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A metalens‑based analog 
computing system for ultrasonic 
Fourier transform calculations
Robert Frederik Uy1* & Viet Phuong Bui2

Wave-based analog computing is a new computing paradigm heralded as a potentially superior 
alternative to existing digital computers. Currently, there are optical and low-frequency acoustic 
analog Fourier transformers. However, the former suffers from phase retrieval issues, and the latter 
is too physically bulky for integration into CMOS-compatible chips. This paper presents a solution to 
these problems: the Ultrasonic Fourier Transform Analog Computing System (UFT-ACS), a metalens-
based analog computer that utilizes ultrasonic waves to perform Fourier transform calculations. 
Through wave propagation simulations on MATLAB, the UFT-ACS has been shown to calculate the 
Fourier transform of various input functions with a high degree of accuracy. Moreover, the optimal 
selection of parameters through sufficient zero padding and appropriate truncation and bandlimiting 
to minimize errors is also discussed.

The first known analog computer is the Antikythera mechanism, invented by the ancient Greeks1. Since then, 
many other mechanical and electronic analog computers have been devised to perform mathematical operations 
more efficiently1–3. Subsequently, with the development of semiconductor technology and integrated circuits, 
the sheer speed and reliability of digital computers eventually led to a tectonic shift in the twentieth century2,3. 
When performing complex computational tasks, however, digital computers are computationally inefficient 
and consume a lot of energy2. Unfortunately, there is little opportunity for further improvements as Moore’s 
law approaches its physical limits2,4,5. With the rising demand for ever-increasing computational capacity and 
efficiency6,7 and the recent breakthroughs in the field of metamaterials3,8, a new computing paradigm with very 
promising prospects has emerged: wave-based analog computing.

Wave-based analog computing leverages waves to perform analog computing. It has been heralded as a 
potential future of computing because of its high computational efficiency, low crosstalk, and powerful paral-
lel processing1,8,9. Silva et al.’s seminal paper10 on computational metamaterials laid the foundation for other 
researchers to conduct studies into both optical and acoustic analog computing systems performing mathematical 
operations1–4,6–35, with some making use of the Fourier transform to do so3,6,9,10,26–28.

The Fourier transform (FT) is a mathematical operation that maps a function in one variable to the 
spectral space of its conjugate variable14,36–38. It is a powerful tool with wide-ranging applications in myriad 
disciplines4,22–24,36–43. Currently, the two-dimensional Fast Fourier Transform (FFT) algorithm has a computa-
tional complexity of O(N2logN) , which is not efficient enough for certain applications, such as real-time image 
processing in autonomous systems4,22–24.

Capitalizing on the Fourier transforming property of thin lenses36, researchers have developed a new, analog 
method of performing FT calculations: the optical Fourier transform (OFT)35,36. The OFT, which has an apparent 
computational complexity of only O(N) , is significantly faster than the electronic FFT algorithm22,35. However, 
due to the limitations of phase modulation and phase retrieval methods22, it would be impractical to capture 
phase data when performing the OFT. Researchers thus turned to acoustic waves. Although this method is 
comparatively slower than the OFT, it is nevertheless faster than the FFT, and it allows for the retrieval of phase 
information, unlike the OFT.

Aiming to replicate the success of optical analog computing systems in acoustics, Zuo et al. developed an 
acoustic analog computing (AAC) system that performs FT-based spatial differentiation, integration, and 
convolution26. Several other studies on AAC systems have been conducted, but they all have an operating fre-
quency in the kilohertz range3,9,26–28.

