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Meta‑analysis of the functional 
neuroimaging literature 
with probabilistic logic 
programming
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Inferring reliable brain-behavior associations requires synthesizing evidence from thousands of 
functional neuroimaging studies through meta-analysis. However, existing meta-analysis tools are 
limited to investigating simple neuroscience concepts and expressing a restricted range of questions. 
Here, we expand the scope of neuroimaging meta-analysis by designing NeuroLang: a domain-
specific language to express and test hypotheses using probabilistic first-order logic programming. By 
leveraging formalisms found at the crossroads of artificial intelligence and knowledge representation, 
NeuroLang provides the expressivity to address a larger repertoire of hypotheses in a meta-analysis, 
while seamlessly modeling the uncertainty inherent to neuroimaging data. We demonstrate the 
language’s capabilities in conducting comprehensive neuroimaging meta-analysis through use-case 
examples that address questions of structure-function associations. Specifically, we infer the specific 
functional roles of three canonical brain networks, support the role of the visual word-form area in 
visuospatial attention, and investigate the heterogeneous organization of the frontoparietal control 
network.

Meta-analysis confronts hypotheses of brain-behavior mappings with synthesized evidence from thousands of 
functional neuroimaging studies1. However, commonly used standard tools for meta-analysis, such as BrainMap2 
and Neurosynth3 are limited in their formal expressivity. For example, it is challenging to express complex ques-
tions like ‘which topics are likely to be present in a study given activation in one set of regions and there exists 
no activation in another set of regions’. Answering this question requires that we explicitly run a meta-analysis 
on every single term of interest, while integrating heterogeneous and uncertain data, such as spatial masks and 
parcellations, to define the regions4–7. Importantly, however, applying the nontrivial criteria to select articles for 
inclusion and exclusion necessitates coding in a general-purpose programming language, which can be error-
prone and hard to maintain. In this work, we harness advancements in symbolic artificial intelligence, specifically 
in probabilistic logic programming, to design NeuroLang: a domain-specific language (DSL) to formulate rich and 
expressive neuroscience hypotheses using formal logic-based criteria while seamlessly combining heterogeneous 
data and reasoning about uncertainty. Our bet is that NeuroLang’s clear syntax and probabilistic logic semantics 
will enable accessible, rigorous, and highly reproducible large-scale meta-analysis.

Large-scale meta-analysis has become popular in cognitive neuroscience research as a result of the growth 
in non-invasive neuroimaging experiments, which provoked an upsurge in the number of yearly publications 
on structure-function associations8. As a powerful approach to synthesizing large quantities of results, meta-
analysis has been performed to distinguish spurious from replicable findings, derive coactivation patterns9, 
and define a priori regions of interest10. Moreover, elaborate coactivation-based connectivity, meta-analytic 
functional parcellations, and sophisticated network models are now being inferred from datasets covering tens 
of thousands of subjects. Recently, even more, elaborate meta-analyses have been performed to derive new find-
ings. For instance, Yeo et al.6 have used meta-analysis to study the human association cortex, identifying frontal 
and parietal regions that are either specialized or flexible. Furthermore, meta-analysis has been used to support 
findings on the fractionation of networks into subsystems underlying disparate processing domains7,11. Thus, 
large-scale meta-analysis is essential for the continued detention of latent properties of brain systems, far beyond 
what can be inferred from individual studies.
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Over three decades ago, spatial normalization—the use of peak activation coordinates standardized in stere-
otaxic space—was introduced to human neuroimaging research12. This norm has been embraced, enlarged, 
and popularized by an outstanding series of methodological breakthroughs in the field. As a result, a large and 
methodologically cohesive functional neuroimaging literature has emerged over the past years. Capitalizing on 
this wealth of results, large-scale online databases have been created to compile peak activation coordinates and 
their related meta-data, spurring the development of coordinate-based meta-analytic approaches to exploit this 
rapidly growing corpus. This makes coordinate-based meta-analysis (CBMA) the most popular type of neu-
roimaging meta-analysis so far. The earliest approach to compiling peak coordinates, used by BrainMap2, is to 
manually transcribe them from study tables. The peaks are then linked to the content of the studies by taxonomy 
experts. A more recent approach, used by Neurosynth3, is to automate this laborious task via special software that 
automatically extracts peak coordinates from study tables. Neurosynth also automates the annotation of studies 
using natural language processing techniques that incorporate term-frequency features, i.e. TF-IDF, estimated 
from the texts of studies. Albeit noisier, these fully automated approaches to meta-analysis scale better to the 
rapidly expanding neuroimaging literature.

Tools like BrainMap2 and Neurosynth3 have indeed simplified meta-analysis, becoming cornerstones of 
contemporary neuroscience research. However, only a narrow range of questions can be natively posed using 
these tools due to their limited expressivity. Specifically, these tools are based on propositional logic, which makes 
formulating queries beyond straightforward propositions, while applying nontrivial selection criteria of studies, a 
verbose and arduous task. More recently, NeuroQuery, a regularised predictive model trained on CBMA data, has 
been introduced to map any arbitrary text fragment (i.e. a set of keywords of interest, dubbed ‘query’) to a brain 
activation map. This approach shows that modeling semantic relations across studies can produce meaningful 
statistical maps for terms that are rarely mentioned in the literature. Nonetheless, NeuroQuery cannot express 
questions that infer a pattern of activation from studies associated with “working memory”, for instance, but not 
associated with other related functions. Such an analysis could be interesting to infer unique neural substrates 
among closely-related mental functions. Yet, NeuroQuery does not employ any logic-based semantics. That is, 
the words ‘but’ and ‘not’ are not in NeuroQuery’s pre-selected vocabulary, and have no influence on the result-
ing statistical maps. Thus, there seems to be a space for a logic-based framework that, by giving access to more 
elaborate meta-analytic queries, could help bridge the gap between statistical modeling and cognitive neurosci-
ence. An all-encompassing domain-specific language (DSL) for neuroscience research could encode any type 
of data, express complex queries using logic semantics, and reason about elements of uncertainty, all in a single 
unifying framework.

Parallel to the growth of functional neuroimaging over the past few decades, the artificial intelligence (AI) 
sub-fields of probabilistic logic programming and probabilistic databases have experienced a rapid evolution. This 
has led to the development of methods that efficiently represent knowledge with both logical and probabilistic 
semantics in a the way that makes statistical model assumptions declarative, clear, and less biased. Theoretical 
formalisms ground probabilistic logic languages with well-defined semantics and a mathematical understanding 
of the complexity of various classes of queries and different types of data13. Efforts to address the scalability of 
probabilistic logic systems led to recent algorithms and data structures that can remarkably speed up analyses, 
even on very large and diverse databases14.

