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Multi‑modal wound classification 
using wound image and location 
by deep neural network
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Sandeep Gopalakrishnan 4 & Zeyun Yu 1,5*

Wound classification is an essential step of wound diagnosis. An efficient classifier can assist wound 
specialists in classifying wound types with less financial and time costs and help them decide on 
an optimal treatment procedure. This study developed a deep neural network‑based multi‑modal 
classifier using wound images and their corresponding locations to categorize them into multiple 
classes, including diabetic, pressure, surgical, and venous ulcers. A body map was also developed to 
prepare the location data, which can help wound specialists tag wound locations more efficiently. 
Three datasets containing images and their corresponding location information were designed 
with the help of wound specialists. The multi‑modal network was developed by concatenating the 
image‑based and location‑based classifier outputs with other modifications. The maximum accuracy 
on mixed‑class classifications (containing background and normal skin) varies from 82.48 to 100% 
in different experiments. The maximum accuracy on wound‑class classifications (containing only 
diabetic, pressure, surgical, and venous) varies from 72.95 to 97.12% in various experiments. The 
proposed multi‑modal network also showed a significant improvement in results from the previous 
works of literature.

More than 8 million people are suffering from wounds, and the medicare cost related to wound treatments ranged 
from $28.1 billion to $96.8 billion, according to a 2018 retrospective  analysis1. This immense number can give us 
an idea of the population related to wound and their care and management. The most common types of wounds/
ulcers are diabetic foot ulcer (DFU), venous leg ulcer (VLU), pressure ulcer (PU), and surgical wound (SW). 
About 34% of people with diabetes have a lifetime risk of developing a DFU, and more than 50% of diabetic foot 
ulcers become  infected2. About 0.15% to 0.3% of people suffer from active VLU  worldwide3. A pressure ulcer 
is another significant wound, and 2.5 million people are affected each  year4. Yearly about 4.5% of people have a 
surgery that leads to a surgical  wound5.

The above statistics show that wounds have caused a huge financial burden and may even be life-threatening 
to patients. An essential part of wound care is to differentiate among different types of wounds (DFU, VLU, 
PU, SW, etc.) or wound conditions (infection vs. non-infection, ischemia vs. non-ischemic, etc.). To prepare 
proper medication and treatment guidelines, physicians must first detect the correct wound class. Until the 
recent advancement of artificial intelligence (AI), wound specialists manually classified wounds. AI can save 
both time and cost and, in some cases, may give better predictions than humans. In recent years, AI algorithms 
have evolved into so-called data-driven techniques without human or expert intervention, as compared to the 
early generations of AI that were rule-based, relying mainly on an expert’s  knowledge6. This research focuses on 
wound type classification using a data-driven AI technique named Deep Learning (DL).

Deep learning is prevalent in image processing, with a huge success in medical image analysis. In the general 
field of image processing and study, some widely used DL algorithms are Convolutional Neural Networks (CNN), 
Deep Belief Networks (DBN), Deep Boltzmann Machines (DBM), and Stacked (Denoising)  Autoencoders7. In 
addition, some of the most common DL methods for medical image analysis include LeNet, AlexNet, VGG 19, 
GoogleNet, ResNet, FCNN, RNNs, Auto-encoders, Stacked Auto-encoders, Restricted Boltzmann Machines 
(RBM), Variational Auto-encoders, and Generative Adversarial  Networks8. Bakator et al.9 reviewed CNN, RBM, 
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Self-Advised Support Vector Machine (SA-SVM), Convolutional Recurrent Neural Network (CRNN), DBN, 
Stacked Denoising Autoencoders (SDAE), Undirected Graph Recursive Neural Networks (UGRNN), U-NET, 
and Class Structure-Based Deep Convolutional Neural Network (CSDCNN) as deep learning methods in the 
field of medical diagnosis.

Though there exists some feature-based machine learning and end-to-end deep learning models for image-
based wound classification, the classification accuracy is limited due to incomplete information considered in 
the classifiers. The novelty of the present research is to add wound location as a vital feature to obtain a more 
accurate classification result. Wound location is a standard entry for electronic health record (EHR) documents, 
which many wound physicians utilize for wound diagnosis and prognosis. Unfortunately, these locations are 
documented manually without any specific guidelines, which leads to some inconsistency. In the current work, 
we developed a body map from which one can select the location of the wound visually and accurately. Then, for 
each wound image, the wound location was set through the body map, and the location was indexed according 
to the image file name. Finally, the developed classifier was trained with both image (gained through convolu-
tion) and location features and produced superior classification performance compared to image-based wound 
classifiers. A basic workflow of this research is shown in Fig. 1. The developed wound classifier takes both wound 
image and location as inputs and outputs the corresponding wound class.

The remainder of the work is organized as follows. Related works on wound classification are discussed in 
Section “Related works”. Section “Methodology” discusses the methodology, where the dataset, body map, and 
classification models are described. In Section “Experiment and result and discussion”, experimental setup, 
results and comparison, and discussion on the results are presented. Finally, the paper is concluded, and some 
remarks on future directions are given.

Related works
Wound classification includes wound type classification, wound tissue classification, burn depth classification, 
etc. Wound type classification considers different types of wounds and non-wounds (normal skin, background, 
etc.). Background versus DFU, normal skin versus PU, and DFU versus PU are examples of binary wound type 
classification. In contrast, DFU versus PU versus VLU is an example of multi-class wound type classification. 
Wound tissue classification differentiates among different types of tissues (granulation, slough, necrosis, etc.) 
within a specific wound. Burn depth classification measures the depth (superficial dermal, deep dermal, full-
thickness, etc.) of the burn wound. As this research focuses on wound type classification, this section discusses 
existing data-driven wound type classification works. Here, we present machine learning and deep learning-based 
wound type classification works.

A machine learning approach was proposed by Abubakar et al.10 to differentiate burn wounds and pressure 
ulcers. Features were extracted using pre-trained deep architectures like VGG-face, ResNet101, and ResNet152 
from the images and then fed into an SVM classifier to classify the images into burn or pressure wound classes. 
The dataset used in this study included 29 pressure and 31 burn wound images obtained from the internet and a 
hospital, respectively. After augmentation, they had three categories: burn, pressure, and healthy skin, with 990 
sample images in each class. Several experiments, including binary classification (burn or pressure) and 3-class 
classification (burn, pressure, and healthy skin), were conducted.

Goyal et al.11 used traditional machine learning, deep learning, and ensemble CNN models for binary clas-
sification of ischemia versus non-ischemia and infection versus non-infection on DFU images. The authors 
developed a dataset containing 1459 DFU images that two healthcare professionals labeled. For traditional 
machine learning, the authors used BayesNet, Random Forest, and Multilayer perceptron. Three CNN networks 
(InceptionV3, ResNet50, and InceptionResNetV2) were used as deep-learning approaches. The ensemble CNN 
contained an SVM classifier that takes the bottleneck features of three CNN networks as input. The test evaluation 
showed that traditional machine learning methods performed the worst, followed by deep-learning networks, 
while the ensemble CNN performed the best in both binary classifications. The authors reported an accuracy of 
90% for ischemia classification and 73% for infection classification.

A novel CNN architecture named DFUNet was developed by Goyal et al.12 for binary classification of healthy 
skin and DFU skin. A dataset of 397 wound images was presented, and data augmentation techniques were 
applied to increase the number of images. The proposed DFUNet utilized the idea of concatenating the outputs 

Figure 1.  Workflow of this research.
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of three parallel convolutional layers with different filter sizes. An accuracy of 92.5% was reported for the pro-
posed method.

