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PM2.5 forecasting for an urban 
area based on deep learning 
and decomposition method
Nur’atiah Zaini1*, Lee Woen Ean1, Ali Najah Ahmed2, Marlinda Abdul Malek3 & 
Ming Fai Chow4

Rapid growth in industrialization and urbanization have resulted in high concentration of air 
pollutants in the environment and thus causing severe air pollution. Excessive emission of particulate 
matter to ambient air has negatively impacted the health and well-being of human society. Therefore, 
accurate forecasting of air pollutant concentration is crucial to mitigate the associated health risk. 
This study aims to predict the hourly PM2.5 concentration for an urban area in Malaysia using a hybrid 
deep learning model. Ensemble empirical mode decomposition (EEMD) was employed to decompose 
the original sequence data of particulate matter into several subseries. Long short-term memory 
(LSTM) was used to individually forecast the decomposed subseries considering the influence of air 
pollutant parameters for 1-h ahead forecasting. Then, the outputs of each forecast were aggregated 
to obtain the final forecasting of PM2.5 concentration. This study utilized two air quality datasets 
from two monitoring stations to validate the performance of proposed hybrid EEMD-LSTM model 
based on various data distributions. The spatial and temporal correlation for the proposed dataset 
were analysed to determine the significant input parameters for the forecasting model. The LSTM 
architecture consists of two LSTM layers and the data decomposition method is added in the data pre-
processing stage to improve the forecasting accuracy. Finally, a comparison analysis was conducted 
to compare the performance of the proposed model with other deep learning models. The results 
illustrated that EEMD-LSTM yielded the highest accuracy results among other deep learning models, 
and the hybrid forecasting model was proved to have superior performance as compared to individual 
models.

High concentration of particulate matter in the ambient air has caused severe air pollution and other negative 
impacts in developing  countries1,2. PM2.5 is a fine particle with a diameter of less than 2.5 µm, which recognize 
as one of the most dangerous pollutants that cause deterioration of air  quality3,4. The inhalable particles of PM2.5 
are commonly emitted from the combustion of solid and liquid fuels, domestic heating, and road vehicles. 
Therefore, the areas with a higher rate of industrial activities and traffic congestion are likely to have higher 
PM2.5 concentrations, which may also increase air pollution and harm human health. Besides that, long-term 
exposure to PM2.5 may lead to the increase of mortality risk due to respiratory and cardiovascular  diseases5. 
Due to the vital effects of high PM2.5 concentration on the environment and human health, reliable forecasting 
of air pollutants has gained more attention recently to provide accurate information on air quality levels. Practi-
cal and precise forecasting of air quality is also essential to provide early warning to the public and enhance the 
decision-making process for necessary mitigation.

There are a lot of forecasting models that are developed based on time series analysis to forecast air pollutant 
concentration. The modelling approaches can be classified into three categories which are chemical transport 
models (CTM), statistical and artificial intelligence  models6. Chemical transport models (CTM) predict air pol-
lutants based on the transformation and chemical properties of the pollutants. The most common models for air 
quality forecasting are Community Multiscale Air Quality (CMAQ), Comprehensive Air Quality Model with 
Extensions (CAMx), Goddard Earth Observing System Atmospheric Chemistry (GEOS-Chem) and weather 
research forecasting (WRF). CTMs capable of dealing with the chemical reactions for air pollutant forecasting, 
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however the models depend on various air pollutant data and the enormous amount of information for accurate 
forecasting makes it complicated. The models also operate based on extensive calculations that may limit the 
model  performances7,8. Besides that, the statistical models such as autoregressive integrated moving average 
(ARIMA), grey model and regression models develop the statistical relationship between historical data of vari-
ous influencing parameters with air pollutants. However, the statistical models exhibit limitations in learning 
large multidimensional and complex nonlinear time series data. The models are also unable to forecast multistep 
time horizons of the air pollutant based on numerous influencing  variables9.

Considering the limitations of chemical transport and statistical models in learning and forecasting multi-
step ahead air pollutants based on various influencing parameters, artificial intelligence (AI) based technology 
such as machine learning and deep learning models have been  established6. Machine learning models such as 
artificial neural network (ANN)10,11, support vector machine (SVM)12, extreme learning machine (ELM)13 and 
fuzzy  logic14 with more sophisticated architectures are able to outperform the chemical transport and statistical 
models for air pollutant forecasting in terms of forecasting accuracy and time  cost15. However, the techniques 
have the drawbacks of being limited in solving larger nonlinear time series datasets and incapable of efficiently 
capturing the features distribution of air quality  datasets16. Deep learning is a new technology that has been 
globally applied to solve air quality forecasting problems and outweighs the performances of machine learning 
models due to its advantages in learning spatial and temporal distributions.