Can probabilistic logic programming formalize and broaden the range of questions that can be expressed in 
a meta-analysis? Can it simplify formulating complex hypotheses while combining heterogeneous and uncertain 
data? In this work, we present NeuroLang, a domain-specific language for conducting comprehensive neuroim-
aging meta-analyses using formal, succinct, and self-contained programs. At its core, NeuroLang uses predicate 
logic, as opposed to propositional logic, to ease the formulation of queries in a way that is closer to human 
discourse15, and that can be run against structured neuroscientific data. Logic rules and queries are augmented 
with probabilistic semantics to account for the uncertainty that emerges from missing information, analytical 
variability across studies, and measurement imperfections. In this article, we present concrete use-case applica-
tions of NeuroLang that address popular questions from the literature.

Results
The use-case examples of NeuroLang shed light on the utility of probabilistic logic semantics in representing 
neuroscience hypotheses that cannot be readily expressed with standard meta-analysis tools. In the first example, 
we use between-network segregation queries to infer the unique functional roles of three canonical functional 
networks: the dorsal attention network (DAN), default mode network (DMN), and frontoparietal cognitive 
control network (FPCN). In the second example, we explore potential associations between topics and activity 
within the visual word-form area (VWFA), when it either coactivates with regions of the dorsal attention network 
or those of the language network. In the third and fourth examples, we study the functional heterogeneity of the 
FPCN, uncovering differential activation profiles for a number of mental functions and varying connectivity 
patterns with other brain networks.

Representing neuroscientific knowledge under uncertainty.  Before exploring use-case examples of 
NeuroLang, we describe how heterogeneous neuroimaging data are represented by using fact and rule tables. A 
table is a set of tuples or rows, each representing a data instance and having a set of k elements representing col-
umns. Probabilities can be ascribed to the rows of a table to quantify the level of uncertainty in the data presented 
by each, in which case the table is said to be probabilistic.

Studies in a CBMA database report a set of peak activations that we store in a table named PeakReported. 
This table contains one row (x, y, z, s) for each peak that a study s has reported at location (x, y, z) in the Montreal 
Neurological Institute (MNI) standard space. Moreover, the uncertainty around the spatial location of peaks 
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can be encoded in a rule table by assuming each peak’s 10 mm neighboring voxels to be equivalently reported, 
similar to the multilevel kernel density analysis (MKDA)16. This rule table is called VoxelReported, and it includes 
a row (x, y, z, s) for each voxel at location (x, y, z) within a radius ( r < 10 mm) of a peak reported by study s. 
The choice of using a 10 mm radius is consistent with the smoothing radii commonly used in the functional 
neuroimaging literature17. More details on how other spatial smoothing priors can be encoded in NeuroLang, 
such as the probabilistic prior used by the activation likelihood estimation (ALE)18 algorithm, are provided in 
the Supplementary Materials.

Further, each study within a meta-analytic corpus is associated with cognitive processes or concepts addressed 
by its experiments. Fully automated meta-analytic tools like Neurosynth calculate statistical term-frequency 
features on study texts or abstracts, and threshold them to establish these links in a data-driven manner3. We 
store these associations within a TermAssociation table, containing one row (t, s) for each term t associated with 
study s. Moreover, we incorporate data-driven topic models, learned and openly shared by Neurosynth19, within 
a TopicAssociation probabilistic table, containing one row (t, s,P) for each uncertain association between a topic 
t and a study s. In probabilistic logic, we write TopicAssociation(t, s)::P to state ‘study s has a probability 
P of being associated with topic t’20. This data representation process is illustrated in Fig. 1.

Similarly to Neurosynth, we assume each study within the meta-analytic database to be an independent 
equiprobable sample of neuroscientific knowledge3,18. This assumption is encoded by a SelectedStudy probabilistic 
table, depicted in the bottom left part of Fig. 1, which gives studies an equal weight 1/N in any meta-analysis, 
where N is the total number of studies within the meta-analytic database. This makes it possible to estimate 
statistics on CBMA databases in the absence of statistical power indicators (e.g., sample size).

It is common for meta-analyses to integrate anatomical or functional brain parcellations11 to enhance inter-
pretability and reduce computational burdens. In the examples, we use the DiFuMo-256 atlas21, which is part 
of a multiscale “soft” parcellation estimated from thousands of subjects across 27 studies that include both task 
and resting-state fMRI experiments. This data-driven functional atlas is argued to achieve comparable statistical 
performance as voxel-level analyses while simultaneously reducing computational cost and enhancing interpret-
ability. We represent the 256 functional regions from DiFuMo in a RegionVoxel table, containing a row (r, x, y, z) 
for each brain voxel at MNI location (x, y, z) belonging to a DiFuMo-256 region r. An excerpt of the RegionVoxel 
table is depicted on the right part of Fig. 1. We also incorporate a table NetworkRegion that contains a row (n, r) 
for each region r that significantly overlaps with some network n from the 7 or 17-network parcellations22. The 
network membership of regions is provided as part of the DiFuMo meta-data file. The experiments that follow 
will use this unified framework of knowledge representation to express probabilistic logic programs that drive 
meta-analytical findings.

Between‑network segregation: reverse inference of brain network function.  In this example, 
we perform a segregation-based meta-analysis to infer the likelihood of a topic to be present in a study given 
activation in a brain network, with an additional constraint that there exists no activation in other networks. The 
goal of this example is to show that a segregation query can identify which network’s activation pattern is prefer-
entially more predictive of the presence of topic terms related to certain mental functions.

We use the Neurosynth CBMA database3, consisting of 14,371 studies, and its associated v5-topics-100 
topic model19. The networks included in this example are the DMN, FPCN and DAN defined using the 
coarse 7-Network atlas22. These networks exhibit coupling dynamics in support of an array of internally and 

Figure 1.   Representation of meta-analytic and functional parcellation knowledge using database tables in 
NeuroLang.



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19431  | https://doi.org/10.1038/s41598-022-21801-4

www.nature.com/scientificreports/

externally-directed mental functions23. However, each one of them is believed to subserve a unique set of cogni-
tive processes7,23,24. The FPCN contributes to a wide variety of tasks by engaging top-down control processes, 
the DAN is concerned with orienting attention towards salient cues, and the DMN is involved in abstract self-
referential, social and affective functions. Using a segregation query, we can quantitatively identify the specific 
functional roles of these networks from the literature.