Unfortunately, performing acoustic FT at such low frequencies requires a physically bulky computing system 
even with the use of thin, planar metasurfaces. Therefore, researchers have sought to use ultrasonic waves instead 
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to perform ultrasonic Fourier transform (UFT). The shorter wavelength of ultrasonic waves allows for a more 
compact analog computing system that is easily integrable into CMOS-compatible chips. Liu et al. developed an 
ultrasonic FT system without any lens22. This, however, would require a relatively large system as, in the absence 
of a lens, the UFT will only be achieved in the far field. Subsequently, Hwang, Kuo, and Lal worked on realizing 
the UFT with an acoustic Fresnel lens23, after which they used a metalens to allow for a more compact UFT 
computing system24. Besides compactness, other reasons for using a metalens include the CMOS-compatibility 
of materials used and ease of fabrication.

Despite the considerable work that has been done on the UFT22–24, there has yet to be a comprehensive 
study on the accuracy of the Ultrasonic Fourier Transform Analog Computing System (UFT-ACS). Thus, this 
study aims to fill this gap in the existing literature. Firstly, this study aims to determine how accurate the UFT’s 
magnitude and phase are compared with those of the analytical FT for all three types of functions, specified in 
Sec. 4. Unlike previous studies22–24, this study also takes into account the UFT’s phase, not just its magnitude. 
Secondly, this study also seeks to determine how to optimize the UFT calculation for space-limited functions by 
examining how the accuracy is affected by the level of zero padding. Thirdly, another objective of this study is to 
investigate the effects of truncation and bandlimiting of functions that are not space-limited and/or bandlimited 
on the UFT-ACS’ accuracy to allow for the optimal selection of parameters.

Results
The Ultrasonic Fourier Transform Analog Computing System (UFT‑ACS).  Referring to Fig. 1, the 
Ultrasonic Fourier Transform Analog Computing System (UFT-ACS) consists of five main parts: the source 
plane, a substrate layer, the ultrasonic metalens, another substrate layer, and the observation plane. The entire 
UFT-ACS has a square cross-section with side length L . The focal length of the metalens is f  , which is also the 
thickness of both substrate layers—this is a key condition for obtaining the UFT expression. The thickness of 
the metalens is tm.

Using concepts in acoustic wave propagation—in particular, Fresnel diffraction and lenses’ Fourier transform-
ing property—and some approximations (see Table 1), it can be shown that the output Po(u, v) is proportional 
to the Fourier transform of the input Ps(ξ , η):

where the operator F  denotes the FT, j =
√
−1 , k is the wavenumber, and � is the wavelength. Hence, multiply-

ing the pressure field at the observation plane by the correction factor

(1)PO(u, v) =
j exp(−2jkf )

�f F{PS(ξ , η)},

(2)α = −j�f exp
(

2jkf
)

Figure 1.   Schematic of the UFT-ACS. The figure shows a schematic of the UFT-ACS, which consists of five 
main parts: the input pressure field Ps(ξ , η) at the source plane, a substrate layer (light blue), the ultrasonic 
metalens (dark blue), another substrate layer (light blue), and the output pressure field Po(u, v) at the 
observation plane.

Table 1.   Summary of the approximations required to derive the UFT expression.

No Approximation Validity

1 |r − r0| ≈ f

[

1+ 1
2

(

x−ξ
f

)2
+ 1

2

(

y−η

f

)2
]

Fresnel

2 |r − r0| ≈ f Paraxial

3 cos(n, r − r0) ≈ 1 Paraxial

4 1
|r−r0 | + jk ≈ jk Distances much larger than �
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theoretically yields the exact FT of the pressure field at the source plane. Hereinafter, the corrected output pres-
sure field will be referred to as the UFT of the input.

Design of the UFT‑ACS.  The operating frequency of the UFT-ACS was chosen as fwave = 1.7 GHz, a high 
ultrasonic frequency that allows for a more compact system that would be easier to integrate into CMOS-compati-
ble chips. Both substrate layers, made of fused silica due to the material’s isotropy, have a thickness of f = 1.0886 
mm. The speed of ultrasonic waves is vwave = 5880 m s−1 in fused silica, which implies � = vwave/fwave = 3.46 
µm.