Understanding the importance of precise forecasting of air pollutant concentration has led to the increas-
ing development of research and advanced forecasting models. In the last few years, deep learning has become 
a popular technique in the application of air quality forecasting and exhibits superior performance over the 
traditional neural network and other machine learning  models3,17,18. Deep learning methods such as recurrent 
neural network (RNN), long short term memory (LSTM), convolutional neural network (CNN) and gated recur-
rent unit (GRU) are developed based on neural network architecture consisting of many processing layers. The 
methods are able to minimize the drawbacks of traditional neural networks in air quality time series problems 
and yield superior forecasting  performances19–21. For instance, Ma et al.22 implemented a hybrid deep learning 
model based on LSTM for PM2.5 prediction. The study concludes that the proposed model outperformed other 
statistical and machine learning methods such as LASSO Regression, Ridge Regression, ANN, RNN and indi-
vidual LSTM. Moreover, LSTM illustrates lowest forecasting error as compared to other individual and traditional 
machine learning models such as RNN, ANN and support vector regression (SVR). Besides that, Wang et al.23 
summarized that the deep learning-based models such as GRU and LSTM can effectively forecast the real-time 
carbon monoxide concentration and yields better performance compared to nonlinear vector autoregression 
(VAR), radial basis functions network (RBFN) and SVM models. Comparing GRU and LSTM, it is found that 
LSTM performs slightly better compared to GRU. The results illustrate the reliability of the LSTM based model 
in solving nonlinear prediction problem.

Among the deep learning applications, it is learned that hybrid models have gained more interest in recent 
studies due to the advantages of enhancing prediction performance. Specifically, the combination of data decom-
position based on empirical mode and deep learning techniques shows excellent forecasting performances and 
able to reduce the complexity of the  dataset1,24,25. Huang et al.25 utilized empirical mode decomposition (EMD) to 
decompose the original PM2.5 sequence data and GRU to forecast the PM2.5 concentration. The ensemble model 
demonstrated high forecasting accuracy compared to other individual deep learning models such as LSTM, RNN 
and GRU. Although various meteorological parameters were considered to be influence variables in forecasting 
PM2.5 concentration, the study has neglected the effects of other air pollutant parameters on the forecasting. 
Besides that, GRU outperformed other individual models however, the method is based on simpler processing 
architecture units compared to LSTM. Therefore, LSTM may be an effective method in learning larger training 
datasets due to its advantage to memorize longer nonlinear sequence data. On the other hand, enhanced EMD, 
namely ensemble empirical mode decomposition (EEMD) with improved features, can eliminate the weakness 
in EMD and exhibit significant improvement for time series forecasting.

Bai et al.24 established an ensemble model of EEMD-LSTM to forecast hourly PM2.5 concentration at two 
air quality monitoring stations incorporating the meteorological parameters. The forecasting model showed 
superior performance compared to individual LSTM and feed-forward neural network (FFNN). However, this 
study also neglected the effect of other air pollutant parameters on forecasting and did not include the correlation 
analysis among input parameters that may effectively improve forecasting accuracy. Besides that, Ahani et al.1 
applied EEMD to decompose original PM2.5 sequence data and LSTM is used as a forecasting tool based on five 
multistep ahead prediction strategies. Hybrid EEMD-LSTM based forecasting model illustrates good forecast-
ing accuracy compared to individual LSTM. The results illustrate the effectiveness of decomposition method 
on the forecasting accuracy. However, it is found that EEMD-LSTM based model performs poorer as compared 
to EEMD-LSSVR based model for both shorter and longer forecasting horizons. Besides that, this study only 
considers PM2.5 concentration datasets collected from various air quality monitoring stations and neglects other 
influence parameters of air pollutant. This study also did not include spatial and temporal correlation analysis 
in selecting influence variables for LSTM model. Overall, the applications of hybrid data decomposition based 
on empirical mode and deep learning method are still very limited and extensive study is required for future 
model advancement.

Based on the abovementioned research, this study aims to forecast hourly PM2.5 concentration for an urban 
area using hybrid EEMD-LSTM considering the effects of other air pollutant parameters such as particulate mat-
ter (PM10), sulphur dioxide  (SO2), nitrogen dioxide  (NO2), ozone  (O3) and carbon monoxide (CO). This study 
also proposed to validate the effectiveness of the hybrid model under different pollution levels using air quality 
datasets from two air quality monitoring stations. The main contributions of this study are: (i) consider the effects 
of other air pollutant parameters on PM2.5 forecasting, (ii) determine the correlations among the proposed fea-
tures to identify the significant input variables to the forecasting model and conduct temporal correlation analysis 
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based on autocorrelation function (ACF) to determine the historical input. Different monitoring locations may 
have different set of input variables and number of historical time step for optimum forecasting accuracy, (iii) 
EEMD is used to decomposed original PM2.5 sequence data due to its advantages over simple EMD, (iv) stacked 
LSTM architecture is established to individually train and forecast PM2.5 concentration at different locations. 
The individual forecasting output of LSTM models are aggregated to obtain the final forecasting, (v) forecasting 
performance of the proposed hybrid EEMD-LSTM is compared to other developed individual and hybrid deep 
learning based models such as LSTM, Bidirectional LSTM, EMD-LSTM, EMD-GRU and CNN-LSTM in order to 
investigate the model’s efficiency. The proposed forecasting model effectively forecasts PM2.5 concentration for 
1-hour ahead of forecasting horizon based on the past hours and other influence parameters. The experimental 
results demonstrate that the proposed model has successfully forecasted PM2.5 concentration with excellent 
forecasting accuracy and outperformed other deep learning models in terms of four statistical evaluations. The 
improved method of EEMD also shows decent performance in decomposing complex time-series data to enhance 
the precision of the forecasting model.