A CNN-based method was proposed by Aguirre et al.13 for VLU versus non-VLU classification from ulcer 
images. This study used a pre-trained VGG-19 network to classify the ulcer images in the two categories men-
tioned. First, a dataset of 300 pictures annotated by a wound specialist was proposed, and data pre-processing 
and augmentation were conducted before the network training. Then, the VGG-19 network was pre-trained using 
another dataset of dermoscopic images. The authors reported 85%, 82%, and 75% accuracy, precision, and recall.

Shenoy et al.14 proposed a CNN-based method for binary classification of wound images. In this study, they 
used a dataset of 1335 wound images collected via smartphones and the internet. The authors considered nine 
different labels (wound, infection (SSI), granulation tissue, fibrinous exudates, open wound, drainage, steri 
strips, staples, and sutures) for the dataset, where for each label, two subcategories (positive and negative) were 
considered. The authors used a modified VGG16 network named WoundNet as the classifier, pre-trained using 
the ImageNet dataset. In addition, the researchers created another network called Deepwound, an ensemble 
model that averaged the results of three individual models. The reported accuracy varies from 72% (drainage) 
to 97% (steri strips), where the accuracy for the class “wound” is 82%.

A binary patch classification of normal skin versus abnormal skin (DFU) was performed by Alzubaidi et al.15 
with a novel deep convolutional neural network named DFU_QUTNet. First, the authors introduced a new 
dataset of 754-foot images from a diabetic hospital center in Iraq. From these 754 images, 542 normal skin 
patches and 1067 DFU patches were generated. Then, in the augmentation step, they multiplied the number 
of training samples by 13, using flipping, rotating, and scaling transformations. The proposed network was a 
deep architecture with 58 layers, including 17 convolutional layers. The performance of their proposed method 
was compared with those of other deep CNNs like GoogLeNet, VGG16, and AlexNet. The maximum reported 
F1-Score was 94.5%, obtained from combining the DFU_QUTNet architecture with SVM.

Rostami et al.16 proposed an end-to-end ensemble DCNN-based classifier to classify entire wound images 
into multiple classes, including surgical, diabetic, and venous ulcers. The output classification scores of two 
classifiers based on patch-wise and image-wise strategies were fed into a Multi-Layer Perceptron to provide a 
superior classifier. A new dataset of authentic wound images containing 538 images from four different types 
of wounds was introduced in this research. The reported maximum and average classification accuracy values 
were 96.4% and 94.28% for binary and 91.9% and 87.7% for 3-class classification.

Sarp et al.17 classified chronic wounds into four classes (diabetic, lymphovascular, pressure injury, and surgi-
cal) by using an explainable artificial intelligence (XIA) approach to provide transparency on the neural network. 
The dataset contained 8690 wound images collected from the data repository of eKare, Inc. Mirroring, rota-
tion, and horizontal flip augmentations were used to increase the number of wound images and to balance the 
number of pictures in each class. Transfer learning on the VGG16 network was used as the classifier model. The 
authors reported an average F1 score of 0.76 as the test result. The XIA technique can provide explanation and 
transparency for the wound image classifier and why the model would think a particular class may be present.

Though some wound type classification works from wound images exist, to the best of our knowledge, there 
is no automated wound classification work based on the wound location feature. This research is the first work 
that incorporates wound location for automatic wound type classification and proposes a multi-modal network 
that uses both wound image features and location features to classify a wound.

Methodology
Dataset. In this research, two different datasets were used for our experiments. Our team developed one 
dataset called AZH Dataset, and the other was a public dataset called Medetec Dataset. We also developed a 
mixed dataset with the datasets mentioned above named AZHMT Dataset. A brief discussion of these datasets 
is given below:

AZH dataset. AZH dataset was collected over a two-year clinical period at the AZH Wound and Vascular 
Center in Milwaukee, Wisconsin. The dataset includes 730 wound images in .jpg format. The images are of 
various sizes, where the width ranging from 320 to 700 pixels and the height ranging from 240 to 525 pixels. 
These images contain four different wound types: venous, diabetic, pressure, and surgical. iPad Pro (software 
version 13.4.1) and a Canon SX 620 HS digital camera were used to capture the images, and labeling was done 
by a wound specialist from the AZH Wound and Vascular Center. For most images in our dataset, each image 
was taken from a separate patient. But there were a few cases where multiple photos were taken from the same 
patient at different body sites or various healing stages. For the latter case, the wound shapes were different, so 
they were considered separate images. Unfortunately, due to the limited data resources, we could not increase the 
data samples in our dataset. This work did not involve any experiments on humans or the use of human tissue 
samples. We used wound image data from an external source, which is now publicly available at https:// github. 
com/ uwm- bigda ta/ Multi- modal- wound- class ifica tion- using- images- and- locat ions. All data have been carefully 
inspected and de-identified. This public dataset contains only wound ROIs (i.e., wounds and surrounding skins) 
to protect patient identities by removing all unnecessary and personal information from the images. The use of 
the dataset has been inspected by The University of Wisconsin-Milwaukee to meet the university policy.

Medetec dataset. Medetec wound  database18 contains free stock images of all types of open wounds. We ran-
domly collected 358 images from these three categories: diabetic, pressure, and arterial and venous leg ulcers. 
The arterial and venous leg ulcer images are not separated in the Medetec database, so we considered them in 
the same category. This dataset does not contain any surgical wound images. All the images are in .jpg format, 

https://github.com/uwm-bigdata/Multi-modal-wound-classification-using-images-and-locations
https://github.com/uwm-bigdata/Multi-modal-wound-classification-using-images-and-locations
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where the weight varies from 358 to 560 pixels, and the height varies from 371 to 560 pixels. This external public 
dataset was used to perform the robustness and reliability testing of the developed model.

AZHMT dataset. This dataset is the mixer of all the images from the AZH and Medetec datasets. This dataset 
contains 1088 wound images in .jpg format. AZHMT includes four wound classes: diabetic, pressure, surgical, 
and arterial + venous leg ulcers. The width of these images varies from 320 to 700 pixels, and the height ranges 
from 240 to 560 pixels. AZHMT dataset was created for testing the effect of a bigger dataset on our developed 
model.

Body map for location. A body map is a labeled, simplified, and symbolic diagram of the entire body 
of the person, which should be phenotypically  right19. Medical practitioners use body maps to locate bruises, 
wounds, or body breakage on a patient’s body. Moreover, forensic scientists use body diagrams to help them 
identify and determine body changes during a postmortem examination. Doctors use body maps to analyze the 
location of a given infection in  patients20. A detailed body map helps doctors determine which other part of the 
body to be cautious about during the wound’s rehabilitation process. Moreover, a body map is a piece of medical 
evidence during a scientific study. A health practitioner can use notable body changes shown by a body map as 
a backup of an existing ailment affecting the patient internally.

Wound history is another benefit attributed to efficient body mapping. A doctor can collect information on 
the wound’s cause, previous measures adopted in providing care to the wound, and underlying health complica-
tions such as diabetes that would deter the healing process. Detailed wound history needs to be collected and all 
causes explored to avoid delayed or static healing. Body mapping contributes to wound treatment localization 
significantly. Pain location, activities of daily living, and the type of wound are factors that a doctor should con-
sider in the localization process. Wilson asserts that a wound in the heel area and a wound on the lower abdomen 
or joint area would not have a similar rehabilitation technique. The wound on the heel would need the doctor 
to consider the weight issue instead of the wound on the lower abdomen. Therefore, the doctor would need to 
localize their examination and the treatment process depending on the wound’s location and other external 
factors that directly affect the wound weight and joint  movement20.