First, we have to represent useful heterogeneous data in NeuroLang. For instance, we assume a DiFuMo-256 
component r to be reported by a study s whenever a peak activation is reported by the study within that region. 
In NeuroLang, this is expressed by the following logic rule

which translates, in plain English, to ‘region r is reported by study s if s reports a peak at location (x, y, z) that falls 
within region r’. All letters in this code represent variables. Furthermore, we model the reporting of networks by 
studies in a probabilistic table. The probabilities are based on the total volume of the reported regions that belong 
to a network. This table accounts for the uncertainty in the location of reported peak activation coordinates as 
well as the number of potentially reported regions. More precisely, we consider that each study has a probability 
of reporting a network, proportional to the number of reported regions belonging to the network.

This is implemented by the following rules in NeuroLang

In plain English, a network n is considered to be reported by study s with probability v/V, where v is the total 
volume of regions within network n that are reported active by study s, and V is the total volume of all regions 
in the network. This program makes use of NeuroLang’s ability to express probabilistic rules -i.e. NetworkRe-
ported-, aggregations via the built-in count and sum functions, and probabilistic inference capabilities.

Next, we define a rule that infers the probability that studies are associated with a topic given activation in only 
one of the three networks. That is, we query the probability that a topic t reported by study s is associated with 
activation in some network n reported by s and there exists no other network reported by study s. In NeuroLang, 
this corresponds to the following rule that infers the probability of preferential association between a topic and 
a network across the whole dataset:

where the // operator is read as given, representing probabilistic conditioning. This rule contains a negated 
existential expression, ∼exists(· · · ), that prevents two or more networks from being reported by a study at 
the same time. NeuroLang only allows stratified negation25. For a detailed description of Neurolang’s semantics, 
please refer to Zanitti et al.26.

We report the resulting functional profiles in Fig. 2. We observe that topics related to sensory processing of 
direct environmental demands such as eye movements, visual attention, and spatial orientation are more likely to 
appear in studies reporting activations in the DAN only. Also, we observe that topics related to cognitive control 
such as task switching, task demands, response inhibition, and performance monitoring are more likely to be 
mentioned in studies reporting activations in the FPCN. Finally, topics related to higher-order abstract cogni-
tive and memory-related processes are mostly associated with studies reporting DMN activations only. Each 
probability value represents a ratio of the number of studies in which a topic is reported alongside an activation 
in only one network to the total number of studies that report activation only in that network.

Meta‑analysing the role of the visual word‑form area in attention circuitry.  The visual word-
form area (VWFA) has attracted controversy over the years with recent findings suggesting it takes part in the 
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attention circuitry not only in the language network27. Can this relationship be inferred solely from a meta-anal-
ysis of past studies that have reported activations in the left ventral occipitotemporal cortex without necessarily 
identifying it as the VWFA?

To answer this question, we write queries that infer the most probable topic associations among studies that 
report activations close to the VWFA region, while simultaneously reporting activations within regions of the 
attention network, but not reporting activations within regions of the language network.

To define regions corresponding to the VWFA, the dorsal attention and language networks, we use locations 
defined by Chen et al.27 and store them in a RegionSeedVoxel table. This table contains a row (x, y, z, r) for 
each region r’s seed location (x, y, z). A database table NetworkRegion contains rows (n, r) for each region 
r belonging to network n. A brain region is considered to be reported by a study if it reports a peak activation 
within 10mm of the region seed location. The choice of a 10mm radius was used to facilitate comparisons with 
the range of smoothing kernels that are typically used within meta-analyses. This is expressed in NeuroLang as:

where EUCLIDEAN  is a built-in function that calculates the Euclidean distance between two loca-
tions in MNI space, and thus its value is assigned to a variable; The decision to use a function appli-
cation and equality to express the EUCLIDEAN  builtin function is purely a syntactic choice in 
order to make built-in-generated values readable. Furthermore, in this example, a network is con-
sidered to be reported by a study if it reports one of the network’s regions. In NeuroLang, this rule 
is:

Figure 2.   Functional profiles obtained with network-based segregation queries that identify the most probable 
topic associations in studies reporting activations within one network but not reporting activations within 
any of the other networks. A 95% confidence interval is depicted, across 1000 random 50% sub-samples of the 
Neurosynth database3. The three networks are depicted in the bottom panel of the figure.
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Finally, to test our hypothesis, we use the following probability encoding rule

which calculates the probability of finding an association with topic t among studies that report the activa-
tion of both the VWFA and network n, but do not report the activation of any other network n2 , where n2  = n . 
Because only two networks, language and attention, are present in the Network table, this rule simul-
taneously calculates the probabilities for each pair of networks, including one while segregating the other.

Results are shown in Table 1. Topic 32 was found to be significantly associated with studies that report acti-
vations within the VWFA and the attention network but that do not report activations within the ‘language’ 
network. This topic loads on terms related to object recognition—a task for which attention circuitry is essential28. 
This result suggests that the VWFA may play a role in attention, as studies that report its activations are signifi-
cantly associated with object recognition, and supports the running hypothesis that the VWFA plays a role in 
processing multiple categories of visual stimuli27. We also observe a significant association with topic 21, which 
loads on terms related to the task of reading words—the putative role of the VWFA.

The opposite segregation query selects studies reporting the VWFA and the ‘language’ network but not report-
ing the attention network ( N = 318 ). This analysis did not yield any significant topic association after correction 
for multiple comparisons. However, a similar topic association analysis, but without segregating studies that 
report activation in the attention network, does yield a significant association with topic 21, linked to the ‘read-
ing words’ ( χ2(1,N = 852) = 56.86, pFDR = 0.000081 ). This result might have more than one explanation, but 
a plausible explanation could be the relative decrease in statistical power (i.e. smaller number of studies) in the 
segregation query compared to the non-segregation query.

Inferring differential activation patterns within the FPCN using topic segregation queries.  In 
this example, we perform forward inference using topic-based segregation queries to derive activation patterns 
within the frontoparietal cognitive control network (FPCN). As a major part of the multiple demand system29, 
the FPCN is associated with a large set of tasks, themselves belonging to disparate and overlapping cognitive 
processes such as working memory, memory retrieval, task switching, and semantic processing, to name a few. 
Moreover, there is evidence for a heterogeneous internal organization in the FPCN, whereby a different combi-
nation of regions may be involved in a different domain of control processing30. Thus, the goal of this example is 
to infer activation patterns within the FPCN predicted by the presence of topic terms related to one process and 
the simultaneous absence of topic terms related to other processes. In this sense, segregation queries can enhance 
the relative specificity of meta-analytic forward inferences by minimizing the amount of overlap amongst related 
topics.