The metalens, shown in Fig. 2a, consists of many unit cells with a square cross-section of side length 3 µm 
(a subwavelength feature) and a thickness of tm = 16 µm. In Fig. 2b, each unit cell consists of a cylindrical post 
made of SiO2 embedded in Si. Theoretically, the ultrasonic metalens should have a paraboloidal phase profile

to obtain the UFT. However, discretization is needed as there is a limited number of distinct unit cells. Thus, the 
metalens’ unit cells should be arranged such that the unit cell at each point has a cylindrical post with a radius 
corresponding to that point’s interpolated phase shift. After interpolation, the ideal phase map becomes the 
discretized phase map, shown in Fig. 2c.

UFT of various input functions.  A space-limited function is one whose non-zero values are contained in 
a finite region in the space domain, while a bandlimited function has a finite spectral width containing all spatial 
frequency components with non-zero magnitude values. In the context of the FT, there are three main types of 
functions: space-limited but not bandlimited (Type I), bandlimited but not space-limited (Type II) and neither 
space-limited nor bandlimited (Type III). A function cannot be both space-limited and bandlimited39. A square 
input, defined by f (ξ , η) = rect(ξ/w)rect(η/w) with w = 135 , was used as a sample Type I input. For Type II 
functions, a two-dimensional sinc function, specifically f (ξ , η) = sinc(ξ/12)sinc(η/12) , was used as a sample 
input. Lastly, the two-dimensional Gaussian f (ξ , η) = exp

{

−π
[

(ξ/γ )2 + (η/γ )2
]}

 with γ = 30 was used as 
a sample Type III input. Referring to Fig. 3, the simulation results demonstrate that the UFT-ACS is indeed an 
accurate Fourier transformer.

For the sample square input, the root-mean-squared error (RMSE) after normalization is 0.9%. The UFT’s 
magnitude profile is in excellent agreement with the analytical FT’s magnitude profile (Fig. 3a), with only minor 
deviations towards the edges since the UFT expression is derived only after Fresnel and paraxial approximations 
are made (see Table 1). Thus, they are expected to only agree in the central region. The phase profiles (Fig. 3b) 
of the UFT and analytical FT only match well at the center for the same reason. Aberration due to the metalens’ 
discretized phase profile also contributes to the observed discrepancies in both the magnitude and phase profiles. 
Moreover, there is some aliasing due to bandlimiting as the square’s FT is not bandlimited.

For the sample sinc input, the RMSE after normalization is 4.6%. Figure 3c shows that there is a somewhat 
good agreement between the magnitude profiles of the UFT and the analytical FT. As explained by Gibbs’ 
phenomenon49 (see Supplementary Information), ripple artifacts can be observed in the UFT’s magnitude profile 
as a result of truncating the input sinc function—an inevitable consequence of the UFT-ACS’ finite size. Aber-
ration due to the discretized phase profile of the metalens exacerbated the ripples and caused small lobes to be 
observed at the sides (see Supplementary Information). Nonetheless, the overall shape of the UFT’s magnitude 
profile still resembles that of the analytical FT. Figure 3d shows that the phase of the UFT and the analytical FT 

(3)φideal
(

x, y
)

= k
(

x2+y2

2f

)

Figure 2.   Ultrasonic metalens. (a) Top view of the ultrasonic metalens. (b) Unit cell made up of a SiO2 
cylindrical post (light blue) embedded in a Si square cuboid (dark blue). (c) Discretized phase map of the 
metalens.
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only match at the center, where the magnitude is significant. This can be attributed to the fact that the UFT is 
only achieved in the paraxial region and to the fact that the magnitude is supposedly zero but there are ripple 
artifacts due to truncation. The latter implies that a small error in the real and imaginary parts of the complex 
pressure field results in non-negligible error in the phase. Metalens aberration further contributes to the error.