A body map with 484 total parts was designed to avoid the body map’s complexity. The body map was pre-
pared using  PaintCode21. The initial reference to the body map was obtained  from22–24. The ground truth diagram 
for the design is based on the Original Anatomy  Mapper25. Each label and outline were directly paired with the 
labeling provided by the anatomy  mapper25. To avoid the extreme complexity of drawing every detailed feature 
of the body map, a total of 484 feature or region was pre-selected and approved by wound professionals at the 
AZH wound and vascular center. The developed body map is shown in Fig. 2. Here each number represents a 
location. A few examples of the locations and their corresponding numbers are shown in Table 1.

Through experiments, we observed that our number of data (images) is deficient regarding the different 
wound types and locations, leading to very few data points per class. To maintain the reliability of the experiment, 
the body map was further simplified by merging different sections of our developed body map. For example, body 
locations 436, 437, and 438 were combined and referenced as 436; similarly, body locations 390, 391, 392, and 
393 were merged and referenced as 390, and so on. With this simplification, 161 location points were removed 
from our developed body map, and the total number of locations decreased from 484 to 323. This made our 
location classifier predict more realistic results, making the whole experiment reliable. More details are discussed 
in the “Selecting best experimental setup” section. Some examples of simplified body map are shown in Fig. 3. 
Our developed original body map is discussed here because, with the increment of the number of images, we 
will use this body map with 484 body locations in the future. For this research, we used the simplified body map 
containing 323 locations.

Dataset processing. All datasets go through three significant steps: region of interest (ROI) cropping, loca-
tion labeling, and data augmentation. The ROI of a wound image means the wound and some of its surrounding 
area (healthy skin) that contains the essential information of a wound. From each image, single or multiple ROIs 
were automatically cropped using our developed wound  localizer26. The extracted ROIs are rectangular, but their 
height and weight differ depending on the wound size. Then all the ROI’s locations were labeled by a wound 
specialist at the AZH wound and vascular center. The location labeling was done by using our developed body 
map. As our body map represents each location with a unique number, each ROI was tagged with a location 
number for model training. Finally, rotation and flipping augmentations were used for each ROI to increase the 
data numbers. A total of five augmentations were applied to each ROI: horizontal and vertical flip, 25-degree, 
45-degree, and 90-degree rotations. As wound location does not change with image augmentation, the location 
number was repeated for each augmented image. We also tried adding Gaussian noise and blurring augmenta-
tions which did not produce good ROIs, for which we discarded those augmentations. Figure 4 illustrates dataset 
processing steps.

From Fig. 4, we can see that the augmentation is done on the extracted ROIs. If we augmented the original 
images, the ROI cropping step would be more expensive. As our localization model is detecting bounding boxes, 
25- and 45-degree rotated images may produce some overlap between ROIs in case of multiple wounds in a single 
image. Also, the black areas around the augmented images are evenly distributed in all classes (as we are using 
25- and 45-degree rotations in all classes), which did not produce any class dependencies during classification. 
Finally, the black area produced by augmentation is entirely black (RGB code of 000), which is not present in 
wounds or human skins.

Each dataset (ROI) was divided into 60% training, 15% validation, and 25% test sets. First, the 25% test set 
was created from a random selection of the wound images to ensure no overlap between training and test sets. 
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The validation set was also created randomly during the time of training. Next, the 75% training and validation 
datasets were augmented, while test images did not go through data augmentation. Two non-wound classes, 
named normal skin and background, were created by manually cropping corresponding ROIs from the original 

Figure 2.  Body map for location selection.
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images. A wound specialist did the location tagging for healthy skin. As the background ROIs do not represent 
any location of our developed body map, each ROI is tagged with a location number ‘− 1’. Table 2 shows the 
number of images of all three datasets. All the six classes, diabetic, venous, arterial + venous, pressure, surgical, 
background, and normal skin, are represented with the following abbreviations D, V, A + V, P, S, BG, and N, 
respectively.

Model. We see that our dataset contains both image and categorical (wound location) data from the above 
discussion. We used Keras Functional  API27 to develop a network that can handle multiple inputs and mixed 
data. The Functional API is more flexible than the Sequential API, which can control models with non-linear 
topology, shared layers, and even multiple inputs or outputs. Considering a deep learning model as a directed 
acyclic graph (DAG) of layers, the functional API is a way to build graphs of layers.

Figure 5 shows the architecture of our wound-type classification network. Two separate neural networks for 
each data type were used to work with both image and location data. These networks were then considered input 
branches, and their outputs were combined into a final neural network. We address the image network as Wound 
Image Classifier (WIC) network, the location network as Wound Location Classifier (WLC) network, and the 
combined network as Wound Multimodality Classifier (WMC) network. The output of this WMC network is 
the probability of the wound class.

It is imperative for the multi-modal network (WMC) to arrange the data in the correct order. The output for 
the image and location data must be consistent, so the final combined (WMC) neural network must be fed with 
the right ordered data simultaneously. For example, to train the WMC network properly, we gave the output of the 
WIC network for the 148th DFU image and the output of the WLC network for the 148th DFU wound’s location 

Table 1.  Examples of locations and their corresponding mapping.

Left hand front Right leg bottom Buttock

Location Reference number Location Reference number Location Reference number

Left dorsal wrist 152 Right distal plantar 
first toe 217 Left posterior lower 

back 305

Left proximal lateral 
dorsal hand 153 Right proximal plantar 

first toe 226 Superior gluteal 311

Left proximal medial 
dorsal hand 154 Right distal lateral mid 

plantar foot 232 Inferior gluteal 312

Left distal phlanax of 
dorsal little finger 184 Right medial heel 237 Left gluteal fold 320

Figure 3.  Body map simplification.
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as the input at the same time to the WMC network. If the data were not ordered correctly, the WMC network 
might have the WIC network’s output for the 148th DFU image and the WLC network’s output for the 55th PU 

Figure 4.  Dataset processing steps.
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wound’s location as input at the same time, which will lead to a wrong classification. This arrangement was taken 
care of by giving each ROI a unique index number and tagging the corresponding location to that index number.

Wound image classifier (WIC) network. The wound image classifier (WIC) network was built upon transfer 
learning, except the  AlexNet28. Transfer learning means taking advantage of features learned on one problem 
and using them in another similar situation. This method is proper when the dataset in hand is small in number 
to train a full-scale model from scratch, and the memory power is limited to train a vast deep learning model. 
The most commonly used workflow of transfer learning is: (1) take a previously trained model’s layers, (2) freeze 
the layers, (3) add some new, trainable layers on top of the frozen layers, which will learn to turn the old features 
into predictions on a new dataset, and (4) train the new layers on the new  dataset29. There are 26 deep learning 
models in Keras  Applications30, among which we chose four top-rated classification models:  VGG1631,  VGG1932, 
 ResNet5033, and  InceptionV334; and took their previously trained layers to apply transfer learning. All the layers, 
except the top layer, were frozen for all these four models, and three Dense layers with dropout layers were added 
(Fig. 5, top WIC box) for training on our wound datasets. All three Dense layers contain 512 trainable neurons, 
with all having the ReLU activation. The  AlexNet28 was implemented following the original architecture. The 
output layer was added with either softmax or sigmoid layer for multi-class or binary-class classification for all 
the models, respectively.

