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Robustness and efficiency 
of international pesticide trade 
networks subject to link removal 
strategies
Wen‑Jie Xie1,2, Jian‑An Li1, Na Wei1, Li Wang3* & Wei‑Xing Zhou1,2,4*

The international pesticide trade network (iPTN) is a key factor affecting global food production and 
food security. The trade relationship is a key component in iPTNs. In a complex international trade 
environment, we model the impacts of uncertain factors such as trade wars, economic blockades and 
local wars, as removing vital relationships in the trade network. There are many complex network 
studies on node centrality, but few on link centrality or link importance. We propose a new method 
for computing network link centrality. The main innovation of the method is in converting the original 
network into a dual graph, the nodes in the dual graph corresponding to the links of the original 
network. Through the dual graph, the node centrality indicators can measure the centrality of the 
links in the original network. We verify the effectiveness of the network link centrality indicator based 
on the dual graph in the iPTN, analyze the relationship between the existing network link centrality 
indicators and the indicator proposed in this paper, and compare their differences. It is found that the 
trade relationships with larger indicators (hub, outcloseness, outdegree) based on the dual graph have 
a greater impact on network efficiency than those based on the original pesticide trade networks.

Complex systems are ubiquitous, and their complexity lies in the large number of individuals and particularly 
complex relationships in the system. In general, a large number of relationships between individuals constitute 
the main structural and evolutionary features of complex systems. Complex network is an important tool and 
method to study complex systems. In the real world, the social environment and trade environment are extremely 
complex. The local wars, COVID-19, and trade wars have all directly affected the international situation and 
trade environment. In the meantime, many uncertain factors, such as trade wars, economic sanctions and trade 
blockades, have affected the development of international pesticide trade relations. These factors can be mod-
eled as the removal of trade links in the trade network. In order to prevent the breakdown of some important 
trade relationships in advance, it is necessary to identify some important trade relationships, that is, important 
network links. The removal of these links will affect network functions such as network efficiency and network 
connectivity, thus making a large impact.

The index of vital links in networks can be measured by the centrality, importance and influence of network 
links. The centrality of network nodes has been studied by many researchers and widely applied in different 
fields1–5. In collaborative networks of scientists, node centrality can be used to identify influential scientists6,7. In 
financial networks, researchers analyze, for instance, the relationship between the CEO network centrality and 
merger performance8, the boardroom centrality and firm performance9, the network centrality and delegated 
investment performance10, and the trade network centrality and currency risk premia11. In sports networks, the 
player centrality in the passing network of world cup soccer teams can reveal many interesting phenomena12–14.

Network analysis has an important position in socioeconomic system15–17, especially in financial or economi-
cal systems, and research on the importance and centrality of individuals has been the focus of attention18,19. In 
the socioeconomic system the economic agent is too big to fail, too connected to fail, and too central to fail20,21. 
The importance and centrality of network nodes have always provided important decision-making reference 
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indicators for decision-makers22. Network links also play a key role in complex systems2,11, but there are few 
methods and literature for measuring and analyzing network link centrality.

The main idea of this paper comes from the literature on network link control23. Nepusz et al. introduced dual 
graph theory and analyzed the controllability of network links. Therefore, we also introduce the importance and 
centrality of links in the dual graph. The importance of the nodes in the dual graph is used as an indicator for the 
importance of the links in the original network. The influence of relationships on network structure and dynamic 
characteristics provides a new calculation method and indicator for identifying important trade relationships 
and vital links in socioeconomic network24.

In the international trade system, trade relationships have always been the focus of research25–27. Identifying 
important trade relationships and key trade behaviors has always been a hot topic of research. In this paper, the 
importance indicator of network links based on dual graph is used in the international pesticide trade network 
(iPTN) to analyze the importance of the trade relationships of different pesticide products and the impact on 
the stability of network structure28,29. The trade network of agricultural products directly affects international 
food security30 and the basic functioning of socioeconomic activities31–33. The international trade network has 
attracted the attention of researchers from different disciplines around the world34–38.

The robustness39–43 and efficiency41 of the network has always been a hot topic in network science. The impor-
tant links will directly affect the dynamic characteristics of the network, which is of great significance to the 
robustness and efficiency of network structure42. When the network is subjected to random shocks or targeted 
attacks, it will affect the network stability. The types of shocks or the importance of the impacted links vary, and 
the degree of network impact varies as well44,45. We will verify the effectiveness of the method proposed in this 
paper by analyzing the influence of vital links on the robustness and efficiency of networks18,19.

Results
Construction of international pesticide trade networks.  We use the international pesticide trade 
data published on the official website of UN Comtrade from 2007 to 2018. The data includes exporting econo-
mies, importing economies, and trade volumes. V(t) = [vij(t)] represents the pesticide trade volume of econ-
omy i exported to economy j in year t. Figure 1a shows the aggregated trade network of 5 pesticide products, 
while Fig. 1b–f illustrate the pesticide trade networks for insecticides (380891), fungicides (380892), herbicides 
(380893), disinfectants (380894), and rodenticides and other similar products (380899)46. Each plot retains 5% 
of the trade relationships with the highest volume. The topology and spatial distribution of different pesticide 
trade networks in Fig. 1 have similar structures. But there are also differences in some local areas. The major 
reason is that they all need to be based on the industrial production conditions and supply chain conditions of 
the economy, although the production processes of different pesticides are different.

We can intuitively understand the spatial distribution of the iPTN in Fig. 1. The trade networks of different 
types of pesticide products share certain similarities. In addition, Europe, the United States, China, Brazil, Aus-
tralia and other major agricultural economies occupy obvious prominent positions in the networks.

Construction of dual graph of international pesticide trade networks.  Based on the trade volume 
matrix V , we calculate the adjacency matrix A = [aij] of the pesticide trade network between economies. The 
adjacency matrix element aij = 1 represents the trade volume vij > 0 between economy i and economy j and 
aij = 0 otherwise. In order to analyze the links’ centrality in the network, we adopt the graph theory and convert 
the directed network A = [aij] into a dual graph, which is used to analyze the nature of the trade relationship of 
the original trade network.