Data and methods
Study area and data. This study utilizes hourly historical air quality dataset which consisting of six air 
pollutant parameters namely particulate matter (PM2.5 and PM10), sulphur dioxide  (SO2), nitrogen dioxide 
 (NO2), ozone  (O3) and carbon monoxide (CO) from two air quality monitoring stations located in Kuala Lum-
pur, Malaysia. Kuala Lumpur is Malaysia’s capital city, the country’s most developed and densely populated  city26. 
The reason for selecting such datasets is because Kuala Lumpur the capital city of Malaysia with the highest rate 
of industrial activities, urbanization and traffic congestion. This situation could contribute to higher air pollut-
ants emission in the area. The datasets for both monitoring stations namely Cheras and Batu Muda are collected 
from Malaysia’s department of environment (DoE) during the period of 1 January 2018 to 31 December 2019. 
Figure 1 demonstrates the location of air quality monitoring stations within the selected study area. The time 
series datasets of both monitoring stations have a total of 17,520 data and are divided into two different data-
sets for subsequent forecasting. 70% of the total data was used to train the proposed model parameters while 
the remaining 30% was used to forecast the air pollutant concentration. Table 1 presents the descriptions of air 
pollutant parameters for Cheras and Batu Muda stations. In the data pre-processing process, the missing values 
were analyzed and encoded using the linear interpolation method. Lastly, the training and testing datasets were 
normalized in the range of [0,1] to prevent the non-uniform value used for accurate forecasting. The equation 
for data normalization is defined in Eq. (1).

where z is the normalized values and x is the observed values.

EEMD-LSTM architecture. This study proposed the application of ensemble empirical mode decomposi-
tion (EEMD) in data processing for time series forecasting using LSTM model. EEMD is an improved method 
of empirical mode decomposition (EMD) that has advantages over EMD. EMD with a simpler decomposition 
method is capable to extract the feature’s frequency without pre-determined basic functions. The technique is 
designed to discrete the complex time series into a simple oscillatory mode based on a local time scale. The sepa-

(1)z =
x −min(x)

max(x)−min(x)
,

Figure 1.  Air quality monitoring  stations40.
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rated mode is known as intrinsic mode functions (IMFs)27,28. However, EMD suffers from limitations of mode 
mixing which the condition of either a single IMF component consists of a different signal scale or a similar 
signal scale in different IMF components. Therefore, EEMD that adds white noise series in the targeted data is 
introduced to tackle the disadvantage of EMD in order to improve the decomposition  performances29. EEMD 
decomposes the original PM2.5 concentration sequence data into several subsequences in the data processing 
stage for successive forecasting using LSTM.

LSTM is a variation of Recurrent Neural Network (RNN) that is able to deal with vanishing gradient problems. 
LSTM is found to remember both long-term and short-term series of values due to the advantages of special units’ 
architecture called memory  block30,31. Moreover, LSTM consists of three gate units namely the input gate, forget, 
and output gates aim to control the movement of information and allow the network to learn  recurrently32–34. In 
this study, stacked LSTM is used to individually forecast the decomposed subsequence before the final forecasting 
is obtained by aggregating the output values.

The hybrid EEMD-LSTM forecasting model consists of several modelling procedures, as illustrated in Fig. 2. 
The procedures can be summarized as follows.

(a) Collection of hourly historical data of air pollutants at two air quality monitoring stations. Two different 
datasets were collected for the forecasting model’s validation purposes.

(b) In the data pre-processing stage, the datasets were analysed for missing values and the linear interpolation 
method is employed to fill the missing values.

(c) Analyse the influences of other air pollutant parameters on the changes of PM2.5 concentration values 
using Pearson’s correlation. The analysis is to identify the significant input parameters to the forecasting 
model for improving the forecasting performance. Besides that, determine the model’s historical input 
for the forecasting based on autocorrelation analysis. The input parameters and historical lag time of the 
proposed model may differ for different air quality monitoring stations.

(d) Perform EEMD to decompose nonlinear and complex PM2.5 concentration data into several subseries 
called IMFs and a residual.

(e) Construct separate stacked LSTM for multistep forecasting and determine the best-fit hyperparameters 
for the model. The value of hyperparameters is determined by continuously adjusting the values until the 
optimum performance is achieved. The input parameters for the forecasting models are the normalized 
data of decomposed PM2.5 and other air pollutant parameters.