For the sample Gaussian input, the RMSE after normalization is 0.4%. It is evident from Fig. 3e that the mag-
nitude profiles of the UFT and the analytical FT agree well with each other. Granted, there are some small lobes 
towards the edges of the magnitude profile, which can be attributed to aberration due to the discretized phase 
profile of the metalens (see Supplementary Information). Be that as it may, the significant magnitude values are 
accurate, and the overall shape is preserved. Moreover, it is also evident from Fig. 3f that the phase profile of the 
UFT coincides with that of the analytical FT only at the center. This is because of the approximations required 
to obtain the UFT expression and aberration due to the discretized phase profile of the metalens.

Overall, for all three types of input functions, the UFT satisfactorily matches the analytical FT in both mag-
nitude and phase (see Table 2 for summary of RMSEs). The UFT’s magnitude profile has somewhat noticeable 
errors towards the edges, and the UFT’s phase profile, as can be observed from Fig. 3, matches the analytical 

Figure 3.   Ultrasonic Fourier Transform (UFT) Simulations. (a) Square: Magnitude profiles of the UFT and 
the analytical FT. (b) Square: Phase profiles of the UFT and the analytical FT. (c) Sinc: Magnitude profiles of the 
UFT and the analytical FT. (d) Sinc: Phase profiles of the UFT and the analytical FT. (e) Gaussian: Magnitude 
profiles of the UFT and the analytical FT. (f) Gaussian: Phase profiles of the UFT and the analytical FT.
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FT’s phase profile at the center and when the magnitude is significant. This is acceptable as, in general, only the 
significant magnitude values and their corresponding phase values are of interest in FT applications. Further-
more, the overall shapes of the UFT and analytical FT’s magnitude profiles resemble each other well, which is 
usually sufficient for applications.

Optimization of accuracy.  Having examined the accuracy of the UFT for all three types of inputs, this 
section explores how the accuracy can be optimized through appropriate zero padding, truncation, and ban-
dlimiting.

Zero padding.  Besides the zero padding done to the pressure field array at the source plane to avoid circular 
convolution errors associated with FFT-based convolution46–48, space-limited functions must also be zero-pad-
ded within the sampled array bounds ξ , η ∈ [−(L−�)/2, (L−�)/2].

To study the effect of zero padding on the UFT-ACS’ accuracy, MATLAB was used to simulate the UFT calcu-
lation for numerous square input functions of different side lengths. The side length w was varied incrementally 
from 3 to 765, inclusive. Both the UFT and the analytical FT were normalized with the maximum value of the 
analytical FT as 1. This is done so that a fair comparison of the errors can be made. After normalization, the 
root-mean-squared error (RMSE) between the magnitude pattern of the UFT and that of the analytical FT was 
calculated, using MATLAB’s mse and sqrt functions, for all w.

Figure 4a shows how the RMSE varies with the side length w of the input square function, which is inversely 
related to the amount of zero padding. It can be observed that the error initially decreases as the width w increases 
or as the amount of zero padding decreases. This occurs because as w increases, the effective bandwidth of the 
input function decreases, resulting in a decrease in error due to reduced aliasing in the spatial frequency domain. 
The error eventually starts to increase as w continues increasing. This can be attributed to the fact that the UFT 
is only achieved in the paraxial region. Refer to Supplementary Information for additional explanatory diagrams 
supporting the above analysis.

Thus, a moderate number of zeros—neither too little nor too much—must be used to pad space-limited input 
functions in order to accurately calculate the FT.

Table 2.   RMSE for sample input functions.

Type of Input RMSE (%)

I 0.9

II 4.6

III 0.4

Figure 4.   Accuracy optimization: zero padding, truncation, and bandlimiting. (a) The graph shows the 
dependence of the RMSE on the side length w of the input square, which is inversely related to the amount of 
zero padding. (b) The graph shows the dependence of the RMSE on γ . The blue dots represent the RMSE of the 
simulations involving an ideal metalens. The orange vertical line indicates the value of γ corresponding to the 
case wherein the sampled array just contains 98% of the total spectral power.
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Truncation and bandlimiting.  Truncation, otherwise known as windowing, refers to limiting the spatial extent 
of a function that is not space-limited. Analogously, bandlimiting refers to limiting the bandwidth of a function 
that is not bandlimited.