We denote the original directed network as G = �V ,E� , where V = {v1, v2, ..., vN } represents the original 
network node set, and E = {e1, e2, ..., eM} represents the link set. The dual graph of original network G = �V ,E� 
can be expressed as G∗ = �V∗,E∗� , where V∗ = {e1, e2, ..., eM} represents the set of nodes in the dual graph, which 
is the set of links in the original network. Each link in the original network corresponds to a node in the dual 
graph. When the original network is a directed graph, the link construction in the dual graph needs to preserve 
the property of the direction. Figure 2 is a simple example of converting the original graph to the dual graph. The 
original graph contains 4 nodes {A,B,C,D} and 5 links {ab, ba, ac, bc, bd} . Therefore, there will be 5 nodes in the 
dual graph with V∗ = {ab, ba, ac, bc, bd} . The key to the construction of dual graphs is to determine relational 
links. For example, based on whether a link exists between node ab and bc, it is necessary to consider whether 
the links in the original network corresponding to the two nodes can be connected. Since there is a directed path 
{a, b, c} in G, we obtain a directed link from ab to bc in G∗ . In contrast, there is no link connecting ac and bc in 
G∗ when there is no directed path in G, although the two links in G share a vertex.

Centrality indicators for nodes in international pesticide trade networks.  There are many node 
centrality indicators in network analysis. We select 9 node centrality indicators47–49: hubs, out-degree, in-degree, 
authorities, PageRank, incloseness, outcloseness, betweenness, and clustering. The degree of a node describes 
the number of links connected to it. For a directed network, the in-degree represents the number of links that 
point to a node, and the out-degree represents the number of points from a node to others. The closeness is the 
reciprocal of the sum of the distances of a node to all other nodes. If the node cannot reach any other nodes, the 
closeness is zero. In-closeness measures the ease of other nodes to reach this node. The higher the in-closeness 
of an economy in iPTN, the easier it is for other economies to reach this economy. Out-closeness measures the 
ease of a node to reach other nodes. The higher the out-closeness, the easier it is for an economy to reach other 
economies. Betweenness measures the frequency of occurrence of a node on the shortest path between two 
nodes in the network50,51. PageRank centrality is based on Google’s sorting algorithm52. The hubs and authorities 
centrality are two recursively defined centrality values. The clustering coefficient of a node measures the propor-
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Figure 1.   An example of the topology of the international pesticide trade network (iPTN) with part of links 
in 2018. The six plots correspond to the trade networks of pesticide products, including (a) aggregated, (b) 
insecticides, (c) fungicides, (d) herbicides, (e) disinfectants, and (f) rodenticides and other similar products.
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Figure 2.   Example of building a dual graph. (a) Original graph. (b) Dual graph.
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tion of connections between the node’s neighbor nodes. A node’s hub score is the sum of the authority scores of 
all its successor nodes. Likewise, the authority score is the sum of the hub scores of all its predecessor nodes. The 
sum of all the hub scores is equal to 1, and the sum of all authority scores is equal to 1 as well.

Centrality indicators for links in international pesticide trade networks.  The above definitions 
are all based on the centrality measurement of nodes. This article is intended mainly to calculate the central-
ity of links through the measurement of node centrality on a dual graph. The nodes in the dual graph are the 
links in the original network. It is necessary to calculate the centrality of the links in the original network, as 
the importance and centrality of the nodes in the dual graph are calculated. In order to analyze the effectiveness 
of our method, we also adopt six existing methods to measure the importance and centrality of network links.

In a directed weighted network, the most direct and commonly used indicator to measure the importance of a 
link is its weight. In most applications, link weights cannot reflect the importance of trade relations of some small 
economies. Many importance indicators are defined based on network structure and contain network structure 
information. Edge betweenness (EB) is the most representative indicator of centrality for a link. Significance 
αij of link is based on the method of Serrano et al.53. CN is defined as the common neighbors of the two nodes 
corresponding to the link. Resource Allocation ( RA)54 is similar to Adamic/Adar ( AA)55. The details of each 
variable calculation are described in Section Materials and methods.

Thus far, nine indicators based on node centrality and six indicators based on link centrality have been 
defined. In order to make a simple comparison of the 15 indicators, we calculated the centrality values of nodes 
(trade relations) in the dual graph using the node centrality indicators, and also calculated the 6 link centrality 
indicators in the original network. for each trade relationship in the original trade network, 15 indicators for 
vital links can be obtained, among which the trade volume (weight) of the trade relationship is the most direct 
and commonly used indicator.

Correlation between link centrality indicators.  Figure 3 shows the correlation coefficients between 
the link centrality based on the network structure, and each plot corresponds to a type of pesticide trade net-
work. Since the values of different indicators are quite different, Spearman’s rank correlation coefficient is used 
to describe the relationship between different indicators. The nine edge centrality indicators based on the node 
centrality of the dual graph can be divided into three categories: betweenness, in-degree, PageRank, authority 
and in-closeness; out-closeness, out-degree and hub; clustering.

It can be found from the correlation between the six basic edge centrality indicators that most of the impor-
tance indicators have positive correlation coefficients, but the correlation between the link betweenness (EB) 
is not obvious when the significance level is 0.05. The correlation coefficient between Alpha and weight is sig-
nificantly high, as Alpha is defined based on weights. Compared with the link centrality metrics based on dual 
graphs, The link centrality metrics based on the original network structure have higher correlation coefficients 
with weights, while EB is an exception. The six edge centrality indicators based on the original network can also 
be divided into three categories, and the classification can be seen can be seen from the block in the lower right 
corner of the correlation coefficient matrix.

There is also a high correlation between the five indicators (betweenness, in-degree, PageRank, authority and 
in-closeness) based on node centrality and the three indicators (CN, AA, RA) based on the original network 
edge centrality. Obviously, indicators with higher correlations will have similar impacts on network stability 
and efficiency. This conclusion can be verified from the analysis of network robustness and efficiency in the 
following section.

Influence of vital links on robustness of international pesticide trade networks.  We analyze the 
importance of trade relations corresponding to different indicators. It should be pointed out that the importance 
of trade relations corresponds to the issues to be analyzed, such as the famous weak ties theory in network sci-
ence. Weak links can also have an important position in the corresponding networks. Therefore, we choose 
network stability56 as the background problem to measure the link centrality with different indicators.

