Zeta potential on the velocity profile. The heightening values of Zeta poten-
tial improve the velocity of the nanofluid, Physically, The stability of colloidal nanoparticles is significantly 
and easily quantified by the zeta potential. The size of the zeta potential represents the strength of electrostatic 
attraction between nearby nanoparticles with identical charges in a dispersion. Consequently, the velocity profile 
is enhanced. Figure 3 depicts the effect of the volume fraction of Sodium Alginate on the velocity profile. The 
stronger the volume fraction of the nanofluid, the slower the velocity of the nanofluid, which indicates that the 
nanoparticles are physically impeding the flow of the fluid. It is due to the fact that increasing the concentration 
of nanoparticles in the Sodium alginate base fluid developed the resistive forces which make them slow down in 
the channel. The higher the concentration in the fluid increases the viscosity of the Sodium alginate as a result 
the fluid velocity declines. An increase in the inclined angle of the magnetic field on the velocity profile induces 
an upshot of the velocity profile, as can be seen in Fig. 4. Physically, the velocity of the fluid is slowed because the 
Lorentz forces increase with increasing the angle of magnetic field inclination. Figure 5 displays the impact of the 
magnetic field ( M ) on the velocity distribution from 0 to 15. The magnetic field counters the velocity of nanofluid 
transmission. In principle, a rise in the magnetic field causes a substantial decrease in non—dimensional veloc-
ity. This is because the magnetic field creates a body force described as the Lorentz force, which retards motion. 
Figure 6 illustrates the behavior of electro-kinetic separation characteristic (k) on the velocity field under the 
impact of k values between 0.2 and 0.5. It is detected that the fluid velocity climbs as k increases. The thinner 
Electric Double Layer (EDL) that results from a higher value of k increases the electro-osmotic flow’s effective-
ness in a region with a bigger velocity gradient, leading to a greater overall velocity. The EDL is a collection of 
ions that accumulates on the vertical channel’s two parallel plates. Figure 7 presents the implication of Gr on the 
velocity distribution. the heightening values of Gr from 0 to 15 captured in Fig. 7 on the velocity profile lead to 
an escalation of the nanofluid’s velocity. Physically, When Gr increases, buoyancy forces rise, causing a drop in 

(36)Ns(ξ , τ ) = m3
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∂ξ
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,
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µ
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,

Figure 2.   The consequence of Rζ on the velocity distribution. where φ = 0.04, δ = γ =
π
3
,M = 5, k = 0.3,

Gr = 10,Gm = 20,β = 0.2,α = 0.5, t = 1, Sc = 10.
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the thickness of the momentum boundary layer, which causes a robust improvement of velocity distribution. 
Figure 8 depicts the impact of Gm on the velocity profile. which shows a spike in the velocity profile as the values 
of Gm growing. This occurred as a result of the gradient of concentration, which contributed to the enhanced 
buoyancy forces in the nanofluid, leading to an increase in the velocity profile. The influence of the angle of plate 
inclination on the velocity of the nanofluid is shown to be represented in Fig. 9, and it is detected that the velocity 

Figure 3.   The consequence of φ on the velocity distribution. Where Rζ = 2, δ = γ =
π
3
,M = 5, k = 0.3,

Gr = 10,Gm = 20,β = 0.2,α = 0.5, t = 1, Sc = 10,

Figure 4.   The effect of δ (inclined angle of magnetic field) on velocity of fluid. Where Rζ = 2,φ = 0.04,

γ =
π
3
,M = 5, k = 0.3,Gr = 10,Gm = 20,β = 0.2,α = 0.5, t = 1, Sc = 10,

Figure 5.   The consequence of M  on velocity of fluid. Where Rζ = 2,φ = 0.04, δ = γ =
π
3
,

k = 0.3,Gr = 10,Gm = 20,β = 0.2,α = 0.5, t = 1, Sc = 10,
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profile of the nanofluid is a feature that increases as the angle of plate inclination increases. Physically, the angle 
of plate inclination is enhancing the fraction due to which retardation occurs in fluid velocity. Figure 10 depicts 
the fluctuations in velocity profile owing to changes in Casson fluid parameter. From this figure, intriguing con-
clusions can be drawn. The velocity increases as the Casson parameter value goes up. However, it can be asserted 
that a Casson fluid with a greater value will respond like a Newtonian fluid. The significance of the fractional 