Wound location classifier (WLC) network. The wound location classifier (WLC) network can classify wound 
locations using either a Multi-Layer Perceptron (MLP) or Long Short-Term Memory (LSTM) network. As the 
location data is categorical, we used one-hot encoding to represent the data, representing each input to the WLC 
network as a one-hot vector. The WLC network handles only one categorical data (location), for which the 

Table 2.  Description of all datasets.

Dataset AZH Medetec AZHMT

Class Training + validation Test Total Training + validation Test Total Training + validation Test Total

Background (BG) 450 25 475 0 0 0 450 25 475

Normal Skin (N) 450 25 475 0 0 0 450 25 475

Diabetic (D) 834 46 880 330 19 349 1164 65 1229

Pressure (P) 600 34 634 822 46 868 1422 80 1502

Surgical (S) 732 42 774 0 0 0 732 42 774

Venous (V) 1110 62 1172 0 0 0 0 0 0

Arterial + Venous 
(A + V) 0 0 0 456 25 481 1566 87 1653

Total 4176 234 4410 1608 90 1698 5784 324 6108

Figure 5.  Wound multimodality classifier (WMC) network architecture.
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architecture of the network was kept simple. With a deeper network, the accuracy did not improve (sometimes 
decreases), and resources (time and memory) became expensive. The MLP network contains nine Dense layers, 
all having the ReLU activation. The first three layers contain 128 neurons, the following three layers contain 256 
neurons, and the last three layers contain 512 neurons (Fig. 5, middle MLP box). The LSTM contains four LSTM 
layers, followed by a Dense layer, with all having the ReLU activation. The first two layers contain 32 neurons, 
followed by two LSTM layers having 64 neurons each, and finally, the Dense layer contains 512 neurons (Fig. 5, 
bottom LSTM box). The output layer was added with either softmax or sigmoid layer for multi-class or binary-
class classification for all the models, respectively.

Wound multimodality classifier (WMC) network. As discussed earlier, the Wound Multimodality Classifier 
(WMC) network was designed using Keras Functional  API27, which can predict the wound classes based on 
both wound image and location information. At first, the image data went through the WIC network, the loca-
tion data went through the WLC network, and the outputs of the networks were concatenated. Then, two Dense 
layers were added after concatenation to learn from the merged features. These Dense layers contain 512 and 256 
neurons, respectively. Finally, the output layer was added with either a softmax or sigmoid layer for multi-class 
or binary-class classification.

Experiment and result and discussion
Experimental setup. Lots of experiments were performed with different setups. Classification between D 
vs. V, D vs. S, N vs. D, etc. are some examples of binary classification, and D vs. P vs. S, BG vs. N vs. S vs. V, BG vs. 
N vs. D vs. P vs. S vs. V, etc. are some examples of multi-class classification. In the WMC network, all combina-
tions of the WIC and WLC networks (AlexNet + MLP, AlexNet + LSTM, ResNet50 + MLP, VGG16 + LSTM, etc.) 
were applied for the four wound class classification (D vs. P vs. S vs. V) on the AZH dataset. Based on the results 
(discussed later), the best two combinations were applied for the other multi-modal classifications.

All the models were written in Python programming language using the Keras deep learning framework 
and trained on an Nvidia GeForce RTX 2080Ti GPU platform. All models were trained for 250 epochs with a 
batch size of 25, a learning rate of 0.001, and an Adam optimizer. Two callbacks were used with the best valida-
tion accuracy and the best combination of validation and training accuracy saving. For multi-class and binary 
class classification, sparse_categorical_crossentropy and binary_crossentropy loss functions are used, respectively.

To investigate the classification performance, we used accuracy as the performance metric. Accuracy is the 
ratio of correctly predicted data to the total amount of data. To evaluate binary classifications, we used preci-
sion, recall, and f1-score as performance metrics as well. Equations (1) to (4) show the related formulae for these 
evaluation metrics. In these equations, TP, TN, FP, and FN, represent True Positive, True Negative, False Positive, 
and False Negative measures. More details about these equations can be found  in35.

Results. Selecting best experimental setup. Four wound class classification (D vs. P vs. S vs. V) on the AZH 
dataset was chosen to select the best combinations for the WMC network. This classification was the most chal-
lenging classification task, as there were no normal skin (N) or background (BG) images in the experiment. This 
experiment was done with our originally developed body map, which contains 484 locations. Table 3 shows the 
results of this experiment. We also present the results on the original dataset (without any augmentation) for this 
experiment to show the effect (improvement) of data augmentation. The performances of MLP and LSTM were 
similar on the WLC network, and the VGG16 and VGG19 performed best on the WIC network. Their combi-
nations: VGG16 + MLP, VGG19 + MLP, VGG16 + LSTM, and VGG19 + LSTM, also worked best for the WMC 
network. The performance of AlexNet + MLP, AlexNet + LSTM, ResNet50 + MLP, and ResNet50 + LSTM were 
very poor. The InceptionV3 + MLP and InceptionV3 + LSTM performances were also not good enough to apply 
to all the experiments. Running all these combinations for many experiments was also expensive (both with 
time and memory). So, from these results, we applied the best four combinations (VGG16 + MLP, VGG19 + MLP, 
VGG16 + LSTM, and VGG19 + LSTM) for all the remaining experimental setups.

The same four wound-class classification (D vs. P vs. S vs. V) on the AZH dataset was done with the simpli-
fied body map, which contains 323 locations. Table 4 shows the comparison of this experiment’s result with the 
previous result (shown in Table 3). The image classifier (WIC) has no effect on the change in the body map, for 
which it was excluded from Table 4. With improved accuracy in all models, we used the simplified body map 
for all the remaining experiments.

(1)Accuracy =
TP + TN

TP + FP + FN + TN

(2)Precision =
TP

TP + FP

(3)Recall =
TP

TP + FN

(4)F1−Score = 2×
Recall × Precision

Recall + Precision
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We also tried giving the one hot vector (OHV) directly to the dense layer of the CNN, but it produced poor 
results than passing it through the MLP or LSTM (VGG16 + OHV and VGG19 + OHV in Table 4). Also, we want 
to see the comparison between image-based, location-based, and multimodality classifications; if we use the one 
hot vector directly, then we do not have any location classifier (WIC) to make the comparison. For this reason, 
OHV was not directly combined with CNN layers for the rest of the experiments.

Experiment on AZH dataset. A classification between all the classes was performed on the AZH dataset. 
Table 5 shows the results of this six-class classification (BG vs. N vs. D vs. P vs. S vs. V). We achieved the high-
est accuracy of 82.48% with the multi-modal (WMC) network using the VGG19 + MLP combination, where 
the highest accuracies reached from WLC and WIC networks are 67.52% and 75.64% using LSTM and VGG16 
networks, respectively.

Four five-class classifications were performed on the AZH dataset. The classifications were (1) BG vs. N vs. 
D vs. P vs. V, (2) BG vs. N vs. D vs. S vs. V, (3) BG vs. N vs. D vs. P vs. S, and (4) BG vs. N vs. P vs. S vs. V. We 
achieved the highest accuracy of 86.46%, 91.00%, 83.14%, and 86.17% for classification number (1), (2), (3), 
and (4), respectively. In all four classifications, the highest accuracy was achieved with the multi-modal (WMC) 
networks. Table 6 shows the detailed results of these classifications.