Based on the indicator I, the trade relations in the network are deleted, and then the maximum connected 
subgraph formed by the remaining links is calculated as the largest component. There are three methods for 
removing trade relationships. The “descend” method is to firstly delete the trade relationship with the largest 
indicator I, the proportion of deleted links is p, and the remaining network of the largest component is obtained. 
The “ascend” method is to firstly delete less important links, that is, the trade relationship with the smallest 
indicator I. The “random” method is to randomly delete trade relations. Finally, we calculate the proportion γ I 
of the number of economies in the largest component,

the result is shown in Fig. 4.
It can be seen from Fig. 4 that the size of the giant component obtained by different link deletion methods has 

different variation patterns. When the trade relationship with the smallest indicator I first (ascend) is deleted, 
the size of the remaining network becomes smaller than that of the other two methods. This result is consistent 
with the previous theory about weak ties. the reason is that the links with the smallest indicator I represent some 
trade relations that play a strong linking role in the pesticide trade network. The smallest change of the largest 
component occurs in the case “descend” where the trade relations with the largest indicator I are firstly deleted. 
Those trade relations with the largest indicator I are the links with large trade volumes. These links have little 
effect on the connectivity of the network. The method of randomly removing the links of the trade network is 

(1)γ I(p) =
Np

N
,
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somewhere in between. Here we randomly simulate 20 times, and then average the proportion γ I of the largest 
component in the case of “random”. In Fig. 4, when the proportion of deleted links reaches 80%, the proportion 
of economies in the largest component remains approximately 80%. This shows that most of the links in the 

Figure 3.   Spearman’s rank correlation coefficients between link centrality indicators in international pesticide 
trade networks in 2018. The six plots correspond to the trade networks of pesticide products, including (a) 
aggregated, (b) insecticides, (c) fungicides, (d) herbicides, (e) disinfectants, and (f) rodenticides and other 
similar products.



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19641  | https://doi.org/10.1038/s41598-022-21777-1

www.nature.com/scientificreports/

trade network do not affect the connectivity of the network. The network has a certain resistance and can serve 
80% of the world’s economies even when most of the network links fail.

It can be seen from Fig. 4 that not all the links deleted in ascending order of the indicator will have a greater 
impact on connectivity (the proportion γ I of the number of economies in the largest component) than those 
links deleted in descending order. The most obvious in the figure is the plot corresponding to the EB indicator. 
The impact on network connectivity is significantly greater when the links are deleted in descending order of 
EB indicators than when the links are not deleted in descending order. This indicates that links with larger EB 
indicators have a greater impact on network connectivity. Other metrics are different, because based on weak 
ties theory, some relatively unimportant link connect some distant components. However, the definition of the 
EB indicator determines that the link with larger EB indicator are the key links connecting different modules or 
distant components. In Fig. 4, the difference in the influence of different indicators on network robustness corre-
sponding to the indicators hub, outdegree and outcloseness are not obvious. In order to show in a clearer quantity 
way the differences between the indicators, the impact of each indicator on the robustness is given in Fig. 5.

In order to quantitatively compare the impact of different indicators on the robustness of network, the area 
under the curve in Fig. 4 is used to describe the corresponding impact degree of the indicator: the smaller the 
area, the greater the impact. The small size of the area represents an important role of the indicator in the stability 
of the network structure, and the calculation formula is

where pk = k/n represents the proportion of deleted links, and n represents the number of simulated deletions57.
Each plot in Fig. 5 corresponds to a trade network. Figure 5a is the combined network of five international 

trade networks for pesticide products. The other five plots correspond to the trade networks of five pesticide 
products: insecticides (380891), fungicides (380892), herbicides (380893), disinfectants (380894), and roden-
ticides and other similar products (380899). The area under the curve in Fig. 4 corresponding to descending 
order is defined as Rdescend

γ  , and the area corresponding to ascending order is recorded as Rascend
γ  . We are more 

concerned with finding the metric that has the greatest impact on the robustness of network, regardless of the 
ordering rules for removing edges. Each indicator in Fig. 5 is sorted according to min (Rascend

γ ,Rdescend
γ ).

Different colors and markers correspond to different deletion rules. The importance indicators CN, AA and 
RA defined by the original network trade relationship play the most significant roles among all the indicators, 
and the importance indicators based on the dual graph also have significant effect, such as PageRank, Incloseness, 
Auth and Indegree. However, the link betweenness (EB) of the original network is not as good as the centrality 
indicator defined based on the dual graph. It can be found in Fig. 5 that the ranking of different indicators in 
the 6 networks is considerably similar, showing that there is a universal value for the indicators in iPTN. Our 
method offers a new choice to measure the importance and centrality of links.

In the aggregated international pesticide trade networks, all the indicators, that is, EB, hub, outdegree and 
outcloseness, conform to the formula Rascend

γ > Rdescend
γ  . Among them, the difference corresponding to the EB 

(2)Rγ =
1

n+ 1

n
∑

k=0

γ
(

pk
)

,

Figure 4.   The relation between the proportion p of the deleted links and the proportion γ I of the number of 
economies in the largest component formed by the remaining network links after deleting the links according to 
the indicator I. In the legends, descend, ascend and random correspond to the cases of preferentially deleting the 
largest, smallest and random links with indicator I, respectively. Each plot corresponds to a link importance or 
centrality indicator.
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indicator is the most obvious. Similar patterns were observed in the trade networks of the other five separate 
pesticide products.

Figure 6 shows the evolution of network robustness under the 15 trade relationship importance indicators. 
Each plot corresponds to an indicator of relationship importance. Each line in each plot corresponds to a pesticide 
trade network. The comparison of different pesticide trade networks reveals that the robustness of the network 
under different strategies perturbations embodies a particular pattern; the aggregated network has the greatest 
stability, followed by insecticides (380891), disinfectants (380894), and rodenticides and other similar products 
(380899 ), herbicides (380893) and fungicides (380892). Of course, this pattern does not apply to all the indica-
tors. The evolution of robustness of the pesticide trade network can be roughly divided into three stages: it was 
on the rise from 2007 to 2010; it was relatively stable from 2010 to 2015; it was on the decline after 2015. The 
2007–2008 food crisis saw a sharp rise in global food prices, contributing to an international crisis and political 
instability, economic fluctuations and security deterioration in poor and developing countries. After the food 
crisis, the trade network is in the recovery period, and the trade relationship is restored and established. In 2015, 
the global pesticide market recorded the largest decline of over 10 years.