Figure 6.   The consequence of k on the velocity distribution. Where Rζ = 2,φ = 0.04, δ = γ =
π
3
,M = 5,

Gr = 10,Gm = 20,β = 0.2,α = 0.5, t = 1, Sc = 10,

Figure 7.   The consequence of Gr on the velocity distribution. Where Rζ = 2,φ = 0.04, δ = γ =
π
3
,M = 5,

k = 0.3,Gm = 20,β = 0.2,α = 0.5, t = 1, Sc = 10,

Figure 8.   The consequence of Gm impact on the velocity distribution. Where Rζ = 2,φ = 0.04, δ = γ =
π
3
,

M = 5, k = 0.3,Gr = 10,β = 0.2,α = 0.5, t = 1, Sc = 10,
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parameter on the velocity profile is depicted in Fig. 11. The higher fractional parameter values on the velocity 
profile give more velocity of the fluid while other parameters are fixed. Physically, the variation of fractional 
parameters reports the more realistic results for the given physical model. Which is best for experimentalist to 
compare their results. Figure 12 is projected to represent the influence of time on the nanofluid velocity and is 
seen that the velocity of the nanofluid is an escalating function of time. It is due to the fact that the fluid model is 

Figure 9.   The consequence of angle of plate inclination on velocity distribution. Where 
Rζ = 2,φ = 0.04, δ = π

3
,M = 5, k = 0.3,Gr = 10,Gm = 20,β = 0.2,α = 0.5, t = 1, Sc = 10,

Figure 10.   The consequence of β  on velocity distribution. Where Rζ = 2,φ = 0.04, δ = γ =
π
3
,M = 5,

k = 0.3,Gr = 10,Gm = 20,α = 0.5, t = 1, Sc = 10,

Figure 11.   The consequence of α  on velocity distribution. Where Rζ = 2,φ = 0.04, δ = γ =
π
3
,M = 5,

k = 0.3,Gr = 10,Gm = 20,β = 0.2, t = 1, Sc = 10,
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unsteady so it must depend on time. Figure 13 exhibits the dynamics of the nanofluid velocity profile under the 
influence of Sc values between 10 and 40. As Sc rises, it can be seen that the fluid velocity decreases. This is the 
case because when Sc grows, the nanofluid’s viscosity improves, the mass diffusion rate lowers, and the velocity 
drops. The effect that time has on the concentration of nanofluid is illustrated in Fig. 14, and it can be examined 
that the concentration of nanofluid increases with time. In Fig. 15, which depicts the effect of the Schmidt number 
on the nanofluid concentration profile, it is seen that nanofluid mass concentration drops as the Sc increases. 

Figure 12.   The consequence of  t  on velocity distribution. Where Rζ = 2,φ = 0.04, δ = γ =
π
3
,M = 5,

k = 0.3,Gr = 10,Gm = 20,β = 0.2,α = 0.5, Sc = 10,

Figure 13.   The consequence of  Sc on the velocity distribution. Where Rζ = 2,φ = 0.04, δ = γ =
π
3 ,

M = 5, k = 0.3,Gr = 10,Gm = 20,β = 0.2,α = 0.5, t = 1.