From the set of 200 Neurosynth topics (version-5), we select five exemplar topics representing a subset of the 
cognitive processes often attributed to the FPCN, along with the loading values of studies on each topic. These 
topics are working memory, decision making, task set switching, semantic control, and memory retrieval23,29,31,32. 
Then, we express the following NeuroLang program which performs topic segregation queries, yielding an 
activation map for each topic separately. This program is written as follows:

Table 1.   Topics associated with studies reporting the VWFA and the frontoparietal attention network, but 
not reporting the ‘language’ network. We only depict associations surviving a likelihood ratio test and a false 
discovery rate (FDR) correction for multiple comparison ( pFDR < 0.05 ). More details on the likelihood ratio 
test are provided in the Supplementary Materials. Topics are those from Neurosynth’s v5-topics-100 topic 
model. Out of Neurosynth’s 1.4371× 10

4 studies, 455 report activations within the frontoparietal attention 
network without reporting activations within the ‘language’ network.

Topic Likelihood ratio test

32_object_objects_visual χ2(1,N = 455) = 15.96, pFDR = 0.0065

21_reading_words_word χ2(1,N = 455) = 14.4, pFDR = 0.0074
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We report the resulting topic-based activations within the FPCN in Fig. 3. The results of this segregation 
query show that the FPCN exhibits a varied activation profile across topics, corroborating previous findings of 
flexible adaptation of activity within this network as task demands change. Specifically, working memory and 
task set switching tends to activate, to some extent, spatially interleaved, frontal, and parietal regions of the FPCN 
network. Semantic processing, on the other hand, dominantly activates a left-lateralized ventral frontal regions. 
Finally, decision making and memory retrieval are associated with activation in the cingulo-medial portion of 
the FPCN, the pre-supplementary motor/dorsal anterior cingulate cortex (decision making), and a precuneus/
posterior cingulate cortex network (memory retrieval).

Inferring varying meta‑analytic connectivity profiles of FPCN subnetworks.  Recent findings 
suggest that the frontoparietal cognitive control network (FPCN) can be decomposed into sub-systems associ-
ated with disparate and overlapping mental processes. Dixon et al.7 studied two broad subsystems of the FPCN 
that also appear as separate networks in the influential 17-network model from Yeo et  al.22. Using the same 
nomenclature, we label these two subsystems FPCN-A and FPCN-B. Dixon et al. observed preferential connec-
tivity between FPCN-A and the default mode network (DMN), and between FPCN-B and the dorsal attention 
network (DAN). We reproduce these results by conducting a similar, but more compact, meta-analysis with 
NeuroLang.

For this analysis, we use the NeuroQuery33 database instead of Neurosynth. We express conditional probabilis-
tic queries that include studies reporting activations in each of the two FPCN sub-networks. By contrasting their 
posterior probability maps, we identify a distinct meta-analytic connectivity pattern associated with each sub-
network. Using the same probabilistic definition of network reported by studies as in the first example, we express 
a rule that calculates the coactivation pattern of each FPCN sub-network. In NeuroLang, we use the following 
rule to calculate the conditional probability of a region being reported given that a network is also reported

whose resulting ans table contains rows (r, n, p), where p is the probability of region r being reported active 
given that network n, where n is either FPCN-A or FPCN-B.

A likelihood-ratio test and an FDR correction ( α = 0.05 ) for multiple comparisons are used to identify 
statistically significant coactivating regions. To provide evidence that the results are not driven by one choice 
of studies, we estimate the conditional probabilities in 1000 random sub-samples of the NeuroQuery database 
(each sub-sample is 50% of the entire database). Note that statistical significance is determined in each of the 
1000 sub-samples separately using the likelihood-ratio test.

In Fig. 4, we show scatter plots of the probabilities that each DiFuMo-256 brain region is active given activa-
tion of the FPCN-A or FPCN-B sub-networks are defined by Yeo 17-network parcellation. In the top right panel 
of Fig. 4, we show the results of regions that exhibit a statistically significant coactivation with at least one FPCN 
sub-network, based on a likelihood-ratio test. Statistical significance is assessed through sub-sampling of the 
NeuroQuery database In the left panel, regions are color-coded by their network membership according to the 
coarser Yeo 7-network parcellation to facilitate interpretation.

In general, regions belonging to the somatomotor, visual, and salience networks do not preferentially coac-
tivate with either the FPCN-A or FPCN-B. In contrast, regions of the coarse FPCN show a dichotomy in their 
coactivations with either FPCN-A or FPCN-B. That is, meta-analysis supports the hypothesis that FPCN can 
be functionally divided into two sub-systems7. Importantly, we find a clearer dichotomy in the coactivation 
profiles of the DMN and the DAN with the FPCN sub-networks. On the one hand, 31 out of 32 DMN regions 
coactivate more with FPCN-A, while only one DMN region (a sub-region in the middle frontal gyrus) seem to 
exhibit a preferential coactivation with FPCN-B. In Fig. 5, we illustrate a meta-analytic coactivation contrast map 
between FPCN-A and FPCN-B, showing that the former coactivates to a greater extent with the core regions 
of the DMN, than does the latter. On the other hand, without indicating any preference, we observe that 21 
out of 30 DAN regions exhibit statistically significant coactivations with FPCN-A, while 19 DAN regions show 
significant coactivations with FPCN-B. However, only 11 regions have a higher probability of activating, given 
an FPCN-B activation than FPCN-A, while the others have comparable probabilities of coactivating with either 
sub-networks. This is in line with the findings from Dixon et al.7, showing less distinction in the DAN with 
respect to coactivation with the FPCN sub-networks. Nonetheless, FPCN-B coactivates to a greater extent with 
the core regions of the DAN, the superior parietal lobule and frontal eye fields, than FPCN-A, as seen from the 
coactivation contrast map in Fig. 5.
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Discussion
We present a new domain-specific language (DSL), coined NeuroLang, which broadens the range of meta-ana-
lytic hypotheses that can be expressed and tested against an ever-increasing functional neuroimaging literature. 
Through probabilistic logic semantics, users can formally represent their hypotheses, query heterogeneous data, 
and reason about uncertainty in a unified language. Ultimately, NeuroLang is envisioned to lead a new genera-
tion of computational tools for neuroimaging data analysis, including meta-analysis, to reduce miscommuni-
cation in the community and promote formal and reproducible research. Although several probabilistic logic 
programming languages, such as ProbLog, already exist, we have chosen to design and implement Neurolang 
catering to application-driven features that are specific to the neuroimaging community. These include the use 
of aggregations and the possibility of in-language manipulation of probabilistic resolution results through prob-
ability encoding rules (PERs) that enable entire neuroimaging meta-analyses to be handled within the language. 
Other extensions which are not mentioned in this article such as handling hybrid open and close knowledge also 
motivate the development of NeuroLang. These can be seen in Zanitti et al.26. To support this novel language-
oriented approach, we provide concrete neuroimaging meta-analysis examples fully performed with NeuroLang.