Influence of vital links on the efficiency of international pesticide trade networks.  As in the 
network robustness analysis, we use the same method to analyze the influence of vital links on network effi-
ciency. Network efficiency measures the efficiency of matter or energy flowing in a network. We delete some vital 
links, recalculate the network efficiency Ep , and calculate its ratio to the original network efficiency E:

where I represents the indicator and p is the proportion of deleted links. We delete links according to different 
sorting methods of the indicators. There are three methods for removing the trade relationships: “descend”, 
“ascend” and “random”. The result is shown in Fig. 7. The small area implies that this indicator plays an important 
role in the efficiency of the network structure, and the calculation formula is

where pk = k/n represents the proportion of deleted links, and n represents the number of simulated deletions57.
In Fig. 7, the relationships between p and βI(p) embody different variation laws. Deleting the trade relation-

ship with the biggest indicator I first (descend), the efficiency of the remaining network becomes smaller than 
that of the other two methods. In the case of deleting in ascending order of the indicators, the change of the 

(3)βI(p) =
Ep

E
,

(4)Rβ =
1

n+ 1

n
∑

k=0

β
(

pk
)

,

Figure 5.   Comparison of the influence of different indicators on network robustness. In the legends, descend, 
ascend and random correspond to the cases of preferentially deleting the largest, smallest and random links 
of the indicator I, respectively. The six plots correspond to the trade networks of pesticide products, that is, 
(a) aggregated, (b) insecticides, (c) fungicides, (d) herbicides, (e) disinfectants, and (f) rodenticides and other 
similar products.
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network efficiency is the smallest. Those trade relations with the larger trade volumes have a greater effect on the 
efficiency of the network. This is mainly because the indicator of network efficiency is defined by the shortest path 
between nodes, and the shortest path is the weighted shortest path. Removing randomly the links of the trade 
network, we simulate 20 times, and then average the proportion βI of the efficiency in the case of “random”. In 
Fig. 7, when the proportion of deleted links with the biggest indicator reaches 20%, the proportion of efficiency 
in the rest of the network is approximately 20%.

Figure 8 presents the comparison results of the influence of different indicators on network efficiency. Fig-
ure 8a is the combined network of five international trade networks for pesticide products and Fig. 8b–f cor-
responds to the trade networks of five pesticide products. The vital indicators based on the dual graph has 
significant effect, such as Auth, Indegree and Incloseness. These indicators are sometimes more effective than 
such traditional indicators as CN, AA and RA, defined by the original network trade relationship in Fig. 8b–f. 
The link betweenness (EB) of the original network is not as good as the centrality indicator defined based on 
the dual graph, either. The ranking of different indicators in the 6 networks is considerably similar in Fig. 8.

In Fig. 8, the indicators are sorted according to min (Rascend
β ,Rdescend

β ) . There are more indicators that conform 
to the formula Rascend

β > Rdescend
β  . Compared with the importance indicators based on original network, some 

link importance indicators based on dual graph have a far greater impact on network efficiency, and this finding 
also confirms the effectiveness of the link importance calculation method based on dual graphs proposed in 
this paper. However,our method are not meant to be applied to all cases of network function when identifying 
influential or important network links.

Figure 9 shows the evolution of the network efficiency of trade relations under the impact of different strate-
gies. As can be seen from the figure, there is a difference between network efficiency and network robustness. 
The values R of six types of networks are not the same. However, with the passage of time, the impact of network 
efficiency also had a period of rise from 2007 to 2008, then experienced a stable period, and finally had a period 
of decline. It is worth mentioning in the figure that there was a dramatic decline in the trade network in 2015, 
and then it rose rapidly. This phenomenon was observed under different indicators. The main reason is that the 
sales in the international pesticide market plunged 8.5% year on year, the steepest decline in more than a decade.

Figure 6.   Comparison of the influence of different indicators on network robustness. In the legends, descend, 
ascend and random correspond to the cases of preferentially deleting the largest, smallest and random links of 
the indicator I, respectively. Each plot corresponds to an link importance or centrality indicator.
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Figure 7.   The relation between the proportion p of the deleted links and the network efficiency βI of the 
remaining network links after deleting the links according to the indicator I. In the legends, descend, ascend and 
random correspond to the cases of preferentially deleting the largest, smallest and random links with indicator I, 
respectively. Each plot corresponds to a link importance or centrality indicator.

Figure 8.   Comparison of the influence of different indicators on network efficiency. In the legends, descend, 
ascend and random correspond to the cases of preferentially deleting the largest, smallest and random links 
of the indicator I, respectively. The six plots correspond to the trade networks of pesticide products are (a) 
aggregated, (b) insecticides, (c) fungicides, (d) herbicides, (e) disinfectants, and (f) rodenticides and other 
similar products.
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Discussion
The comparison of the results of network efficiency and network robustness analysis shows that the indica-
tors have different effects on different structural features. Therefore,different indicators can be considered for 
comparative analysis, and the optimal indicator, that is, the indicator with the greatest influence, can be deleted 
as the decision variable, which can more effectively specify a specific strategy. Our method of identifying vital 
links based on the dual graph can expand the set of candidate centrality indicators of links, so that more close 
comparisons can be made in the decision-making process, and more effective indicators can be found to measure 
the importance and centrality of network links.

In order to measure the importance of trade relations in trade networks, we adopt the idea of the dual graph in 
graph theory and convert the original pesticide trade network into a dual graph. The nodes in the dual graph cor-
respond to the original trade relationship. The node centrality in the graph can be used as an indicator of the link 
centrality in the original network. We analyze the effect of different indicators on the stability of pesticide trade 
networks and compare them with some commonly used link centrality indicators. It is found that the nine indi-
cators defined in the dual graph also have immense importance in the network stability and network efficiency.

The major innovation of this paper is that, based on the idea of dual graph in graph theory, the measurement 
of link centrality is transformed into the measurement of node centrality in dual graphs. All node-based analysis 
methods can be used in the analysis of network links through the corresponding dual graph. The contribution 
can be described in three aspects: The dual graph in graph theory is adopted, which provides new ideas and 
methods for analyzing networks; different indicators of network link importance and centrality are defined 
based on the dual graph; the relationship and effectiveness of the defined indicators and existing indicators are 
verified, and it is found that the indicators based on dual graphs perform better than some classic link centrality 
indicators in the original networks.