To study their impact on accuracy, UFT-ACS simulations were carried out for Gaussians with γ (the param-
eter affecting a Gaussian’s width) varied incrementally from 4 to 640, inclusive. Both the UFT (when using an 
ideal metalens) and the analytical FT were normalized. After normalization, the RMSE was calculated for the 
results of each value of γ . The UFT with an ideal metalens was used for comparison with the analytical FT so as 
to eliminate the errors caused by aberration due to the discretized phase profile of the metalens and, therefore, 
ascertain that the error is indeed ascribed to truncation and bandlimiting.

Figure 4b shows how the RMSE varies with γ . Initially, the RMSE decreases as γ increases. Notably, referring 
to the inset in Fig. 4b, the initial decrease is very steep until the orange line, which corresponds to the value of γ 
for which the effective bandwidth is just contained within the sampled array bounds. However, this decreasing 
trend is only observed until a certain critical point, beyond which the RMSE starts to increase again.

The initial decrease occurs because as γ increases, the effective bandwidth of the input function decreases, 
resulting in a greater percentage of the total spectral power being captured within the sampled array bounds. 
Therefore, there is a decrease in error due to reduced aliasing in the spatial frequency domain. Moreover, the 
paraxial approximations become more valid as γ initially increases because if γ is too small, the energy, which is 
initially highly concentrated at the centre of the space domain, becomes very spread out in the spatial frequency 
domain. Eventually, the RMSE stops decreasing and starts rising as γ increases further. There are two reasons 
for this. Firstly, for a higher γ , the energy is spread out more in the space domain, resulting in more significant 
magnitudes lying outside the sampled array bounds. Thus, there is an increase in error due to undersampling 
in the space domain, outweighing the decrease in error due to reduced aliasing in the spatial frequency domain 
associated with a higher γ . Secondly, the approximations are less valid when γ is too large because the energy, 
initially spread out in the space domain, becomes highly concentrated at the center of the spatial frequency 
domain. Supplementary Information provides additional graphs supporting the above reasoning.

Hence, to optimize the accuracy of the UFT, the parameter γ should be neither too small nor too large such 
that the input function and its FT are both of moderate width and the approximations are more valid.

Discussion
In summary, this paper presents the Ultrasonic Fourier Transform Analog Computing System (UFT-ACS), which 
has been demonstrated to perform FT calculations for all three types of functions to a relatively high degree of 
accuracy. The simulations in this study have shown the true capabilities, appropriately qualified by the limita-
tions, of the UFT-ACS—addressing this knowledge gap in the existing literature. Optimizing the UFT’s accuracy 
was also explored and better understood by studying the effect of zero padding, truncation and bandlimiting.

This study’s findings are of considerable significance. Performing FT calculations faster than the electronic 
FFT algorithm, the UFT-ACS satisfies the growing demand for such capabilities in some applications like real-
time image processing in autonomous vehicles. Existing analog computing systems also make use of the FT to 
perform mathematical operations, such as spatial differentiation, integration, and convolution. Thus, the UFT-
ACS can also impact the broader field of wave-based analog computing. It can improve the prospects of wave-
based analog computers as potential supercomputers in the future, possibly surpassing the current limitations 
of today’s electronic computers.

Methods
Ultrasonic metalens designing process.  Referring to Supplementary Fig. S3, designing the metalens 
involves a few simple steps. Firstly, carry out unit cell simulations in order to obtain a relationship between the 
phase shift due to a particular unit cell and the radius of that unit cell’s cylindrical post. Secondly, obtain an array 
of the ideal phase map consisting of phase values at sampled points following the theoretical paraboloidal phase 
profile

required to obtain the UFT expression. Thirdly, perform interpolation to the nearest available phase value from 
the unit cell simulations using the MATLAB function interp1. Thus, at this juncture, we have obtained the 
discretized phase map consisting of phase values which have a corresponding radius from the unit cell simula-
tions. Subsequently, use the phase-to-radius mapping to obtain a radius map—an array of radius values at each 
sampled point. Finally, using the MATLAB function viscircles, generate a figure of the metalens comprising 
unit cells whose cylindrical posts have a radius corresponding to the radius at that point as per the radius map 
previously obtained.