An important meta-analysis application, beyond finding consistent activation patterns, is inferring reli-
able and specific structure-function associations. Traditionally, researchers carefully select studies that “ask a 
similar question” or rely on databases of expertly curated annotations of studies, such as BrainMap2. However, 
non-automated meta-analysis is not scalable, time-consuming, and can suffer from low statistical power. As a 

Figure 3.   Cortical maps showing the difference in posterior probabilities of FPCN regions to be 
active given topic segregation and when given no topic segregation queries. We mask out brain 
voxels that are not part of the FPCN. The difference between posterior probabilities is defined as 
� = P[VoxelReported(x, y, z)|SingleTopicAssociation(t)]−P[VoxelReported(x, y, z)|TopicAssociation(t)].
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response, automated tools have been developed, like Neurosynth3, NeuroQuery33, and more recently NiMare, to 
enable scalable, richer, and unbiased meta-analysis. However, as mentioned before, these tools cannot formally 
express nontrivial inclusion/exclusion criteria of studies to infer specific structure-function associations. In 
contrast, NeuroLang provides a unified formal framework to succinctly express versatile queries of functional 
specificity in the brain via first-order logic semantics rather than propositional logic statements20.

A recurring use-case of expressive querying throughout the examples is that of segregation queries, which 
we express using the first-order logical negation operator ( ¬ ) and existential quantifier ( ∃ ). Using a segrega-
tion query enables a seamless split-up of studies in a meta-analysis while contrasting any number of topics and 
brain regions of interest both in forward and reverse inference paradigms. In this sense, segregation queries can 
enhance the specificity of inferred structure-function associations in brain regions that are putatively recruited 
to varying degrees by multiple tasks and brain networks, such as the VWFA27 or the anterior insula34 for instance.

The three networks example serves as a proof of concept for using segregation queries to derive specific 
structure-function associations for brain structures, such as networks. In this example, we infer the topics that are 
preferentially linked to each of the FPCN, DMN, and DAN. These three networks are known to exhibit competi-
tive and cooperative coupling dynamics across a wide array of tasks35. Thus, observed activations may emerge 
from the dynamics of these networks depending on task demands36. This might yield in a blurry characterization 

Figure 4.   Comparison of the probabilities that DiFuMo-256 components coactivate with the two FPCN 
subnetworks. Regions are colored based on their network membership in the 17-Network brain atlas by Yeo 
et al.22. Only regions exhibiting a statistically significant ( pFDR < 0.05 ) coactivations with either subnetwork 
are included in the figure, based on the likelihood-ratio test and a correction for multiple comparison. 
P[RegionReported(r)|NetworkReported(FPCN-A)] denotes the conditional probability of region r being 
reported by studies reporting FPCN-A in the database. Probabilities are inferred in 1000 random 50% 
subsamples of the NeuroQuery CBMA database.
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of networks in terms of their specific roles and spatial arrangement, sometimes leading to nomenclature ambigui-
ties across studies and research groups37. One way to solve this is to infer relatively specific functions of a network 
by “isolating” its activity pattern from the other networks. Achieving this isolation through segregation queries, 
we find preferential topic associations for the FPCN, DMN, and DAN that align with the general understanding 
of their roles29,38,39. Such a segregation-based meta-analysis can be performed in future studies, for instance, to 
create a foundation for a fine-scale taxonomy of brain networks depending on their inferred roles in addition 
to their connectivity patterns.

In the VWFA example, we use segregation queries to address controversial hypotheses27,40 about the role of 
this region in general visual processing beyond reading words. The main result is a statistically significant asso-
ciation for the VWFA with a topic loading on terms of object recognition given coactivation with attention but 
not language regions. However, the topic loads on terms such as ‘fusiform’ and ‘occipitotemporal’—zones in the 
close vicinity of the putative VWFA known to represent features and attributes of objects41, which might bias the 
results due to uncertainty in precisely locating the VWFA and the ambiguity in nomenclature across studies. But 
given that the dorsal attention network is active and its strong functional connectivity to the left occipitotemporal 
zone40, a link between the VWFA and “object recognition” is plausible. Concurrently, we observe no statistically 
significant topic associations for the VWFA when it coactivates with language but not attention regions. Yet, if we 
do not exclude studies reporting the coactivity among language and attention networks, a significant association 
with a topic related to “reading words” is observed. This finding suggests that the VWFA might not be specific to 
language per se, but rather have a broader role at the interface of language and visuospatial attention. Findings 
from27 suggest that the VWFA acts as a gateway between attention and language networks, such that the former 
amplifies the representations of written words so they may be conveyed to the latter. Our findings suggest that 
the VWFA is a more general visual processor that may be recruited in other visual tasks in addition to reading. 
This segregation-based meta-analysis can be extended to understand the dynamic roles of flexible regions in the 
brain, such as connector hubs.

In the third and fourth examples, we derive varying coactivation patterns within the FPCN revealing its het-
erogeneous organization. The FPCN comprises regions that coactivate across diverse conditions. Given the lack 
of formal definitions and fine lines between different executive functions, which are often conjointly studied, it 
can be difficult to determine domain-specific FPCN regions. As a potential solution to this problem, a segregation 
query can simultaneously select studies highly loading on topic terms related to a single function, discard studies 
loading on topic terms of other functions, and contrast them. The results reveal a relatively unique coactiva-
tion pattern consistently associated with each topic, consistent with findings of dynamical activity in canonical 
brain networks as a function of varying demands42. We say “relatively unique” because we only study a small 
set of topics for the sake of demonstration, while in fact there are putatively more functions attributed to the 
FPCN. This meta-analysis can include a cognitive ontology43 to systematically define all pertinent concepts and 
similarly contrast them26. Moreover, this type of meta-analysis can be effective in system-level causal modeling 

Figure 5.   (A) DiFuMo-256 components that are more likely to coactivate with one FPCN sub-
network than the other. In blue, we depict regions exhibiting a greater probability of coactivation 
with FPCN-A. In red, we depict regions exhibiting a greater probability of coactivation with 
FPCN-B. The absolute difference between region coactivation probabilities is defined as 
� = P[RegionReported(r)|NetworkReported(FPCN-A)]−P[RegionReported(r)|NetworkReported(FPCN-B)] . A 
likelihood-ratio test and an FDR correction ( α = 0.05 ) for multiple comparisons are used to identify regions 
that exhibit significant coactivation with either network before estimating � . (B) The default mode network 
(DMN) and the dorsal attention network (DAN) from the 7-Network atlas of Yeo et al. 2011. DMN regions are 
more likely to coactivate with FPCN-A, whereas DAN regions are more likely to coactivate with FPCN-B.
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approaches (e.g., dynamic causal modeling)44, which require strong a priori hypotheses about the regions involved 
in particular contexts. Finally, we reproduce the results of Dixon et al.7, equivalently revealing two subsystems, 
FPCN-A and FPCN-B that exhibit distinct activations profiles and specific associations with the DMN and DAN, 
respectively. Although Dixon et al.7 have successfully performed this analysis using Neurosynth’s command line 
tools, we have been able to reproduce their findings with significantly more compact, declarative, and formal 
queries. In this sense, after representing the data in NeuroLang, a user only has to worry about what question to 
ask rather than about explicitly declaring every step needed to answer it.