By studying the robustness evolution of the international pesticide trade network under the impact and dis-
turbance of the trade relationship, it can be found that under some extreme events, the robustness of the trade 
network structure drops sharply, and then undergoes a recovery process. The numerical simulation and analysis 
of this paper can identify such changes in trade structure and provide guidance for constructing an optimal trade 

Figure 9.   Comparison of the influence of different indicators on network efficiency. In the legends, descend, 
ascend and random correspond to the cases of preferentially deleting the largest, smallest and random links of 
the indicator I, respectively. Each plot corresponds to an link importance or centrality indicator.
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structure and a shock-resistant trade structure. In recent years, the robustness of the international pesticide trade 
network has declined, because trade wars and local wars have affected pesticide trade relations, and will have an 
impact on global food production and food security.

Since the case analysis concentrates on the international pesticide trade network, the conclusions drawn may 
not be applicable to other networks, such as the oil trade networks. Different network structures and different 
problem backgrounds determine the pros and cons of the measurement of link centrality. However, our method 
has good universality and scalability. It can be applied to different complex systems to analyze the importance 
of network relationships and the impact on the stability of the network structure and the network efficiency. 
Applying this method, we only need to convert the original network into a dual graph, which is characterized 
by better interpretability and provides a new perspective for network link analysis.

Materials and methods
Data.  The data of this study is downloaded from the database of UN Comtrade, including all the export and 
import flows of pesticide products among more than 200 countries and regions in the world. The HS code of pes-
ticides are 380891 (insecticides), 380892 (fungicides), 380893 (herbicides), 380894 (disinfectants) and 380899 
(rodenticides and other similar products)46. This study uses the annual data from 2007 to 2018.

Methodology.  The most representative indicator of centrality for a link is link betweenness (EB), which 
measures the frequency of each link occurring on the shortest path between two nodes in the network50,51. In 
order to better measure the importance of different proportions of trade relations, we calculate the significance 
of each link based on the method of Serrano et al.53. We calculate the trade volume proportional matrix Wout , 
where the element wout

ij  represents the ratio of economy i exported to economy j: wout
ij =

vij
souti

 , where souti  is the 
total export of economy i. The import trade volume ratio matrix W in can be similarly defined, where the element 
win
ij  is expressed as win

ij =
vij

sini
 . sini  is the total import of economy i. The significance of each link i → j for node i 

and node j is defined as

and

where kouti  is the out-degree of node i, and kini  is the in-degree of node i. The significance of each link i → j is 
defined as αij = max

(

αout
ij ,αin

ij

)

 . It is represented by Alpha in this article. Significance αij is indicated only when 
the trade relationship is significant in the trade between the two parties. Generally speaking, the smaller the 
alpha is, the more important and significant the link is; the larger the other link importance indicators are, the 
more important the link is. considering the consistence with other link importance indicators, we add a negative 
sign before the alpha value here, which can be expressed as αij = −max

(

αout
ij ,αin

ij

)

.
The importance of trade relations can also be measured by the common neighbors of the two nodes cor-

responding to the link, which can be expressed as

where z is the set of common neighbors of nodes i and j, and wiz is the trade volume of economy i and neighbor 
z. In an unweighted network, it can be directly measured by the number of common neighbors; in a weighted 
network, it can be be expressed as the sum of the trade volume with common neighbors. However, if the com-
mon neighbor z has more neighbors or the trade volume is large, then the importance of the trade relationship 
ij is reduced. Hence, the Adamic/Adar ( AA ) variable is introduced55

where sz =
∑

u∈Ŵ(z) w(z, u) . In order to increase the influence degree of neighbor’s trade volume, we calculate 
the Resource Allocation ( RA)54 as

The three indicators CN, AA and RA have very similar properties and have a strong correlation.

Efficiency of iPTNs.  In networks, we calculate the efficiency of network48 as

(5)αout
ij = 1− (kouti − 1)

∫ wout
ij

0
(1− x)k

out
i −2dx,

(6)αin
ij = 1− (kinj − 1)

∫ win
ij

0
(1− x)

kinj −2
dx,

(7)CN =
∑

z∈Ŵ(i)∩Ŵ(j)

wiz + wzj

2
,

(8)AA =
∑

z∈Ŵ(i)∩Ŵ(j)

wiz + wzj

log(1+ sz)

(9)RA =
∑

z∈Ŵ(i)∩Ŵ(j)

wiz + wjz

sz
.
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where 1lij  is the path efficiency between economy i and j, and lij is the shortest path between the nodes i and j in 
the network. The greater the network efficiency, the stronger the connectivity between economies, and the greater 
the efficiency of energy flow and information flow.

Robustness of iPTNs.  The indicators of robustness of network is defined as follows56:

where pk = k/n represents the proportion of deleted links, and n represents the number of simulated deletions57. 
The larger the R value, the smaller the effect of removing the link on the network structure. The larger the indica-
tor corresponding to the removal strategy, the smaller the impact of the trade relationship.

Data availability
Datasets related to this article can be found at https://​comtr​ade.​un.​org/, an open-source online data repository.

Received: 9 July 2022; Accepted: 4 October 2022

References
	 1.	 Jeong, H., Mason, S. P., Barabási, A. L. & Oltvai, Z. N. Lethality and centrality in protein networks. Nature 411, 41–42 (2001).
	 2.	 Dablander, F. & Hinne, M. Node centrality measures are a poor substitute for causal inference. Sci. Rep. 9, 6846. https://​doi.​org/​

10.​1038/​s41598-​019-​43033-9 (2019).
	 3.	 Freeman, L. C. Centrality in social networks conceptual clarification. Soc. Netw. 1, 215–239. https://​doi.​org/​10.​1016/​0378-​8733(78)​

90021-7 (1979).
	 4.	 Hage, P. & Harary, F. Eccentricity and centrality in networks. Soc. Netw. 17, 57–63. https://​doi.​org/​10.​1016/​0378-​8733(94)​00248-9 

(1995).
	 5.	 Latora, V. & Marchiori, M. A measure of centrality based on network efficiency. New J. Phys. 9, 188. https://​doi.​org/​10.​1088/​1367-​

2630/9/​6/​188 (2007).
	 6.	 Pan, R. K. & Saramäki, J. Path lengths, correlations, and centrality in temporal networks. Phys. Rev. E 84, 016105. https://​doi.​org/​

10.​1103/​PhysR​evE.​84.​016105 (2011).
	 7.	 Newman, M. . E. . J. Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys. Rev. E 64, 016132 

(2001).
	 8.	 El-Khatib, R., Fogel, K. & Jandik, T. CEO network centrality and merger performance. J. Financ. Econ. 116, 349–382. https://​doi.​

org/​10.​1016/j.​jfine​co.​2015.​01.​001 (2015).
	 9.	 Larcker, D. F., So, E. C. & Wang, C. C. Boardroom centrality and firm performance. J. Appl. Econ. 55, 225–250. https://​doi.​org/​10.​

1016/j.​jacce​co.​2013.​01.​006 (2013).
	10.	 Rossi, A. G., Blake, D., Timmermann, A., Tonks, I. & Wermers, R. Network centrality and delegated investment performance. J. 