Wave propagation simulations.  Exact solutions—that is, before Fresnel and paraxial approximations 
were applied—of the Kirchhoff-Helmholtz Integral were used to numerically simulate the propagation of ultra-
sonic waves through the UFT-ACS, and the results were compared with the analytical FT. The code was imple-
mented using MATLAB.

As opposed to Finite Element Method (FEM), this semi-analytical approach is much less computationally 
costly and, therefore, allows for simulations involving considerably larger arrays—key to understanding the 
UFT-ACS’ true capabilities.

The pressure field PM−(x, y) right in front of the metalens can be obtained by using an FFT-based convolution 
approach to convolve the zero-padded input pressure field array PS(ξ , η) with the convolution kernel

(4)φideal
(

x, y
)

= k
(

x2+y2

2f

)



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17124  | https://doi.org/10.1038/s41598-022-21753-9

www.nature.com/scientificreports/

Note that the N × N  array PS(ξ , η) must be padded by at least N − 1 zeros to avoid circular convolution 
errors47. By convention, the convolution kernel array is the same size as the zero-padded pressure field array47. 
PM−(x, y) is then the N × N subarray at the center of the larger array produced by FFT-based convolution. The 
second part of the simulation involves applying the phase shift due to the discretized metalens to obtain the 
N × N pressure field PM+(x, y) right behind the metalens. It can be obtained by the element-wise multiplication 
of the N × N  array PM−

(

x, y
)

 and the N × N  array exp
(

iφdiscretized

)

 , where φdiscretized is the discretized phase 
profile of the metalens after interpolating each phase shift value to the closest available phase data from the unit 
cell simulations. Subsequently, the N × N output pressure field array PO(u, v) is obtained by using FFT-based 
convolution to convolve the zero-padded array PM+(x, y) with the convolution kernel

Finally, the UFT result is obtained by multiplying the N × N pressure field array Po(u, v) at the observation 
plane by the correction factor α = −j�f exp

(

2jkf
)

.
See Supplementary Information for the full derivation, which is partly the independent work of the authors.

Simulation parameters.  Choosing the appropriate values of the simulation parameters is important as 
this affects the accuracy of the UFT as well as the design of the physical system to be fabricated.

The selection of simulation parameters is a three-step process. Firstly, as required by convolution47, the spac-
ing � between the sampled points of the pressure fields in the source, metalens and observation planes must be 
the same as the spacing between adjacent metalens unit cells. Secondly, depending on the specific application 
for which the UFT-ACS is being used, an appropriate length L for the source, metalens and observation planes 
must be chosen. Zero padding must be moderate; truncation and bandlimiting must be done appropriately such 
that the significant space and spatial frequency components are within the sampled array bounds. Thirdly, the 
focal length f  must satisfy

which is derived from a consideration of the sampling requirements of the convolution kernels’ exponential 
phase term36,44–48. A detailed explanation for each step is offered in the Supplementary Information. Table 3 
summarizes the values of the simulations’ parameters.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.