(f) Aggregate the sequences of forecasted values from LSTM output to obtain the final forecasting of PM2.5 
concentration. Compare the forecasted values to the observed values and evaluate the forecasting perfor-
mances using four evaluation equations.

Performance evaluation. The performance of the proposed LSTM-based model is evaluated using four 
different indicators namely root mean square error (RMSE), mean absolute error (MAE), mean absolute per-
centage error (MAPE) and coefficient of determination  (R2). RMSE calculates the difference between forecasted 
and observed values at different time scales. MAE indicates the absolute difference between forecasted and 
observed values on overall data points. MAPE measures the forecasting accuracy based on the average absolute 
error of forecasted and observed values in terms of percentage. The lower value of RMSE, MAE and MAPE illus-
trates better forecasting performance. Meanwhile,  R2 indicates the effect of the difference in observed values on 
the variation in forecasted values. The high value of  R2 reflects the better performance of the forecasting model.

The statistical evaluations are defined based on the following equations.

(2)RMSE =

√√√√ 1

n

n∑

i=1

(
yi − ŷi

)2
,

Table 1.  Description of datasets used.

PM10 PM2.5 SO2 NO2 O3 CO

Cheras

Max 291.8160 273.3470 0.0137 0.0664 0.1308 3.3010

Min 2.5060 0.0710 0.0000 0.0001 0.0000 0.0790

Mean 34.7517 25.5711 0.0009 0.0176 0.0218 0.8399

Std dev 20.0555 18.0789 0.0008 0.0094 0.0226 0.3921

Total no 17,520 17,520 17,520 17,520 17,520 17,520

Batu Muda

Max 283.1260 263.7520 0.0171 0.0635 0.1377 4.9140

Min 0.0000 0.0000 0.0000 0.0001 0.0000 0.0400

Mean 32.1283 24.8587 0.0010 0.0173 0.0157 0.9730

Std dev 20.5827 18.4417 0.0007 0.0086 0.0180 0.3930

Total no 17,520 17,520 17,520 17,520 17,520 17,520
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where n is the number of data points. yi and ŷi are the observed and forecasted values of PM2.5 concentration, 
respectively. Meanwhile, ŷavg and yavg are the average of the actual and forecasted value of PM2.5 concentration.

Experimental setup
Features correlation. PM2.5 concentration within the study area could be affected by the emission of other 
air pollutants such as PM10,  SO2,  NO2,  O2,  O3. Therefore, the correlation between PM2.5 and other influenced 
air pollutant parameters was analysed in order to determine the influencing variables of PM2.5  concentration25. 
This study proposed Pearson’s correlation coefficient to evaluate the relationship between PM2.5 concentration 
and the influencing parameters. Pearson’s correlation can be defined as in Eq. (6).

(3)MAE =
1

n

n∑

i=1

∣∣yi − ŷi
∣∣,

(4)MAPE =
1

n

n∑

i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣× 100,

(5)R2
=

[∑n
i=1(yi − yavg )(ŷi − ŷavg )

]2
∑n

i=1(yi − yavg )
2
×

∑n
i=1(ŷi − ŷavg )

2
,

(6)r =

∑n
t=1(xt − xt)(yt − yt)√∑n

t=1 (xt − xt)
2
×

∑n
t=1 (yt − yt)

2

,

Figure 2.  Procedure of EEMD-LSTM.
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where n is the number of observations in the dataset. Xt and yt are historical PM2.5 concentrations and other 
air pollutants series, respectively. xt and yt are the mean value of historical PM2.5 concentration and other air 
pollutants series, respectively.

The heatmap in Fig. 3 illustrates the correlation between PM2.5 and other air pollutants at both air quality 
monitoring stations within the study area. For Batu Muda station, PM10 has the highest correlation value of 
0.97, indicating that the variable significantly influences PM2.5 concentration. Besides that, CO,  O3 and  NO2 
also affect the changes in PM2.5 concentration. Meanwhile, the correlation value of  SO2 is 0.04, which is closest 
to zero, indicating that the variable has the weakest correlation to PM2.5 concentration. Therefore, the input 
variables to the proposed forecasting model for Batu Muda station is designed without  SO2 concentration. 
Similarly, PM10 at Cheras station has the highest correlation to PM2.5 concentration with a correlation value 
of 0.98. Other air pollutants also show a critical role in affecting the PM2.5 concentration values. Therefore, this 
study decided to select all influencing parameters as input variables to the proposed model to forecast PM2.5 
concentration at Cheras station.

Temporal correlation. For temporal analysis of PM2.5 concentration, the autocorrelation function (ACF) 
is used to analyse the correlation between time series data of different periods. The autocorrelation analysis may 
benefit the selection of time lag for historical input features to the proposed deep learning forecasting  model35. 
For time delay k, the autocorrelation coefficient can be calculated as in Eq. (7).

where xi and xi+k denote the sample value at time i and i + k, respective. Meanwhile, x is the sample mean of 
the sequence.