Financ. Econ. 128, 183–206. https://​doi.​org/​10.​1016/j.​jfine​co.​2018.​02.​003 (2018).
	11.	 Richmond, R. J. Trade network centrality and currency risk premia. J. Financ. 74, 1315–1361. https://​doi.​org/​10.​1111/​jofi.​12755 

(2019).
	12.	 Castellano, J. & Echeazarra, I. Network-based centrality measures and physical demands in football regarding player position: Is 

there a connection? a preliminary study. J. Sports Sci. 37, 2631–2638. https://​doi.​org/​10.​1080/​02640​414.​2019.​15899​19 (2019).
	13.	 Clemente, F. M., Sarmento, H. & Aquino, R. Player position relationships with centrality in the passing network of world cup soccer 

teams: Win/loss match comparisons. Chaos Solitons Fract. 133, 109625. https://​doi.​org/​10.​1016/j.​chaos.​2020.​109625 (2020).
	14.	 Sasaki, K., Yamamoto, T., Miyao, M., Katsuta, T. & Kono, I. Network centrality analysis to determine the tactical leader of a sports 

team. Int. J. Perform Anal. Sport 17, 822–831. https://​doi.​org/​10.​1080/​24748​668.​2017.​14022​83 (2017).
	15.	 Xi, X. et al. Impact of changes in crude oil trade network patterns on national economy. Energy Econ. 84, 104490. https://​doi.​org/​

10.​1016/j.​eneco.​2019.​104490 (2019).
	16.	 Caraiani, P. Oil shocks and production network structure: Evidence from the OECD. Energy Econ. 84, 104559. https://​doi.​org/​10.​

1016/j.​eneco.​2019.​104559 (2019).
	17.	 Sun, Q. R. et al. Effects of crude oil shocks on the PPI system based on variance decomposition network analysis. Energy 189, 

116378. https://​doi.​org/​10.​1016/j.​energy.​2019.​116378 (2019).
	18.	 Battiston, S., Puliga, M., Kaushik, R., Tasca, P. & Caldarelli, G. Debtrank: Too central to fail? Financial networks, the fed and 

systemic risk. Sci. Rep. 2, 541. https://​doi.​org/​10.​1038/​srep0​0541 (2012).
	19.	 Du, R. J. et al. A complex network perspective on interrelations and evolution features of international oil trade, 2002–2013. Appl. 

Energy 196, 142–151. https://​doi.​org/​10.​1016/j.​apene​rgy.​2016.​12.​042 (2017).
	20.	 Yun, T.-S., Jeong, D. & Park, S. “Too central to fail’’ systemic risk measure using pagerank algorithm. J. Econ. Behav. Organ. 162, 

251–272. https://​doi.​org/​10.​1016/j.​jebo.​2018.​12.​021 (2019).
	21.	 Zhong, W. et al. The roles of countries in the international fossil fuel trade: An emergy and network analysis. Energy Policy 100, 

365–376. https://​doi.​org/​10.​1016/j.​enpol.​2016.​07.​025 (2017).
	22.	 Ji, Q., Zhang, H. Y. & Fan, Y. Identification of global oil trade patterns: An empirical research based on complex network theory. 

Energy Conv. Manag. 85, 856–865. https://​doi.​org/​10.​1016/j.​encon​man.​2013.​12.​072 (2014).
	23.	 Nepusz, T. & Vicsek, T. Controlling edge dynamics in complex networks. Nat. Phys. 8, 568–573. https://​doi.​org/​10.​1038/​nphys​

2327 (2012).
	24.	 Kim, H. & Anderson, R. Temporal node centrality in complex networks. Phys. Rev. E 85, 026107. https://​doi.​org/​10.​1103/​PhysR​

evE.​85.​026107 (2012).
	25.	 Gephart, J. A., Rovenskaya, E., Dieckmann, U., Pace, M. L. & Braennstroem, A. Vulnerability to shocks in the global seafood trade 

network. Environ. Res. Lett. 11, 035008. https://​doi.​org/​10.​1088/​1748-​9326/​11/3/​035008 (2016).
	26.	 Bhattacharya, K., Mukherjee, G., Saramäki, J., Kaski, K. & Manna, S. S. The international trade network: Weighted network analysis 

and modelling. J. Stat. Mech. 2008, P02002. https://​doi.​org/​10.​1088/​1742-​5468/​2008/​02/​P02002 (2008).

(10)E =
1

N(N − 1)

∑

i �=j

1

lij
,

(11)Rζ =
1

n+ 1

n
∑

k=0

ζ
(

pk
)