Performing meta-analyses often requires integrating heterogeneous data. For example, Andrews et al.11 use 
a brain parcellation to characterize components of the DMN whose respective functions are decoded through 
reverse inference reasoning. Here, to study the functional profiles of brain networks and the coactivation pat-
terns of FPCN subsystems, we integrate the DiFuMo-256 functional atlas. Components of this functional atlas 
overlap with anatomical landmarks whose names are used to label the components by experts to enhance 
interpretability21. The DiFuMo components are also grouped into 7 and 17 canonical networks whose labels 
have been integrated in our examples. This approach facilitated the formulation of hypotheses and the inter-
pretation of results. We believe that future studies conducted with NeuroLang could benefit from its capacity to 
represent any anatomical and functional atlas as well as tabular meta-data and formal ontologies26. Moreover, it 
is imperative for a complete meta-analytic tool to be flexible enough to represent any type of parcellation, meta-
analytic database, or, more generally, neuroscientific knowledge. Within our experiments, we have been able 
to represent both the Neurosynth database and its associated openly-shared topic models in NeuroLang. But, 
in other experiments, we use the NeuroQuery database because of its lower error rate in the extraction of peak 
activation coordinates33. Together, these examples demonstrate that NeuroLang is agnostic to the database used 
for conducting meta-analyses, and could incorporate future sources of neuroscientific knowledge with various 
topologies.

Of course, due to the analytical variability across neuroimaging studies45 and imperfections in data acquisi-
tion, knowledge representation should account for elements of uncertainty in the data. Probabilistic programs 
and databases constitute general frameworks for representing structured but uncertain knowledge. As these two 
paradigms reside at the heart of NeuroLang, uncertain data can be combined within its probabilistic programs. 
In our experiments, we model the reporting of functional modes and networks probabilistically based on their 
volumetric proportion that is reported by studies, although other indicators of uncertainty can be used. The 
probabilistic definition of uncertainty is arbitrary, but NeuroLang is expressive enough to represent any assump-
tion. For instance, to obtain network-specific functional profiles, we combine meta-analytic data and functional 
atlases with data-driven topic models. The topics are associated with studies probabilistically by data-driven 
loadings from the fitted latent Dirichlet allocation model, which are based on the frequency of co-occurrence 
of terms in abstracts of studies19. Other measures of uncertainty can also be represented in NeuroLang, such 
as sample size, the relative location of peaks, study age, and methodological choices such as inference method, 
smoothing, and thresholding. Although mathematically modeling such information is not straightforward, the 
most important condition to incorporate them into uncertainty modeling is our ability to access them from the 
meta-data of each study. Latent information about studies cannot be easily modeled and hence accounted for by 
NeuroLang. For instance, a limitation of the current study is that some articles in the meta-analyses may report 
activations only within pre-defined ROIs, discarding those existing in other regions. Thus, it becomes impossible 
to differentiate articles that only report within ROI activations from those that genuinely did not observe activa-
tions in regions of no interest. This type of reporting bias can affect the resultant structure-function associations, 
artificially amplifying uncertainty and skewing the evidence in favor of specific structure-function associations. 
Although NeuroLang can essentially account for heterogeneous sources of uncertainty, it cannot readily take 
into account differences in methodological choices across studies, unless such information is accessible. Yet, 
even if such information is available, conceiving a mathematical model that robustly incorporates them into the 
analysis remains a challenging task. Another example of information not included in the meta-analytic databases 
is that within articles one-on-one associations between multiple regions/networks and topics may be reported. 
However, such finely-resolved information has not been automatically extracted by the scraping algorithms used 
by Neurosynth or NeuroQuery. As a result, these articles will be deemed non-specific, i.e. not relating a topic 
to a single network or vice-versa, and excluded in a segregation-based meta-analysis, as they violate the region-
topic exclusivity condition within a single study. The problem lies not in NeuroLang, but in the assumption that 
a study is the smallest unit of analysis. Therefore, a segregation query will exclude any study that reports more 
than one network and more than one topic at a time. A plausible solution is to perform a nested meta-analysis, 
increasing the resolution to the level of contrasts or tables within a study. Yet again, such information must be 
available in databases to be adequately presented in NeuroLang.

It is worth noting that, so far, not all types of queries can be efficiently solved by NeuroLang’s engine. For exam-
ple, negated disjunctive queries, such as ¬(FirstSegregation(s) ∨ SecondSegregation(s)) , where FirstSegregation 
and SecondSegregation correspond to two segregation rules—similar to those presented in our examples, can be 
computationally intractable in a voxel-level analysis, where > 150, 000 voxels need to be modeled. This is because 
extensions to logic programming, such as negation46, are not directly transposable to lifted query processing of 
unions of conjunctive queries on probabilistic databases47. In other words, more expressivity in a language leads 
to higher data complexity—the complexity of solving a query with respect to the size of the data48. In the case of 
whole-brain voxel-level statistical modeling, data complexity is significant, and solving a segregation query can 
become impractical due to the large number of voxels that are modeled. Efficient algorithms exist for solving a 
limited subset of queries on probabilistic databases14. NeuroLang privileges lifted query processing to solve queries 
on probabilistic databases (see the “Methods” section for details). Lifted query processing is an algorithm with a 
set of rules that translate a query to an algebraic expression to solve it in polynomial time. This allows NeuroL-
ang to efficiently scale to large databases. However, to calculate the solution of a potentially non-liftable query, 
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NeuroLang falls back to knowledge compilation strategies49. Yet, when modeling hundreds of thousands of brain 
voxels, we find resolution times of knowledge compilation to be impractical as well. Obtaining a solution for 
meta-analytic queries at the voxel level currently take several minutes to be solved with NeuroLang, while such 
queries can be solved in a few seconds by Neurosynth’s engine, which uses a custom python-based implementa-
tion. Nevertheless, major improvements to NeuroLang’s engine are currently underway.