The autocorrelation coefficient of time series air quality data for Cheras and Batu Muda stations is illustrated 
in Fig. 4. Overall, it can be perceived that the autocorrelation coefficient is decreases as time lag increases. It is 
indicated that the earlier data has an insignificant effect on the current air quality  data35. Besides that, both sta-
tions recorded an autocorrelation coefficient of more than 0.5 at a time lag of 65 h. Therefore, the proposed model 
is trained using the selected time lag based on the performance analysis. The optimum time lag for historical 
input is significant to ensure the model is able to capture long-term sequence information for the next hour of 
forecasting. However, increasing time lag may lead to large dimensionality distribution and the model become 
unnecessarily complex. Besides that, the model will suffer from overfitting as well as reduce the forecasting per-
formances. Hence, the optimal time lag for the model’s input is selected based on the evaluation of different hours.

The selection of time lag for the deep learning model is conducted based on a grid search assignment where 
several hour time lags are preselected ranging from 1 to 12 h. Small time lag produces unsatisfactory performance 
due to insufficient long-term memory input to the model. However, a large time lag may promote unnecessary 
inputs to the model and increase the model’s complexity. Therefore, the optimum time lag for historical input 
data is determined by analysing the performances of the deep learning model to forecast PM2.5 concentration. 
In this study, EEMD-LSTM is analysed for different time lags for 1-h interval for both Cheras and Batu Muda 
datasets. Table 2 shows the RMSE and  R2 of the proposed model at multiple time lags for PM2.5 concentration 
forecasting. Both datasets have different performances based on the time lag analysis. It is found that, EEMD-
LSTM performs the best at 6-h and 2-h time lag at Cheras and Batu Muda monitoring stations, respectively. The 

(7)rk =

∑n−k
i=1 (xi − x)(xi+k − x)
∑n

i=1(xi − x)2
,

Figure 3.  Pearson’s correlation of PM2.5 concentration and other features for (a) Cheras and (b) Batu Muda 
station.
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results presented in Fig. 4 can be explained that different datasets might have different autocorrelation values in 
the same time lag due to the distribution of data series. Therefore, the historical input for EEMD-LSTM model 
is set to 6 h for Cheras dataset and 2 h for the Batu Muda dataset to forecast 1-h PM2.5 concentration.

Model’s architecture design. This study proposes to focus on forecasting PM2.5 concentration using 
ensemble LSTM based on mode decomposition. Due to the nonlinearity and complexity of hourly time series 
PM2.5 concentration and the influences of other air pollutants, the data decomposition method based on 
empirical mode namely EEMD is proposed to improve the forecasting accuracy of LSTM based model. PM2.5 
concentrations for Cheras and Batu Muda stations are decomposed into eight stationary subsequences called 
intrinsic mode function (IMFs) and a residue (R) in the data processing stage. Figure 5 represents the summary 
of decomposed time series data obtained for Cheras and Batu Muda stations. Every subsequence of decomposed 
PM2.5 is considered the independent dataset for the input to LSTM model. Nine LSTM models are separately 
developed to learn and forecast every decomposed sequence before integrating all forecasting outputs to obtain 
the final forecasting of the PM2.5 concentration value.

LSTM-based model is constructed based on stacked two LSTM layers with 128 hidden neurons in each layer. 
Other model’s hyperparameters are also determined, such as optimizer, learning rate, activation function and the 
number of epochs. A manual search is performed to find the optimum hyperparameter’s values by continuously 
adjusting the values until the model reaches the best forecasting performance. Table 3 lists the parameters of 
the LSTM model for forecasting PM2.5 concentration. One of the main hyperparameters in the deep learning 
model is the optimizer. This study uses adaptive moment estimation (ADAM) as an optimization function that 
can successfully work in online and stationary settings as well as show better performance with sparse gradients. 
The exponential decay rate for first-moment estimates is set to 0.9 and the exponential decay rate for second-
moment estimates is set to 0.999. Besides that, the activation function used in the network is rectified linear 
unit (ReLU), which can reduce the vanishing gradient and has better convergence performance. The forecasting 
model is fitted for a batch size of 128 and mean square error (MSE) is used as the loss function. The dropout rate 
for the forecasting models is set to 0.1 in order to avoid overfitting problems during the model’s training. Early 
stopping criteria are used for stopping the training progress when the evaluation metric does not improve. The 
training epoch is initialized for 100 epochs. Moreover, the callbacks function of ReduceLROnPlateau is used to 
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Figure 4.  Autocorrelation coefficient of PM2.5 concentration.

Table 2.  Evaluation of EEMD-LSTM at different time lags for Cheras and Batu Muda datasets. Significant 
values are in bold.