Six four-class classifications were performed on the AZH dataset, along with one wound class classification 
(shown in Tables 3 and 4). The classifications were: (1) BG vs. N vs. D vs. V, (2) BG vs. N vs. P vs. V, (3) BG vs. N 
vs. S vs. V, (4) BG vs. N vs. D vs. P, (5) BG vs. N vs. D vs. S, and (6) BG vs. N vs. P vs. S. We achieved the highest 
accuracy of 95.57%, 92.47%, 94.16%, 89.23%, 91.30%, and 85.71% for classification number (1), (2), (3), (4), (5), 
and (6), respectively. In all six classifications, the highest accuracy was achieved with the multi-modal (WMC) 
networks. Table 7 shows the detailed results of these classifications.

Table 3.  Four wound class classification (D vs. P vs. S vs. V) on AZH dataset with original body map. The bold 
represents the highest results/accuracy achieved for each experiment.

Input Model

Original dataset Augmented dataset

Accuracy (%) Accuracy (%)

Location
MLP 66.30 71.74

LSTM 66.85 72.28

Image

AlexNet 35.33 37.50

VGG16 65.76 71.73

VGG19 56.52 63.04

InceptionV3 51.09 56.52

ResNet50 33.70 33.70

Image + location

AlexNet + MLP 55.43 61.41

VGG16 + MLP 77.17 78.

VGG19 + MLP 62.50 72.28

InceptionV3 + MLP 61.41 70.11

ResNet50 + MLP 63.04 66.85

AlexNet + LSTM 58.15 66.85

VGG16 + LSTM 72.83 79.35

VGG19 + LSTM 71.20 76.63

InceptionV3 + LSTM 64.67 69.02

ResNet50 + LSTM 33.70 34.79

Table 4.  Four wound class classification (D vs. P vs. S vs. V) on AZH dataset with simplified body map. The 
bold represents the highest results/accuracy achieved for each experiment.

Input Model Accuracy with original body map (%) Accuracy with simplified body map (%)

Location
MLP 71.74 74.46

LSTM 72.28 73.37

Image + location

VGG16 + OHV N/A 77.72

VGG19 + OHV N/A 73.91

VGG16 + MLP 78.26 81.52

VGG19 + MLP 72.28 78.80

VGG16 + LSTM 79.35 80.43

VGG19 + LSTM 76.63 79.89
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Four three-wound-class classifications were performed on the AZH dataset. The classifications were (1) D 
vs. S vs. V, (2) P vs. S vs. V, (3) D vs. P vs. S, and (4) D vs. P vs. V. We achieved the highest accuracy of 92.00%, 
85.51%, 72.95%, and 84.51% for classification number (1), (2), (3), and (4), respectively. In all four wound-class 
classifications, the highest accuracy was achieved with the multi-modal (WMC) networks. Table 8 shows the 
detailed results of these classifications.

Ten binary classifications were performed on the AZH dataset. The classifications were: (1) N vs. D, (2) N vs. 
P, (3) N vs. S, (4) N vs. V, (5) D vs. P, (6) D vs. S, (7) D vs. V, (8) P vs. S, (9) P vs. V, and (10) S vs. V. We achieved 
highest accuracy of 100%, 98.31%, 98.51%, 100%, 85.00%, 89.77%, 94.44%, 89.47%, 90.63%, and 97.12% for 
classification number (1), (2), (3), (4), (5), (6), (7), (8), (9), and (10), respectively. In all binary classifications, 
the highest accuracy was achieved with the multi-modal (WMC) networks. Table 9 shows the detailed results 
of these binary classifications. The precision, recall, and f1-score for all the best models (according to accuracy) 
are also calculated and shown in Table 10.

Experiment on Medetec dataset. A classification between all the classes was performed on the Medetec dataset. 
Table 11 shows the results of this three-wound-class classification (D vs. P vs. A + V). We achieved the highest 
accuracy of 86.67% with the multi-modal (WMC) network using the VGG19 + MLP and VGG19 + LSTM com-

Table 5.  Six-class classification (BG vs. N vs. D vs. P vs. S vs. V) on AZH dataset. The bold represents the 
highest results/accuracy achieved for each experiment.

Input Model Accuracy (%)

Location
MLP 64.96

LSTM 67.52

Image
VGG16 75.64

VGG19 64.96

Image + location

VGG16 + MLP 79.49

VGG19 + MLP 82.48

VGG16 + LSTM 79.91

VGG19 + LSTM 72.22

Table 6.  Four five-class classifications on AZH dataset. The bold represents the highest results/accuracy 
achieved for each experiment.

Classifications BG–N–D–P–V BG–N–D–S–V BG–N–D–P–S BG–N–P–S–V

Input Model Accuracy (%) Accuracy (%) Accuracy (%) Accuracy (%)

Location
MLP 67.71 75.00 59.30 69.68

LSTM 68.75 72.00 59.30 71.81

Image
VGG16 69.79 70.50 64.53 75.53

VGG19 76.56 74.50 67.44 72.34

Image + location

VGG16 + MLP 86.46 85.00 83.14 84.04

VGG19 + MLP 85.42 86.50 77.33 86.17

VGG16 + LSTM 84.38 91.00 77.33 77.13

VGG19 + LSTM 78.65 89.50 73.26 75.00

Table 7.  Six four-class classifications on AZH dataset. The bold represents the highest results/accuracy 
achieved for each experiment.

Classifications BG–N–D–V BG–N–P–V BG–N–S–V BG–N–D–P BG–N–D–S BG–N–P–S

Input Model Accuracy (%)

Location
MLP 76.58 73.29 77.27 65.38 71.74 69.04

LSTM 78.48 76.03 83.12 64.62 73.91 67.46

Image
VGG16 93.67 89.73 87.66 82.31 77.54 83.33

VGG19 89.87 86.99 88.31 80.00 81.88 83.33

Image + location

VGG16 + MLP 94.30 91.78 94.16 86.15 86.96 85.71

VGG19 + MLP 95.57 91.78 92.86 86.92 91.30 81.75

VGG16 + LSTM 89.87 92.47 90.91 86.15 84.78 83.33

VGG19 + LSTM 94.30 89.04 88.89 89.23 85.51 83.33
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binations, where the highest accuracy achieved from WLC and WIC networks was 85.56% and 82.22% using 
both MLP and LSTM, and VGG16 networks, respectively.

Experiment on AZHMT dataset. A classification between all the classes was performed on the AZHMT data-
set. Table 12 shows the results of this six-class classification (BG vs. N vs. D vs. P vs. S vs. A + V). We achieved 
the highest accuracy of 83.04% with the multi-modal (WMC) network using the VGG19 + LSTM combination. 
The highest accuracy achieved from WLC and WIC networks was 71.30% and 72.22% using LSTM and VGG19 
networks, respectively.

A four-wound-class classification was performed on the AZHMT dataset. The classification was done among 
the D, P, S, and A + V classes. We achieved the highest accuracy of 84.31% with the multi-modal (WMC) net-
work using the VGG19 + MLP combination. The highest accuracy achieved from WLC and WIC networks was 
78.83% and 68.61% using LSTM and VGG16 networks, respectively. Table 13 shows the detailed results of this 
four-wound-class classification.

Table 8.  Four three-wound-class classifications on AZH dataset. The bold represents the highest results/
accuracy achieved for each experiment.

Classifications D–S–V P–S–V D–P–S D–P–V

Input Model Accuracy Accuracy Accuracy Accuracy

Location
MLP 81.33 82.61 65.57 78.87

LSTM 82.00 80.43 68.85 78.87

Image
VGG16 74.67 68.12 61.48 76.06

VGG19 76.00 70.23 58.20 68.31

Image + location

VGG16 + MLP 85.33 85.51 70.49 80.28

VGG19 + MLP 92.00 82.61 71.31 84.51

VGG16 + LSTM 80.67 81.88 72.95 83.10

VGG19 + LSTM 87.33 68.12 67.21 84.51

Table 9.  Accuracy of ten binary classifications on AZH dataset. The bold represents the highest results/
accuracy achieved for each experiment.