In designing NeuroLang, we provide a high-level programming interface for harnessing meta-analysis data-
bases in cognitive neuroscience research. We believe that this approach has three main advantages: Accessibility, 
Readability, and Sound semantics. Implementing a program to test a complex hypothesis against meta-analytic 
data can be time-consuming and error-prone, especially for those not proficient in general-purpose program-
ming languages. A domain-specific syntax like NeuroLang’s eases the process of formulating hypotheses com-
bining heterogeneous data. This has the potential of speeding up the meta-analysis process as well as making it 
highly reproducible. Moreover, being specific about the research question and assumptions in meta-analysis is 
an important practice50. NeuroLang’s logical syntax makes model assumptions and inclusion/exclusion criteria 
readable and understandable directly from the code of the program. Importantly, NeuroLang is grounded in 
formal mathematical logic, providing theoretical guarantees that both limit modeling errors and provide trust 
in the language. We believe that these advantages make NeuroLang a tool of choice for conducting functional 
neuroimaging analysis. Finally, studies performed using NeuroLang are highly reproducible. That is, a NeuroLang 
program used in a study in 2022 could be re-used in another study in 2027, 5 years later, either as a modeling 
inspiration for an entirely different study or to confront the original study’s findings with results published from 
2022 to 2027.

Methods
We apply a language-oriented programming approach to the problem of expressing and testing meta-analytic 
neuroscientific hypotheses. That is, instead of using a general-purpose programming language to solve the 
problem, we design a domainspecific language (DSL) to represent the problem, and solve it in that language. 
NeuroLang uses logic, declarative, and probabilistic programming paradigms. We start by introducing computer 
science concepts required to understand the semantics of the language. Then, we explore how these formal-
isms can be applied to the specific case of expressing cognitive neuroscience hypotheses. Finally, we detail the 
technicalities of solving queries on NeuroLang programs when working at the whole-brain neuroimaging scale.

Probabilistic logic programs and databases.  To represent heterogeneous neuroscientific knowl-
edge, NeuroLang leans on Datalog25, a fully declarative logic a programming language designed to efficiently 
solve queries on large deductive databases. A Datalog rule takes the form ∀x,

(

ψ(x) ← ∃y,ϕ(x, y)
)

 , where 
x is a set of universally quantified variables, y is a (possibly empty) set of existentially quantified variables, 
ψ is a relational symbol, and ϕ(x, y) is a conjunctive logic formula over x ∪ y . For readability, the implicit 
∀ and ∃ quantifiers are often omitted, and the rule is written ψ(x) ← ϕ(x, y) . A Datalog program is a set of 
such rules. The input of the program is a set of extensional facts and its output is a set of intensional facts that 
have been obtained through deductive inference, based on the program’s rules and input facts. This process 
is summarised in Fig.  6. In NeuroLang, we write a Datalog rule ∀(x, z),

(

P(x, z) ← ∃y,Q(x, y, z) ∧ R(z)
)

 as 
. Theoretical formalisms and efficient query resolution algorithms 

have been developed by the logic programming community over the past decades. By restricting the syntax of 
its rules, Datalog queries have been proven to be solvable in polynomial time w.r.t. the size of the database25. 
Strong guarantees on query resolution complexity are primordial to handling high dimensional whole-brain 
neuroimaging data.

Testing cognitive neuroscience hypotheses require aggregating data from many subjects or studies using 
statistical models. Logic programming languages were not designed for statistics or probabilistic modeling, as 
their programs live in a world where everything is either deterministically true or false and only one outcome is 
possible. To address this limitation, logic programming languages were extended with probabilistic semantics 
to incorporate uncertainty and allow for probabilistic inference, such as ProbLog251 or CP-Logic52. Following 
ProbLog’s semantics, albeit with slightly different syntax, a probabilistic rule ψ(x) : α ← ϕ(x) describes that the 
fact ψ(x) is true with probability α , whenever the deterministic predicate ϕ(x) is true. Thus, probabilistic rules 
describe non-ground probabilistic facts. Probabilistic logic programs define a distribution over possible outputs 

Figure 6.   Deductive inference in Datalog. Using knowledge and implication rules to infer new knowledge.
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of the programs’ execution, i.e. possible worlds53. A schematic summary of probabilistic logic programming is 
illustrated in Fig. 7. For a more detailed introduction to probabilistic logic programming, we refer the reader 
to De Raedt et al.’s review54. In NeuroLang, we write a probabilistic rule P(x, y) : f (x, y) ← Q(x, y) ∧ R(y) as

Inferring the probability of a query boils down to summing the probabilities of all possible worlds where 
this query is verified (see Fig. 7). This process is called weighted model counting55. The number of possible 
worlds is often very large, and naively counting possible worlds become intractable. For example, if we model 
the activation of each brain voxel as independent Bernoulli random variables, the number of possible worlds 
would be 2K , where K is the number of voxels in the brain, typically numbered in the hundreds of thousands. 
Solving weighed model counting problems on real-world data requires efficient resolution algorithms. Knowl-
edge compilation finds compact representations of large probabilistic programs and can be used to solve queries 
drastically faster14,56.

In parallel, the field of probabilistic databases extended traditional relational databases with the possibility of 
encoding uncertain knowledge using probabilities57. A probability can be attached to any tuple in the database, 
as illustrated in Fig. 8. Similarly to probabilistic programs that define a distribution over possible outputs, a 
probabilistic database defines a probability distribution over a set of possible databases (or worlds), where tuples 
are chosen to be true or false based on their probability. The probability attached to a tuple then corresponds to 
the marginal probability of that tuple being found in any database randomly chosen from the distribution over 
possible databases. Probabilistic tuples within the database are often assumed to be independent random events, 
in which case the database is called a tuple-independant database (TID). A tuple with probability 1 is true in all 
possible databases, and a tuple with probability 0.5 is true in half of the possible databases.

In some cases, solving a query on a probabilistic database can be done much more efficiently than through 
knowledge compilation approaches. One recent theoretical result is the dichotomy theorem, which classifies 
queries on TIDs based on their complexity13. At the heart of this theorem, there is a resolution strategy named 
lifted query processing. It applies, based solely on syntactic analysis of queries, a set of rules that derive an alge-
braic expression that computes the probability of the query14. We illustrate this process in Fig. 9. Liftable queries 
have a polynomial data complexity. If the rules fail to apply, the query is said to be non-liftable, and has been 
proven to have a #P-hard complexity. In NeuroLang, the query preprocessing engine is in charge of choosing the 
best algorithm to solve each query: for probabilistic queries, if the query is liftable according to Dalvi & Suciu’s 

Figure 7.   A probabilistic logic program defines a probability distribution over its possible outcomes. Note that 
the probabilities and the distribution are arbitrary and are used for illustration only.