Lag time (h)

Cheras Batu Muda

RMSE R2 RMSE R2

1 8.7932 0.8886 6.8829 0.9349

2 4.6773 0.9685 4.8949 0.9673

3 4.9216 0.9651 5.4320 0.9595

4 4.4857 0.9710 7.0627 0.9315

5 5.4730 0.9569 8.1152 0.9095

6 4.2083 0.9780 6.2291 0.9467

7 6.9881 0.9297 5.8072 0.9537

8 4.8443 0.9662 5.9531 0.9513

9 7.4410 0.9203 5.1341 0.9638

10 5.0353 0.9635 6.5568 0.9410

11 7.9558 0.9089 5.1510 0.9636

12 5.4208 0.9577 8.2213 0.9072
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reduce the learning rate for enhancing the model’s performance if the evaluation metric stops improving. The 
minimum limit of the learning rate is set to 0.00001. After the model has been successfully trained, the testing 
dataset is used to obtain the forecasting values of the sample sequences. Then, all forecasted subsequences are 
aggregated for final forecasting. Lastly, the forecasting model’s performances are evaluated in terms of RMSE, 
MAE, MAPE and  R2.

Result and discussion
Results of EEMD-LSTM. This study applies an ensemble model of EEMD-LSTM for forecasting PM2.5 
concentration at two air quality monitoring stations in an urban area. The forecasting is performed by consider-
ing the effects of other air pollutants emissions at the respective monitoring station. EEMD is used to decom-
pose the time series of PM2.5 concentration data into eight subsequences and a residue is used to reduce the 
complexity of time series data for accurate forecasting. Nine LSTM models are separately established for every 
independent decomposed subsequence. Forecasting output from each model is aggregated in order to obtain the 
final forecasting of PM2.5 concentration. Then, the performance of the proposed model is evaluated based on 
the statistical equations.
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Figure 5.  IMFs and residual plot of decomposed concentration data for (a) Cheras and (b) Batu Muda station.

Table 3.  Parameter setting for EEMD-LSTM.

Modelling strategy Parameter name Description

EEMD
Number of IMF 8

Amplitude of the added noise 0.2

LSTM

Optimizer Adam

Number of LSTM unit 128, 128

Learning rate 0.00001

β1,β2 0.9, 0.999

Activation function ReLU

Number of epochs 100

Batch size 128

Dropout 0.1

Loss function MSE
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The developed hybrid EEMD-LSTM model at both monitoring stations has the same architecture and experi-
mental setup in order to investigate the model’s validity in learning and forecasting different time-series datasets. 
Due to the distribution of the air quality data, this study decided to set the model’s historical input based on 
time lag analysis by considering the effect of temporal correlation within the data series. Besides that, for the 
corresponding monitoring stations, the proposed forecasting model is set to different input parameters based 
on features correlation analysis which only the parameters with a high correlation value to the target variable 
are selected. EEMD-LSTM model at Cheras station with all air pollutant parameters as input variable and his-
torical input of six-hour yield RMSE = 4.2083 μg/m3, MAE = 2.8190 μg/m3 and MAPE = 14.152%. Meanwhile, 
EEMD-LSTM model without  SO2 concentration in the input sequence and two-hour historical input for Batu 
Muda station yields RMSE = 4.8949 μg/m3, MAE = 2.7724 μg/m3 and MAPE = 14.642%. Figure 6 summarizes the 
evaluation error of the EEMD-LSTM models at both monitoring stations. Final forecasting of one hour ahead 
and the distribution between forecasted and observed PM2.5 concentrations for the testing dataset at both air 
quality monitoring stations based on the respective input variables and historical time lags are presented in Fig. 7. 
The figure demonstrates the final forecasting follows the trend of actual values. Besides that, the distribution of 
both values converges to the centre crosswise of the graph approximately, demonstrating the higher accuracy of 
forecasting in terms of statistical evaluations. The evaluation results illustrate that the proposed forecasting model 
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Figure 6.  Evaluation error of EEMD-LSTM for Cheras and Batu Muda station.

(a) Cheras station 

(b) Batu Muda station 

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

PM
2.

5 
(µ

g/
m

3)

Time (hour)

Observed
EEMD-LSTM R² = 0.978

0

50

100

150

200

250

0 100 200 300

Fo
re

ca
st

ed
 P

M
2.

5

Obsereved PM2.5

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

PM
2.

5 
(µ

g/
m

3)

Time (hour)

Observed
EEMD-LSTM R² = 0.9673

0

50

100

150

200

250

300

0 100 200 300

Fo
re

ca
st

ed
 P

M
2.

5

Obsereved PM2.5

Figure 7.  PM2.5 forecasting based on EEMD-LSTM for (a) Cheras (b) Batu Muda station.



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17565  | https://doi.org/10.1038/s41598-022-21769-1

www.nature.com/scientificreports/

is able to forecast PM2.5 concentration with small errors and high accuracy for different datasets in an urban 
area. The improved decomposition method of EEMD has successfully decomposed and extracted the important 
characteristic of the complex time-series datasets to help in enhancing forecasting accuracy. Additionally, LSTM 
is able to learn and forecast large nonlinear and long-term dependence of PM2.5 concentration time series.