Classifications N–D N–P N–S N–V D–P D–S D–V P–S P–V S–V

Input Model Accuracy

Location
MLP 78.87 64.41 74.63 78.16 78.75 87.50 89.81 73.68 87.50 93.27

LSTM 77.46 43.37 76.12 78.16 78.75 81.82 57.41 73.68 85.42 93.27

Image
VGG16 98.59 96.61 97.01 98.85 81.25 79.55 87.96 77.63 84.38 84.62

VGG19 98.59 98.31 97.01 98.85 71.25 80.68 87.96 73.68 86.46 86.54

Image + location

VGG16 + MLP 97.18 96.61 98.51 98.85 80.00 89.77 94.44 89.47 88.54 94.23

VGG19 + MLP 95.77 94.92 97.01 98.85 80.00 84.10 92.59 80.26 90.63 97.12

VGG16 + LSTM 97.18 96 95.52 98.85 83.75 80.68 94.44 76.32 83.33 84.62

VGG19 + LSTM 100 98.31 97.01 100 85.00 77.27 88.89 71.05 82.29 79.81

Table 10.  Precision, recall, and F1-scores of the best models of ten binary classifications on AZH dataset.

Classifications Best model(s) Precision (%) Recall (%) F1-score (%)

N–D VGG19 + LSTM 100 100 100

N–P VGG19 + LSTM 100 97.06 98.51

N–S VGG16 + MLP 100 97.62 98.80

N–V VGG19 + LSTM 100 100 100

D–P VGG19 + LSTM 76.19 94.12 84.21

D–S VGG16 + MLP 83.67 97.62 90.11

D–V
VGG16 + MLP 92.42 98.39 95.31

VGG16 + LSTM 92.42 98.39 95.31

P–S VGG16 + MLP 86.96 95.24 90.91

P–V VGG19 + MLP 88.41 98.39 93.13

S–V VGG19 + MLP 95.38 100 97.64
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Cross‑validation on AZH dataset. Several cross-validation (CV) experiments were performed on the AZH 
dataset to prove the reliability of this study. fivefold cross-validations were performed using sklearn’s Strati-
fiedKFold method with shuffle set to ‘True’. The most challenging tasks from all classifications performed on the 
AZH dataset were chosen for this CV experiment. For example, one of the selected experiments was the D vs. P 
ulcer classification, which had the lowest accuracy among all binary classifications (Table 9). Also, WMC models 
with the best performance and their corresponding WIC and WLC models were chosen only due to time and 
memory limitations. Finally, we performed external validation on the Medetec dataset. From Table 2, the only 
common classes between AZH and Medetec datasets are D and P; and as we do not have any other public wound 
dataset available, only this experiment (D vs. P) was chosen for external validation. For result comparison, we 
also performed this external validation on the best model we generated using the holdout test set experiment. 
Table 14 shows the detailed results of all cross-validation experiments.

Result comparison with previous works. Classification results depend on many factors like dataset, 
model, training-validation-testing split, balanced or unbalanced dataset, resources used for training, etc. Though 
the datasets and other factors between our work and previous classification works are not the same, this section 
mainly focuses on how the multimodality using both image and location data can improve the classification 

Table 11.  Three-wound-class classification (D vs. P vs. A + V) on Medetec dataset. The bold represents the 
highest results/accuracy achieved for each experiment.

Input Model Accuracy (%)

Location
MLP 85.56

LSTM 85.56

Image
VGG16 82.22

VGG19 77.78

Image + location

VGG16 + MLP 85.56

VGG19 + MLP 86.67

VGG16 + LSTM 85.56

VGG19 + LSTM 86.67

Table 12.  Six-class classification (BG vs. N vs. D vs. P vs. S vs. A + V) on AZHMT dataset. The bold represents 
the highest results/accuracy achieved for each experiment.

Input Model Accuracy (%)

Location
MLP 69.44

LSTM 71.30

Image
VGG16 67.59

VGG19 72.22

Image + location

VGG16 + MLP 81.17

VGG19 + MLP 81.79

VGG16 + LSTM 72.22

VGG19 + LSTM 83.04

Table 13.  Four-wound-class classification (D vs. P vs. S vs. A + V) on AZHMT dataset. The bold represents the 
highest results/accuracy achieved for each experiment.

Input Model Accuracy (%)

Location
MLP 78.10

LSTM 78.83

Image
VGG16 68.61

VGG19 63.14

Image + location

VGG16 + MLP 79.56

VGG19 + MLP 84.31

VGG16 + LSTM 68.25

VGG19 + LSTM 68.98
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accuracy. The comparison with the previous works was only made if all the classes of that work’s dataset were 
present in our dataset. Our previous  work16’s dataset is most similar to the work presented in this manuscript. 
 Alongside16, the classifications performed  in12,13,  and15 have the classes that are present in our dataset. A detailed 
comparison between previous works and our current work is shown in Table 15.

The reasons why other related works were not considered in this comparison  are10: performs burn vs. pressure 
ulcer classification, and our datasets do not contain any burn  images11; performs binary classification of ischemia 
vs. non-ischemia and infection vs. non-infection on DFU images, which is not compatible with our  datasets14; 
performs binary classifications between such kind of wounds (wound, infection (SSI), granulation tissue, etc.), 
which are not present in our datasets;  and17 performs multi-class wound classifications among diabetic, lympho-
vascular, pressure injury, and surgical wounds and our datasets do not contain the lymphovascular wound type.

Discussion
In all the experiments performed in this manuscript, there were two types of classifications: (1) mixed-class clas-
sifications (e.g., three-class classification, five-class classification, etc.), and (2) wound-class classifications (e.g., 
four wound-class classifications, three wound-class classifications, etc.). The wound-class classification did not 
contain any non-wound classes (i.e., normal skin and background), and they were more challenging to classify 
than the mixed-class classification. This section will discuss the classification’s performances, comparison with 
state-of-the-art results, limitations, and how to overcome them.

Performance analysis and the power of multimodality. On the AZH dataset, for mixed-class clas-
sifications, we performed one six-class, four five-class, six four-class, and four binary classifications; and for 
wound-class classifications, we performed one four-wound-class, four three-wound-class, and six binary clas-
sifications. From Tables 5, 6, 7, 8, and 9, the same consistency of the model performances is observed, where the 
best to worst results were achieved by WMC, WIC, and WLC classifiers, respectively. Though a single model of 
WLC or WIC or a single combination of WMC did not always produce the best performance, the WMC classi-
fier always performed the best in comparison to the WIC or WLC classifiers. The same pattern can also be seen 
in the wound class classifications. Also, in most cases, when using only location data, we got lower accuracy for 
the wound classification (Tables 5, 6, 7, 9) compared to using only image data, which indicates that the data is 
not location-dependent.