Figure 14.   The consequence of t  on concentration distribution. Where φ = 0.01,α = 0.5, Sc = 15.
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The molecular diffusion coefficient to kinematic viscosity ratio is known as the Schmidt number. As shown in 
Fig. 16, the increment of nanoparticle volume fraction of Sodium Alginate is responsible for the improvement 
of nanofluid mass concentration caused by colloidal forces. Figure 17 highlights the relevance of the fractional 
parameter on the temperature profile. The elevated fractional parameter values on the nanofluid deplete the 
temperature profile. Figure 18 indicates the impact of time on the temperature of the nanofluid, and it can be 
observed that the temperature of the nanofluid increases as time passes. The interaction between the nanoparticle 
volume fraction of Sodium Alginate and the temperature profile is shown in Fig. 19. Heat transmission rises as 
the volume percentage of nanoparticles in Sodium Alginate grows. Figure 20 provides a visual representation of 

Figure 15.   The consequence of Sc on the concentration distribution. Where φ = 0.01,α = 0.5, t = 1.

Figure 16.   The consequence of φ on concentration distribution. Where α = 0.5, t = 1, Sc = 15.

Figure 17.   The consequence of α on concentration distribution. Where φ = 0.01, t = 1, Sc = 15.
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the impact that the fractional parameter on the concentration profile. The lower concentration profile is caused by 
the larger fractional parameter values of the nanofluid. Figure 21 highlighted the influence of volume fractional 
of nanofluid against Nusselt number, Sherwood number and skin fraction. It is examined that the enhancement 
of volume fractional of nanofluid enhances the Nusselt number, Sherwood number and skin fraction up to 
39.90%, 11.11% and 38.05% respectively. By putting Rζ = 0,φ = 0, δ = γ =

π
2
,M = 1.5, k = 0,Gr = 5,Sc = 0,

Gm = 0,α = 0.5, and β → ∞, our solution is reduced to the solution of Saqib et al.41, which is presented in 
Fig. 22. Figures 23 and 24 presents the consequence of nanoparticle volume fraction on entropy generation and 
Bejan number respectively. The variation of nanoparticle volume enhances the fluid more denser which caused 
the retardation of entropy generation and as a results the Bejan number enhance.

Figure 18.   The consequence of t  on temperature distribution. Where φ = 0.01,α = 0.5.

Figure 19.   The consequence of φ on temperature distribution. Where α = 0.5, t = 1.

Figure 20.   The consequence of α on temperature distribution. Where φ = 0.01, t = 1.
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Conclusion
In this study, we explored the electroosmotic flow conveying Sodium Alginate non-Newtonian nanofluid via an 
inclined vertical microchannel utilizing generalized Fourier and Fick’s law and engaging Laplace and Fourier’s 
techniques. The following are the most important findings from the study:

Figure 21.   Percentage of Nu, Sh and Sf  against volume fractional of nanofluid.

Figure 22.   Comparison study with Saqib et al.41.

Figure 23.   The consequence of φ on the Entropy generation. Where Rζ = 2, δ = γ =
π
3
,M = 5, k = 0.3,

Gr = 10,Gm = 20,β = 0.2,α = 0.5, t = 1, Sc = 10,Br = 0.5,� = 5.
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•	 The energy pattern of Sodium Alginate nanofluid rises with increasing nanoparticle volume fraction and 
duration, with a diminishing contribution as the fractional parameter increases.

•	 The concentration of nanofluid for Sodium Alginate enhances with the developing quantities of nanoparticle 
volume fraction and time with a drop consequence as a fractional parameter and Schmidt number enlarge.

•	 The heightening values of Zeta potential, electro-kinetic separation, thermal and mass Grashof numbers, 
angle of plate inclination, Casson fluid, fractional parameter, and time boost the velocity of the nanofluid for 
Sodium Alginate, whereas the magnetic field, nanoparticle volume fraction, and Schmidt number constitute 
opposite effect.

•	 The enhancement of volume fractional of nanofluid enhances the Nusselt number, Sherwood number and 
skin fraction up to 39.90%, 11.11% and 38.05% respectively.

•	 The volume fractional of nanoparticle retard the entropy generation while enhance the Bejan number.

Data availability
Data of this study will be made available from the corresponding author on reasonable request.
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