Comparison study. Seven deep learning based models are established as benchmark models and com-
pared to the proposed forecasting model. The comparative analysis aims to verify the efficiency of the proposed 
EEEMD-LSTM model. The comparative models namely EMD-LSTM, EMD-GRU, LSTM, Bidirectional LSTM, 
sequence to sequence LSTM, CNN-LSTM and GRU are built using the same parameters as the proposed model. 
All experiments utilizing both air quality datasets are conducted under a similar experimental setup to ensure 
the consistency of comparative analysis. The hyperparameter setting and descriptions of the comparative model 
are presented in Table 4. Meanwhile, Table 5 lists the forecasting performances of all comparative models and 
the proposed model in terms of RMSE, MAE, MAPE and  R2 for both Cheras and Batu Muda stations. EEMD-
LSTM yields the lowest forecasting errors and highest  R2 as compared to the other seven deep learning models 
for both monitoring stations. The results prove that EEMD-LSTM is able to forecast PM2.5 concentration with 
high forecasting accuracy among the deep learning models.

EEMD-LSTM decreases the forecasting error of EMD-LSTM by 49.49%, 47.02% and 47.95% for Cheras sta-
tion, while 27.89%, 39.60% and 37.49% for Batu Muda station in terms of RMSE, MAE and MAPE, respectively. 
Besides that, EEMD-LSTM enhances the accuracy of EMD-LSTM in terms of  R2 by 8.69% and 3.27% for Cheras 
and Batu Muda, respectively. The significant improvement of model performance demonstrates that the improved 
method of EEMD has successfully increased the forecasting accuracy of LSTM compared to EMD. Moreover, 
white noises added in EEMD is remarkably efficient in extracting complex characteristic of the input sequence 
to successfully increase the performance and calculation time of the forecasting model.

On the other hand, the hybrid models of EEMD-LSTM and EMD-LSTM outperform individual LSTM in 
air quality forecasting at both monitoring stations. It can be observed that the decomposition method based on 
empirical mode has effectively improved the forecasting accuracy of LSTM. In this study, EEMD based model 
improved the performance of individual LSTM for Cheras dataset by 59.22%, 57.67%, 47.95% and 15.55% in 
terms of RMSE, MAE, MAPE and  R2, respectively. Meanwhile, for Batu Muda dataset, EEMD improves the 
RMSE, MAE, MAPE and  R2 of LSTM by 52.49%, 55.31%, 56.88% and 13.26%, respectively. The large percentage 
of improvement illustrates that the proposed decomposition method has greatly enhanced the forecasting pro-
cedure of LSTM and yielded accurate forecasting of PM2.5 concentration. Besides that, proposed EEMD-LSTM 
yield superior performance among the ensemble models of EMD-LSTM and EMD-GRU for both air quality 

Table 4.  Description of comparative models.

Model Description

EMD-LSTM EMD = 8 IMFs, 1 Residual
LSTM parameters as in Table 3

EMD-GRU EMD = 8 IMFs, 1 Residual
2 GRU layer, number of nodes = 128, 128

LSTM Table 3

Bi-LSTM 1 BiLSTM layer; number of nodes = 128
LSTM parameters as in Table 3

Seq2seq LSTM Encoder-decoder model with 2 LSTM layers
LSTM parameters as in Table 3

CNN-LSTM Conv1D: filter = 5, kernel = 1; pooling size = 1
LSTM parameters as in Table 3

GRU 2 layers of GRU; number of nodes = 128, 128
Parameters setting same as in Table 3

Table 5.  Forecasting evaluation of deep learning models.

Cheras Batu Muda

RMSE (μg/m3) MAE (μg/m3) MAPE (%) R2 RMSE (μg/m3) MAE (μg/m3) MAPE (%) R2

EEMD-LSTM 4.2083 2.8190 14.152 0.9780 4.8949 2.7724 14.642 0.9673

EMD-LSTM 8.3323 5.3211 27.189 0.8998 6.7878 4.5899 23.423 0.9366

EMD-GRU 25 6.6668 4.3390 21.975 0.9359 6.6190 4.5921 23.580 0.9397

LSTM36 10.3188 6.6597 39.661 0.8464 10.3020 6.2035 33.960 0.8540

Bi-LSTM 10.1013 6.5553 36.564 0.8528 9.8595 6.2443 35.314 0.8663

Seq2seq LSTM 11.2707 7.1170 36.765 0.8167 12.1296 7.2301 32.980 0.7976

CNN-LSTM 12.0066 7.4250 38.480 0.7920 12.3783 7.3813 33.883 0.7893

GRU 37 10.1057 6.5547 37.739 0.8526 11.9297 7.7404 34.471 0.8043
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datasets. Comparing the performance of EMD based models, it is found that EMD-GRU significantly outper-
forms EMD-LSTM for PM2.5 forecasting for both air quality monitoring stations. GRU is viewed as simplification 
of LSTM with fewer gate units in the architecture, shows better performance in air pollutant forecasting with the 
combination of data decomposition method. The superior performance of GRU also can be observed through 
the results based on the individual model at Cheras station. However, GRU performs poorer compared to LSTM 
for Batu Muda dataset. It can be perceived that the performance of both models depends on the distribution of 
training datasets and respective  experiments38.