The performance comparison of mixed-class classifications among the best models from each category (loca-
tion, image, and multimodality) is shown in Fig. 6. The performance comparison among the best models of 
wound-class classifications from each category (location, image, and multimodality) is shown in Fig. 7. From 
Fig. 6, the lowest accuracy was produced by BGNDPS (83.14%), and from Fig. 7, the most insufficient accuracy 
was produced by DPS (72.95%). So, separating diabetic, pressure, and the surgical wound was the hardest, accord-
ing to our experiments. Also, from Fig. 7, among all binary classifications, D vs. P had the lowest accuracy of 85%. 
So, we can say that differentiation between diabetic and pressure wounds was the most complicated task. From 
Fig. 6, the highest accuracy was achieved by ND, NP, NS, and NV classifications with 100%, 98.31%, 98.51%, and 
100%, respectively. Also, from Fig. 7, the highest accuracy was achieved by SV classification with 97.12% accu-
racy. So, differentiating between normal skin and other wound types (D, V, S, and P) and differentiating between 

Table 14.  Cross-validation on the AZH dataset. The bold represents the highest results/accuracy achieved for 
each experiment.

Experiments Model

Accuracy

Holdout test set

Cross-validation test

Fold1 Fold2 Fold3 Fold4 Fold5 Average

BG vs. N vs. D vs. P vs. S vs. V

MLP 64.96 70.43 63.99 64.52 70.97 74.19 68.82

VGG19 64.96 59.68 61.29 53.76 63.98 62.90 60.32

VGG19 + MLP 82.48 80.62 74.73 80.65 78.49 75.27 77.95

BG vs. N vs. D vs. P vs. S

MLP 59.30 77.93 54.74 64.96 64.71 63.97 65.26

VGG16 64.53 74.45 70.07 62.04 58.82 74.26 67.93

VGG16 + MLP 83.14 83.21 73.22 79.56 75.00 79.41 78.08

D vs. P vs. S vs. V

MLP 74.46 65.07 72.60 69.18 77.40 67.12 70.27

VGG16 71.73 63.01 60.96 60.96 69.18 58.22 62.47

VGG16 + MLP 81.52 71.23 73.97 76.03 82.88 67.81 74.38

D vs. P vs. S

LSTM 68.85 62.88 67.01 62.89 73.96 76.04 68.56

VGG16 61.48 63.92 71.13 70.10 64.58 62.50 66.45

VGG16 + LSTM 72.95 70.10 74.23 72.16 75.00 78.13 73.92

D vs. P

LSTM 78.75 75.00 68.75 78.13 78.13 76.19 75.24

VGG19 71.25 71.88 65.63 79.69 70.31 66.67 70.84

VGG19 + LSTM 85.00 78.13 70.31 81.25 79.69 79.37 77.75

External validation VGG19 + LSTM 74.71 59.14 59.53 57.20 83.27 79.77 67.78
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surgical wounds and venous leg ulcers were the most straightforward classifications task for our developed WMC 
classifier. Finally, from Figs. 6 and 7, we can see that multimodality using wound image and location (WMC) per-
formed best in comparison with single (image or location) modality (WLC or WIC) in all scenarios on the AZH 
dataset; and mixed-class classification results are comparatively higher than wound-class classification results.

Robustness testing. To evaluate the robustness of our developed WMC classifier, we performed an experi-
ment on a publicly available dataset named Medetec Dataset, which has a completely different data collection 
and distribution than our collected and developed AZH Dataset. On this dataset, we performed only one wound-
type classification among all three classes (D, P, and A + V). The highest accuracies achieved by WLC, WIC, and 
WMC classifiers were 85.56%, 82.22%, and 86.67%, respectively. So, clearly, the highest accuracy was achieved 
by the WMC classifier, which proves that the WMC works well on different datasets with separate distributions.

The effect of bigger dataset. We developed a mixed and bigger dataset named AZHMT to test the effect 
of adding more data points to our model performance. AZHMT is a mixed dataset containing wound image 
and location data from AZH and Medetec datasets. On the AZHMT dataset, we performed one six-mixed-class 
classification (BG–N–D–P–S–A + V) and one four-wound-class classification (D–P–S–A + V). Comparing these 
results of AZH and AZHMT datasets, we see that with the AZHMT dataset, we achieved higher accuracy than 
the AZH dataset. A comparison between the highest results (accuracy) of AZH and AZHMT datasets is shown 
in Fig. 8. Both the results are from the multi-modal network (WMC), as it outperformed all the single modal 
(WIC and WLC) networks. For the six-class classification, the AZHMT dataset has 0.56% more accuracy than 
the AZH dataset. For the four-wound-class classification, the AZHMT dataset has 2.79% more accuracy than 
the AZH dataset. Here, AZHMT contains more data than the AZH dataset, which is an advantage for training 
deep learning models; but AZHMT also contains mixed data from two sources, which makes the dataset more 
challenging to classify; AZHMT also contains mixed data on a single class (arterial and venous ulcer combina-
tion), which may also impact the results. Regardless of some disadvantages of the mixed dataset, this comparison 
proves that increasing data points improve the model performance.

Cross‑validation results analysis. From Table 14, we achieved better results for specific folds compared 
to the holdout test data in 5, 4, and 3 class classifications. For 6 class and binary classifications, we got poor results 
in all fold performances. In average accuracy among all folds, except for 3 class classification, we had less accu-
racy for all other classifications. For specific folds, the accuracy got down by 1.83% and 3.75% for 6 class (BG vs. 
N vs. D vs. P vs. S vs. V) and 2 class (D vs. P) classifications, whereas the accuracy went up by 0.07%, 1.36%, and 
5.18% for 5 class (BG vs. N vs. D vs. P vs. S), 4 class (D vs. P vs. S vs. V), and 3 class (D vs. P vs. S) classifications. 
For average cross-validation results, the accuracy went up by 0.97% for the 3 class classification; in contrast, the 

Table 15.  Comparison among the previous works and the present work. The bold represents the highest 
results/accuracy achieved for each experiment.

Work Classification Evaluation metrics

Previous work Present work

Model Dataset Result (%) Model Dataset Result (%)

Goyal et al.12 Healthy skin vs. DFU 
skin (N vs. D) Accuracy DFUNet A dataset containing 

397 wound images 92.5 VGG19 + LSTM AZH 100

Aguirre et al.13
VLU versus non-VLU 
(N vs. V, D vs. V, P vs. 
V, S vs. V)

Accuracy VGG19 A dataset of 300 
wound images 85

N-V: VGG19 + LSTM

AZH

100

D-V: VGG16 + MLP 
& VGG16 + LSTM 94.44

P–V: VGG19 + MLP 90.63

S-V: VGG19 + MLP 97.12

Alzubaidi et al.15
Normal skin vs. 
abnormal (DFU) skin 
(N vs. D)

F1-Score DFU_QUTNet + SVM A dataset containing 
754-foot images 94.5 VGG19 + LSTM AZH 100

Rostami et al.16

S–V

Accuracy
An end-to-end Ensem-
ble DCNN-based 
Classifier

A new dataset con-
taining 538 wound 
images

96.4 VGG19 + MLP

AZH

97.12

D–S–V 91.9 VGG19 + MLP 92.00

BG–N–D–V 89.41 VGG19 + MLP 95.57

BG–N–P–V 86.57 VGG16 + LSTM 92.47

BG–N–S–V 92.20 VGG16 + MLP 94.16

BG–N–D–P 80.29 VGG19 + LSTM 89.23

BG–N–D–S 90.98 VGG19 + MLP 91.30

BG–N–P–S 84.12 VGG16 + MLP 85.71

BG–N–D–P–V 79.76 VGG16 + MLP 84.46

BG–N–D–S–V 84.94 VGG16 + LSTM 91.00

BG–N–D–P–S 81.49 VGG16 + MLP 83.14

BG–N–P–S–V 83.53 VGG19 + MLP 86.17

BG–N–D–P–S–V 68.69 VGG19 + MLP 82.48
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Figure 6.  Performance comparison of mixed-class classification among the best models from each category 
(location—WLC, image—WIC, and multimodality—WMC) on AZH dataset.