,

https://comtrade.un.org/
https://doi.org/10.1038/s41598-019-43033-9
https://doi.org/10.1038/s41598-019-43033-9
https://doi.org/10.1016/0378-8733(78)90021-7
https://doi.org/10.1016/0378-8733(78)90021-7
https://doi.org/10.1016/0378-8733(94)00248-9
https://doi.org/10.1088/1367-2630/9/6/188
https://doi.org/10.1088/1367-2630/9/6/188
https://doi.org/10.1103/PhysRevE.84.016105
https://doi.org/10.1103/PhysRevE.84.016105
https://doi.org/10.1016/j.jfineco.2015.01.001
https://doi.org/10.1016/j.jfineco.2015.01.001
https://doi.org/10.1016/j.jacceco.2013.01.006
https://doi.org/10.1016/j.jacceco.2013.01.006
https://doi.org/10.1016/j.jfineco.2018.02.003
https://doi.org/10.1111/jofi.12755
https://doi.org/10.1080/02640414.2019.1589919
https://doi.org/10.1016/j.chaos.2020.109625
https://doi.org/10.1080/24748668.2017.1402283
https://doi.org/10.1016/j.eneco.2019.104490
https://doi.org/10.1016/j.eneco.2019.104490
https://doi.org/10.1016/j.eneco.2019.104559
https://doi.org/10.1016/j.eneco.2019.104559
https://doi.org/10.1016/j.energy.2019.116378
https://doi.org/10.1038/srep00541
https://doi.org/10.1016/j.apenergy.2016.12.042
https://doi.org/10.1016/j.jebo.2018.12.021
https://doi.org/10.1016/j.enpol.2016.07.025
https://doi.org/10.1016/j.enconman.2013.12.072
https://doi.org/10.1038/nphys2327
https://doi.org/10.1038/nphys2327
https://doi.org/10.1103/PhysRevE.85.026107
https://doi.org/10.1103/PhysRevE.85.026107
https://doi.org/10.1088/1748-9326/11/3/035008
https://doi.org/10.1088/1742-5468/2008/02/P02002


13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19641  | https://doi.org/10.1038/s41598-022-21777-1

www.nature.com/scientificreports/

	27.	 Mastrandrea, R., Squartini, T., Fagiolo, G. & Garlaschelli, D. Reconstructing the world trade multiplex: The role of intensive and 
extensive biases. Phys. Rev. E 90, 062804. https://​doi.​org/​10.​1103/​PhysR​evE.​90.​062804 (2014).

	28.	 Godfray, H. C. J. et al. Food security: The challenge of feeding 9 billion people. Science 327, 812–818. https://​doi.​org/​10.​1126/​scien​
ce.​11853​83 (2010).

	29.	 Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. 
Acad. Sci. USA 108, 20260–20264. https://​doi.​org/​10.​1073/​pnas.​11164​37108 (2011).

	30.	 Wu, F. & Guclu, H. Global maize trade and food security: Implications from a social network model. Risk Anal. 33, 2168–2178. 
https://​doi.​org/​10.​1111/​risa.​12064 (2013).

	31.	 Brethour, C. & Weersink, A. An economic evaluation of the environmental benefits from pesticide reduction. Agric. Econ. 25, 
219–226. https://​doi.​org/​10.​1111/j.​1574-​0862.​2001.​tb002​02.x (2001).

	32.	 Carvalho, F. P. Agriculture, pesticides, food security and food safety. Environ. Sci. Policy 9, 685–692. https://​doi.​org/​10.​1016/j.​
envsci.​2006.​08.​002 (2006).

	33.	 Carvalho, F. P. Pesticides, environment, and food safety. Food Energy Secur. 6, 48–60. https://​doi.​org/​10.​1002/​fes3.​108 (2017).
	34.	 Serrano, M. A. & Boguñá, M. Topology of the world trade web. Phys. Rev. E 68, 015101(R). https://​doi.​org/​10.​1103/​PhysR​evE.​68.​

015101 (2003).
	35.	 Garlaschelli, D., Di Matteo, T., Aste, T., Caldarelli, G. & Loffredo, M. I. Interplay between topology and dynamics in the world 

trade web. Eur. Phys. J. B 57, 159–164. https://​doi.​org/​10.​1140/​epjb/​e2007-​00131-6 (2007).
	36.	 Fagiolo, G., Reyes, J. & Schiavo, S. World-trade web: Topological properties, dynamics, and evolution. Phys. Rev. E 79, 036115. 

https://​doi.​org/​10.​1103/​PhysR​evE.​79.​036115 (2009).
	37.	 Fagiolo, G., Reyes, J. & Schiavo, S. The evolution of the world trade web: A weighted-network analysis. J. Evol. Econ. 20, 479–514. 

https://​doi.​org/​10.​1007/​s00191-​009-​0160-x (2010).
	38.	 Squartini, T., Fagiolo, G. & Garlaschelli, D. Randomizing world trade. I. A binary network analysis. Phys. Rev. E 84, 046117. https://​

doi.​org/​10.​1103/​PhysR​evE.​84.​046117 (2011).
	39.	 Criado, R., Hernández-Bermejo, B. & Romance, M. Efficiency, vulnerability and cost—An overview with applications to subway 

networks worldwide. Int. J. Bifurcation Chaos 17, 2289–2301. https://​doi.​org/​10.​1016/​S0378-​4371(02)​01545-5 (2007).
	40.	 Dall’Asta, L., Barrat, A., Barthelemy, M. & Vespignani, A. Vulnerability of weighted networks. J. Stat. Mech. 25, 04006. https://​doi.​

org/​10.​1088/​1742-​5468/​2006/​04/​P04006 (2006).
	41.	 Wandelt, S., Sun, X. Q. & Cao, X. B. Computationally efficient attack design for robustness analysis of air transportation networks. 

Transportmetrica A 11, 939–966. https://​doi.​org/​10.​1080/​23249​935.​2015.​10899​53 (2015).
	42.	 Du, W. B. et al. Analysis of the Chinese airline network as multi-layer networks. Transp. Res. Part E Logist. Transp. Rev. 89, 108–116. 

https://​doi.​org/​10.​1016/j.​tre.​2016.​03.​009 (2016).
	43.	 Crucitti, P., Latora, V., Marchiori, M. & Rapisarda, R. Efficiency of scale-free networks: Error and attack tolerance. Phys. A 320, 

622–642. https://​doi.​org/​10.​1016/​S0378-​4371(02)​01545-5 (2002).
	44.	 Albert, R., Jeong, H. & Barabási, A.-L. Error and attack tolerance of complex network. Nature 406, 378–381. https://​doi.​org/​10.​

1038/​35019​019 (2000).
	45.	 Crucitti, P., Latora, V. & Marchiori, M. Model for cascading failures in complex networks. Phys. Rev. E 69, 045104. https://​doi.​org/​

10.​1103/​PhysR​evE.​69.​045104 (2004).
	46.	 Li, J.-A., Xie, W.-J. & Zhou, W.-X. Structure and evolution of the international pesticide trade networks. Front. Phys. 9, 681788. 