Based on the performance table, it is also found that the bidirectional architecture of LSTM yielded higher 
performance accuracy as compared to the general individual deep learning models namely LSTM and GRU, at 
both air quality monitoring stations. Comparing the performance of BiLSTM at both monitoring stations, it is 
found that the model improved LSTM performance errors at most by 4.3% in RMSE, 1.57% in MAE and 7.81% 
in MAPE. The model also improves the forecasting performance of GRU by 17.35%, 19.33% and 3.11% at most 
for RMSE, MAE and MAPE, respectively. The results illustrate that the improved architecture of the forward and 
backward layers in BiLSTM has positively impacted forecasting accuracy. The model is proven to be an efficient 
technique in forecasting and solving sequence datasets at both air quality monitoring stations with reliable 
performance accuracy. On the other hand, encoder-decoder architecture of seq2seq LSTM and CNN-LSTM 
perform poorer than other deep learning models. CNN-LSTM performs the worst among other deep learning 
models, with the highest performance error of 12.0066 μg/m3 for RMSE, 7.4250 μg/m3 for MAE, 38.48% for 
MAPE and the lowest  R2 of 0.792 for PM2.5 forecasting at Cheras station. Similarly, for the Batu Muda dataset, 
CNN-LSTM yields the lowest performance accuracy compared to other deep learning models. This condition 
demonstrated that the architecture is less suitable for solving forecasting problems based on the sequence data 
at both monitoring stations.

Multistep ahead forecasting. The proposed EEMD-LSTM is implemented to further analysed multistep 
ahead forecasting for both investigated monitoring stations. The multistep strategy used in this study is called 
direct strategy, where the proposed model is independently developed for each time horizon to forecast air pol-
lutant  concentration39. Table 6 presents the performance evaluation of EEMD-LSTM in forecasting PM2.5 con-
centration at 1 to 6-h of time horizon. The evaluation results depict decreasing forecasting performance as the 
time horizon increases at both locations. However, the performance of the proposed model is reliable, where the 
model yields the accuracy of  R2 more than 90% at 5 h and 4 h time horizon for Cheras and Batu Muda stations, 
respectively. Therefore, examining the adequate combination of historical input and forecasting time horizon 
as well as spatial–temporal relationship would be effective in achieving optimum results for longer forecasting 
horizons.

Conclusion
In this study, an ensemble model of EEMD-LSTM is proposed to forecast 1-h ahead PM2.5 concentration at two 
air quality monitoring stations in an urban area. Considering the nonlinear and complex time-series data, the 
EEMD is firstly implemented to decompose sequence data of PM2.5 concentration into multiple simple features 
of intrinsic mode functions (IMFs). Then, LSTM is applied in mapping other air pollutant parameters and IMF 
values to establish an ensemble model for successive forecasting. Finally, the forecasted values of all modes are 
integrated to obtain the final forecasting results. The proposed hybrid model is applied based on two datasets of 
different air quality monitoring stations in order to validate its effectiveness under different pollution levels. A 
comparative analysis is conducted using four statistical evaluations to compare the proposed EEMD-LSTM model 
with other deep learning models for both monitoring stations. It is found that the performance of the proposed 
ensemble model yields outstanding performance and outweighs other deep learning models. Also, hybrid deep 
learning models based on the decomposition method have greatly improved the performance of individual mod-
els. Besides that, the results demonstrate that EEMD-LSTM has successfully learned and forecasted the PM2.5 
concentration based on different dataset features. On the other hand, this study can be extended to forecast air 
pollutants by considering the effect of meteorology parameters in the vicinity of the study. The development of 
the hybrid forecasting model using an optimization method in selecting the optimum hyperparameters for the 
deep learning model is also suggested for future study improvement.

Table 6.  Multistep ahead forecasting of EEMD-LSTM.

Time horizon (hour)

1 2 3 4 5 6

Cheras

RMSE (µg/m3) 4.2083 6.1535 6.7776 7.8380 7.8909 8.8216

MAE (µg/m3) 2.8190 4.1204 4.7095 5.3166 5.2580 6.0334

MAPE (%) 14.152 23.494 29.944 30.336 30.819 37.465

R2 0.9780 0.9455 0.9339 0.9116 0.9104 0.8880

Batu Muda

RMSE (µg/m3) 4.8949 6.2990 6.9755 8.0898 8.8535 9.8561

MAE (µg/m3) 2.7724 4.0043 4.5064 5.1294 5.7807 6.4409

MAPE (%) 14.642 24.157 24.111 29.520 36.927 37.631

R2 0.9673 0.9455 0.9332 0.9101 0.8923 0.8666
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