Figure 7.  Performance comparison of wound-class classification among the best models from each category 
(location—WLC, image—WIC, and multimodality—WMC) on AZH dataset.
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accuracy got down by 4.53%, 5.06%, 7.14%, and 7.25% for 6 class, 5 class, 4 class, and binary classifications. For 
external validation on Medetec dataset, we achieved an 8.56% improvement on specific fold accuracy, while the 
accuracy decreased by 6.93% for average cross-validation accuracy.

The comparison results discussed above show that the overall performance is down for the most complicated 
tasks using cross-validation. But considering the percentage decrement or increment, our developed model 
worked well considering the challenging factors of cross-validation. In cross-validation, there is no validation data 
to tune our model with compared to the holdout test method with a validation set. Also, cross-validation with 
a small number of samples is problematic as, for some folds, the training data may not contain enough diverse 
samples to train on, which was also reflected in the fold-wise accuracy variance. Nevertheless, we achieved good 
results for external validation considering the data difference among the AZH and Medetec datasets.

Finally, still with cross-validation on our hardest classifications, the WMC classifier outperforms the WIC 
and WLC classifiers, which again proves the power of multimodality and our developed WMC model. On the 
other hand, this cross-validation experiment shows the importance of having more data to build more robust 
and reliable deep learning models.

Comparison with previous works. From Table 15, we can see that our work outperformed all the previ-
ous works by a good margin. As mentioned earlier, this comparison is not perfect as factors like dataset, model, 
training-validation-testing split, balance ness of the dataset, resources used for training, etc., are not the same 
as the previous works. But this comparison proves that multimodality using wound image and location can 
improve the wound classification results. We achieved a 7.5% improvement in accuracy for classifying Healthy 
Skin Vs. DFU Skin (N Vs. D) from Goyal et al.’s  work12 on our AZH dataset. Compared to Aguirre et al.’s  work13 
of classifying VLU versus non-VLU (V vs. [N or D or P or S]) wounds, we achieved a significant 5.63% to 15% 
improvement in accuracy with the AZH dataset. In this experiment, we improved 5.63% for VLU vs. PU, 9.44% 
for VLU vs. DFU, 12.12% for VLU vs. Surgical, and 15% for VLU vs. Normal skin. Our developed classifier 
outperformed Alzubaidi et al.’s  work15 on Normal Skin Vs. Abnormal (DFU) Skin (N vs. D) classification with 
5.5% improvement in F1-score for the AZH experiment. Finally, compared to our previous  work16, there are 13 
similar experiments in our present work. We achieved a significant improvement with the multi-modal WMC 
network in all these experiments. In these 13 experiments, the accuracy improvement using WMC classifier 
from our previous work are: (1) 0.72% improvement in SV classification, (2) 0.1% improvement in DSV clas-
sification, (3) 6.16% improvement in BGNDV classification, (4) 5.9% improvement in BGNPV classification, 
(5) 1.96% improvement in BGNSV classification, (6) 8.94% improvement in BGNDP classification, (7) 0.32% 
improvement in BGNDS classification, (8) 1.59% improvement in BGNPS classification, (9) 4.7% improvement 
in BGNDPV classification, (10) 6.06% improvement in BGNDSV classification, (11) 1.65% improvement in 
BGNDPS classification, (12) 2.64% improvement in BGNPSV classification, and (13) 13.79% improvement in 
BGNDPSV classification. Both of these works have some pros and cons: in our previous work, we had a balanced 
dataset (all classes had the same no of images), where the current work has an unbalanced dataset (Table 2); the 
previous work used a very sophisticated ensemble classifier for image classification, where this work uses simple 

Figure 8.  Comparison between the highest results (accuracy) of AZH and AZHMT datasets.
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transfer learning with available DNN networks (VGG16, VGG19, etc.); the previous work only used wound 
images for training the classifier, where the current network uses both wound images and their corresponding 
locations for developing the classifier. Overall, this work outperforms all the previous works by a good difference.

Limitations and scope of improvement. In Fig. 6, the WLC network’s performance is very poor com-
pared to the WIC and WMC network. One important reason is that there were some overlaps among the normal 
(healthy) skin and other wound classes, as the normal skin is cropped from the wound images. In one patient’s 
wound image, a non-infected (normal) skin can be infected in another patient’s wound image, which produces 
these overlaps and thus decreases the WLC performance. Figure 7 shows that the WLC network’s performance 
was better than the WIC network as there is no normal skin (N) class in these classifications. The WLC network 
performance can be improved by increasing the number of data points, which can help increase the WMC 
network’s performance in the long run. Figure 9 shows some examples of location overlapping among different 
classes.

Conclusion
This paper developed a multi-modal wound classifier (WMC) network using wound images and their corre-
sponding locations to classify wounds into different classes. To the best of our knowledge, it is the first developed 
multi-modal network that uses images and locations for wound classification. This research is also the first work 
that classifies wounds according to their locations. We also developed a body map to help clinicians document the 
wound locations in the patient’s record to prepare the location data. The developed body map is currently used 
in the AZH wound center for location tagging to avoid inconsistency with location information. Three datasets 
with wound images and their corresponding locations were also developed and labeled by wound specialists 
of AZH wound center to perform many wound classification experiments. The multi-modal (WMC) network 
was created in the concatenation of two networks: wound image classifier (WIC) and wound location classifier 
(WMC). Developing the WIC network transfer learning was used with top-rated deep learning models. The WLC 
network was also developed using deep learning models that are popular for controlling categorical data. A large 
number of experiments with a range of binary to six-class classifications were performed in three datasets, where 
many wound classifications were never performed before, to the best of our knowledge. The results produced 
by the WMC network were much better than the results produced from the WIC or WLC networks, and these 
results beat all the previous experimental results. In future experiments, the performance of the WMC network 
can be improved further by using more specific WIC and WLC networks for wound image classifications and 
wound location classifications, respectively. There are some overlaps in the wound location data, for which the 
WLC network produced lower accuracy compared to WIC and WMC networks. Increasing the number of data 
can improve the location (WLC) classifier. We are planning to add more modalities (pain, palpation findings, 
general findings, area, volume, age, sex, BMI, etc.) in our future works. Overall, the developed WMC classifier 
can significantly speed up the automation of wound healing systems in the near future.

Deep learning-based wound care algorithms can improve patient outcomes with higher efficiency and lower 
costs. Accurate classification of wound types can help clinicians diagnose wound problems more quickly and find 
proper treatment plans. AI wound analysis equipped with mobile devices would reduce the burden of wound care 

Figure 9.  Examples of location overlaps on AZHMT dataset.
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providers and allow rapid diagnosis and quality treatment, especially for rural regions with much less accessible 
resources. With the development of these models, clinicians in resource-limited settings can quickly identify the 
types of wounds and seek help from experts accordingly based on the initial wound assessment. This pipeline 
improves diagnosis efficiency and accuracy simultaneously. The major limitation of the proposed methods is the 
data scarcity to improve the model generality and give both patients and physicians proper technical training to 
use these developed deep learning-based applications.

Data availability
The AZH dataset is currently available at https:// github. com/ uwm- bigda ta/ Multi- modal- wound- class ifica 
tion- using- images- and- locat ions. Unfortunately, due to authorship conflict, we cannot make the Medetec and 
AZHMT datasets public.
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