https://​doi.​org/​10.​3389/​fphy.​2021.​681788 (2021).
	47.	 Wei, N., Xie, W.-J. & Zhou, W.-X. The performance of cooperation strategies for enhancing the efficiency of international oil trade 

networks. J. Complex Netw. 10, cnab053. https://​doi.​org/​10.​1093/​comnet/​cnab0​53 (2022).
	48.	 Xie, W.-J., Wei, N. & Zhou, W.-X. Evolving efficiency and robustness of global oil trade networks. J. Stat. Mech. 10, 103401. https://​

doi.​org/​10.​1088/​1742-​5468/​ac21da (2021).
	49.	 Wei, N., Xie, W.-J. & Zhou, W.-X. Robustness of the international oil trade network under targeted attacks to economies. Energy 

251, 123939. https://​doi.​org/​10.​1016/j.​energy.​2022.​123939 (2022).
	50.	 Freeman, L. C. A set of measures of centrality based on betweenness. Sociometry 40, 35–41. https://​doi.​org/​10.​2307/​30335​43 (1977).
	51.	 Brandes, U. A faster algorithm for betweenness centrality. J. Math. Soc. 25, 163–177. https://​doi.​org/​10.​1080/​00222​50x.​2001.​99902​

49 (2001).
	52.	 Brin, S. & Page, L. The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30, 107–117. https://​

doi.​org/​10.​1016/​S0169-​7552(98)​00110-X (1998).
	53.	 Serrano, M. Á., Boguñá, M. & Vespignani, A. Extracting the multiscale backbone of complex weighted networks. Proc. Natl. Acad. 

Sci. USA 106, 6483–6488. https://​doi.​org/​10.​1073/​pnas.​08089​04106 (2009).
	54.	 Lü, L.-Y. & Zhou, T. Link prediction in complex networks: A survey. Phys. A 390, 1150–1170. https://​doi.​org/​10.​1016/j.​physa.​2010.​

11.​027 (2011).
	55.	 Adamic, L. A. & Adar, E. Friends and neighbors on the web. Soc. Netw. 25, 211–230. https://​doi.​org/​10.​1016/​S0378-​8733(03)​

00009-1 (2003).
	56.	 Schneider, C. M., Moreira, A. A., Andrade, J. S., Havlin, S. & Herrmann, H. J. Mitigation of malicious attacks on networks. Proc. 

Natl. Acad. Sci. USA 108, 3838–3841. https://​doi.​org/​10.​1073/​pnas.​10094​40108 (2011).
	57.	 Zhou, Y., Sheu, J.-B. & Wang, J. Robustness assessment of urban road network with consideration of multiple hazard events. Risk 

Anal. 37, 1477–1494. https://​doi.​org/​10.​1111/​risa.​12802 (2017).

Acknowledgements
This work was supported by the National Natural Science Foundation of China (No. 72171083), the Shanghai 
Outstanding Academic Leaders Plan, and the Fundamental Research Funds for the Central Universities.

Author contributions
W.J.X., J.A.L., N.W., L.W., and W.X.Z. designed research, performed research, analyzed data, and wrote the paper. 
All authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to L.W. or W.-X.Z.

Reprints and permissions information is available at www.nature.com/reprints.

https://doi.org/10.1103/PhysRevE.90.062804
https://doi.org/10.1126/science.1185383
https://doi.org/10.1126/science.1185383
https://doi.org/10.1073/pnas.1116437108
https://doi.org/10.1111/risa.12064
https://doi.org/10.1111/j.1574-0862.2001.tb00202.x
https://doi.org/10.1016/j.envsci.2006.08.002
https://doi.org/10.1016/j.envsci.2006.08.002
https://doi.org/10.1002/fes3.108
https://doi.org/10.1103/PhysRevE.68.015101
https://doi.org/10.1103/PhysRevE.68.015101
https://doi.org/10.1140/epjb/e2007-00131-6
https://doi.org/10.1103/PhysRevE.79.036115
https://doi.org/10.1007/s00191-009-0160-x
https://doi.org/10.1103/PhysRevE.84.046117
https://doi.org/10.1103/PhysRevE.84.046117
https://doi.org/10.1016/S0378-4371(02)01545-5
https://doi.org/10.1088/1742-5468/2006/04/P04006
https://doi.org/10.1088/1742-5468/2006/04/P04006
https://doi.org/10.1080/23249935.2015.1089953
https://doi.org/10.1016/j.tre.2016.03.009
https://doi.org/10.1016/S0378-4371(02)01545-5
https://doi.org/10.1038/35019019
https://doi.org/10.1038/35019019
https://doi.org/10.1103/PhysRevE.69.045104
https://doi.org/10.1103/PhysRevE.69.045104
https://doi.org/10.3389/fphy.2021.681788
https://doi.org/10.1093/comnet/cnab053
https://doi.org/10.1088/1742-5468/ac21da
https://doi.org/10.1088/1742-5468/ac21da
https://doi.org/10.1016/j.energy.2022.123939
https://doi.org/10.2307/3033543
https://doi.org/10.1080/0022250x.2001.9990249
https://doi.org/10.1080/0022250x.2001.9990249
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1073/pnas.0808904106
https://doi.org/10.1016/j.physa.2010.11.027
https://doi.org/10.1016/j.physa.2010.11.027
https://doi.org/10.1016/S0378-8733(03)00009-1
https://doi.org/10.1016/S0378-8733(03)00009-1
https://doi.org/10.1073/pnas.1009440108
https://doi.org/10.1111/risa.12802
www.nature.com/reprints


14

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19641  | https://doi.org/10.1038/s41598-022-21777-1

www.nature.com/scientificreports/

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

http://creativecommons.org/licenses/by/4.0/

	Robustness and efficiency of international pesticide trade networks subject to link removal strategies
	Results
	Construction of international pesticide trade networks. 
	Construction of dual graph of international pesticide trade networks. 
	Centrality indicators for nodes in international pesticide trade networks. 
	Centrality indicators for links in international pesticide trade networks. 
	Correlation between link centrality indicators. 
	Influence of vital links on robustness of international pesticide trade networks. 
	Influence of vital links on the efficiency of international pesticide trade networks. 

	Discussion
	Materials and methods
	Data. 
	Methodology. 
	Efficiency of iPTNs. 
	Robustness of iPTNs. 


	References
	Acknowledgements