Figure 8.   Solving a union of conjunctive queries on a tuple-independant database.
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dichotomy theorem13, then the lifted query algorithm is applied; otherwise, the query is compiled to an SDD 
representation and model counting is applied14. According to the dichotomy theorem, a query is said to be lift-
able if it belongs to the class of union of conjunctive queries using a single quantifier, atomic negation, and each 
predicate appears either in positive or negative form; furthermore, the query needs to admit a translation into 
a provenance relational algebra query where the probabilities can be then purely calculated through relational 
algebra operations, i.e. a safe plan. We refer the reader to articles such as Van der Broeck and Suciu14 for a more 
technical description. As an example of a non-liftable query according to Dalvi and Suciu13, the last query of 
the “Meta-analysing the role of the visual word-form area in attention circuitry” cannot be lifted because it is 
not a disjunctive query, it has 2 quantifiers: an existential in s and a universal one in n2 as a consequence of the 
negated existential.

By incorporating probabilistic semantics and fast query resolution algorithms from both probabilistic logic 
programming and probabilistic databases, NeuroLang is a full-fledged probabilistic programming language20. This 
approach makes it possible to express a wide variety of programs and queries, some of which can be efficiently 
solved using lifted query processing on probabilistic databases, even at the voxel level.

Syntactic specificities of NeuroLang.  We describe the syntactic extensions of typical logic and proba-
bilistic logic programming languages that we made to provide features necessary to express end-to-end meta-
analyses in NeuroLang.

A NeuroLang probability encoding rule (PER) captures the result of a probabilistic inference into a deter-
ministic table. They are a syntactic convenience, or sugar syntax, that makes it possible to solve probabilistic 
queries within the program and process their solution with deterministic rules. Internally, we stratify (i.e. split in 
several code sections) a NeuroLang program as deterministic and probabilistic strata. Stratification allows us to 
programmatically post-process and analyzes results from probabilistic calculations within the same self-contained 
program, as illustrated in Fig. 10. Moreover, this strategy can be used to supplement deterministic strata with 
logic programming extensions that would not necessarily be compatible with probabilistic programming26.

PER can either infer marginal or conditional probabilities. A marginal PER takes the form

where P1, ..., Pn are deterministic or probabilistic relational symbols, and where PROB is a special symbol that 
indicates the position of the attribute where the probability resulting from the probabilistic query represented 
by the rule’s body, marginal or conditional, will be reified. We refer the interested reader to Zanitti et al.26 for 
a detailed description of the semantics of PERs. All other variables present in the head of the rule have been 
replaced with three points “...” to simplify the example. A conditional PER is only slightly different in that it 
calculates the probability of the conjunction of literals being true, given that another the conjunction of literals 
is true. Conditional PER take the form

Figure 9.   An extensional query plan solves P[Q] for a given query Q by using algebraic operations that are 
extended with probabilistic calculations14. Symbols ρ , π and ⊲⊳ refer to the operations of rename, projection and 
natural join as they are used in database theory, specifically in relational algebra25.
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where the // operator applies a probabilistic conditioning. The PROB attribute of the resulting Result relation 
encodes the conditional probabilities P[P1(x) ∧ · · · ∧ Pn(x)|Q1(x) ∧ · · · ∧Qm(x)] , for each tuple x such that 
the probability is strictly positive. This is a brief description of PER and it is beyond the scope of this paper to 
formalize its definition. For a more detailed description, please refer to Zanitti et al.26.

NeuroL ang suppor ts  existent ia l  quant i f icat ion of  var iables  us ing ru les  such as 
, where  is existentially-quantified using the language’s 

special symbol . The language also supports negation within its deterministic and probabilistic rules 
and aggregations within its deterministic rules. Aggregations are functions that operate on multiple tuples or 
rows that are grouped together. Specifically, Neurolang admits aggregations only on deterministic nonrecursive 
rules. An example of an aggregation rule is , which counts, for 
each possible assignment of x, the number of grouped tuples (y, z) such that Q(x, y, z) is true, and stores this 
count in the second column of table P. Probabilistic tables can be constructed dynamically from deterministic 
rules. For example, the rule  constructs a probabilistic table 
P, assigning a probability to each tuple (x, ) based on function f. In the case where such rule generates multiple 
probabilities for the same tuple (x, ), an error is thrown and the user is advised to either change their probabilistic 
definition or apply an aggregation function on the probabilities, such as . The head of 
these rules must be deterministic.

Likelihood ratio test for NeuroLang queries.  Throughout this work, we express meta-analytic con-
ditional probabilistic queries of the form P[ϕ(s)|ψ(s)] , where ϕ(s) and ψ(s) are first-order logic formulas 
describing study-specific probabilistic events of interest; such as whether a region/network is reported by study 
s, or whether s is associated with a topic related to a particular psychological concept. For brevity, we write 
P[ϕ(s)|ψ(s)] instead of P[ϕ(s) = ⊤|ψ(s) = ⊤] , where ϕ(s) and ψ(s) are modeled as Bernoulli random vari-
ables that have a probability of being true ( ⊤ ) or false ( ⊥ ) in any possible execution of the probabilistic logic 
program. The formula ψ(s) imposes conditions that select studies that will be included in a meta-analysis. To 
test the statistical dependence of ϕ(s) on ψ(s) , we use a likelihood ratio test, whose null ( H0 ) and alternative ( H1 ) 
hypotheses are

We define the likelihood ratio as � � L(H1)/L(H0) , where L(H1) and L(H0) are the maximum likelihood of 
the observed data under the alternative and null hypotheses defined as

where m is the number of studies s such that ϕ(s) , n is the number of studies s such that ψ(s) , k is the number of 
studies s such that ϕ(s) ∧ ψ(s) , and N is the total number of studies within the database. As 2 log � is asymptotic 
χ2 distributed with 1 degree of freedom58, it provides an estimate of the false-positive rate when rejecting the 
null hypothesis.

(1)H0 : P[ϕ(s)|ψ(s)] = P[ϕ(s)|¬ψ(s)] = P[ϕ(s)]

(2)H1 : P[ϕ(s)|ψ(s)] �= P[ϕ(s)|¬ψ(s)]

(3)L(H0) � Bin(k; n,P[ϕ(s)])Bin(m− k;N − n,P[ϕ(s)])

(4)L(H1) � Bin(k; n,P[ϕ(s)|ψ(s)])Bin(m− k;N − n,P[ϕ(s)|¬ψ(s)])

Figure 10.   Stratification in NeuroLang. The program’s input contains both deterministic ( A1 , A2 , and C ), and 
probabilistic ( D and E ) tables.
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Data availability
All data and code are available to be openly used by the community. Neurosynth and NeuroQuery data are 
respectively found at https://​github.​com/​neuro​synth/​neuro​synth-​data and https://​github.​com/​neuro​query/​neuro​
query_​data. The analysis scripts will be stored in a shared public repository along with the source code of Neu-
roLang on GitHub at https://​github.​com/​Neuro​Lang/​Neuro​Lang.
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