Received: 18 June 2022; Accepted: 30 September 2022

References
	 1.	 Zangeneh-Nejad, F., Sounas, D. L., Alù, A. & Fleury, R. Analogue computing with metamaterials. Nat. Rev. Mater. 6, 207–225 

(2020).
	 2.	 Cheng, K. et al. Optical realization of wave-based analog computing with metamaterials. Appl. Sci. 11, 141 (2020).
	 3.	 Zangeneh-Nejad, F. & Fleury, R. Performing mathematical operations using high-index acoustic metamaterials. New J. Phys. 20, 

073001 (2018).
	 4.	 Hwang, J., Davaji, B., Kuo, J. & Lal, A. Focusing profiles of planar Si-SiO2 metamaterial ghz frequency ultrasonic lens. In 2021 

IEEE International Ultrasonics Symposium (IUS) 1–4 (IEEE, 2021). https://​doi.​org/​10.​1109/​IUS52​206.​2021.​95935​77.
	 5.	 MacLennan, B. J. The promise of analog computation. Int. J. Gen Syst 43, 682–696 (2014).
	 6.	 Cordaro, A. et al. High-index dielectric metasurfaces performing mathematical operations. Nano Lett. 19, 8418–8423 (2019).
	 7.	 Abdollahramezani, S., Chizari, A., Dorche, A. E., Jamali, M. V. & Salehi, J. A. Dielectric metasurfaces solve differential and integro-

differential equations. Opt. Lett. 42, 1197 (2017).
	 8.	 Rajabalipanah, H., Momeni, A., Rahmanzadeh, M., Abdolali, A. & Fleury, R. A single metagrating metastructure for wave-based 

parallel analog computing. arXiv:​2110.​07473 [physics] (2021).

(5)h1(ξ , η) =
jexp

(

−jk
√

f 2+ξ2+η2
)

�

√
f 2+ξ2+η2

.

(6)h2
(

x, y
)

=
(

1√
f 2+x2+y2

+ jk

)

f exp
(

−jk
√

f 2+x2+y2
)

2π(f 2+x2+y2)
.

(7)f ≥
√

[

2(L−�)�
�

]2
− (L−�)2,

Table 3.   Summary of parameter values.

Parameter Value

� 3 µm

L 771 µm

fwave 1.7 GHz

vwave 5880 m s-1

f 1088.6 µm

https://doi.org/10.1109/IUS52206.2021.9593577
http://arxiv.org/abs/2110.07473


8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17124  | https://doi.org/10.1038/s41598-022-21753-9

www.nature.com/scientificreports/

	 9.	 Zuo, S., Wei, Q., Tian, Y., Cheng, Y. & Liu, X. Acoustic analog computing system based on labyrinthine metasurfaces. Sci. Rep. 8, 
1 (2018).

	10.	 Silva, A. et al. Performing mathematical operations with metamaterials. Science 343, 160–163 (2014).
	11.	 Youssefi, A., Zangeneh-Nejad, F., Abdollahramezani, S. & Khavasi, A. Analog computing by Brewster effect. Opt. Lett. 41, 3467 

(2016).
	12.	 Barrios, G. A., Retamal, J. C., Solano, E. & Sanz, M. Analog simulator of integro-differential equations with classical memristors. 

Sci. Rep. 9, 1 (2019).
	13.	 AbdollahRamezani, S., Arik, K., Khavasi, A. & Kavehvash, Z. Analog computing using graphene-based metalines. Opt. Lett. 40, 

5239 (2015).
	14.	 Sihvola, A. Enabling optical analog computing with metamaterials. Science 343, 144–145 (2014).
	15.	 Zhou, Y. et al. Analog optical spatial differentiators based on dielectric metasurfaces. Adv. Opt. Mater. 8, 1901523 (2019).
	16.	 Kou, S. S. et al. On-chip photonic Fourier transform with surface plasmon polaritons. Light Sci. Appl. 5, 16034 (2016).
	17.	 Caulfield, H. J. & Dolev, S. Why future supercomputing requires optics. Nat. Photon. 4, 261–263 (2010).
	18.	 Zhou, Y., Zheng, H., Kravchenko, I. I. & Valentine, J. Flat optics for image differentiation. Nat. Photon. 14, 316–323 (2020).
	19.	 Bykov, D. A., Doskolovich, L. L., Bezus, E. A. & Soifer, V. A. Optical computation of the Laplace operator using phase-shifted Bragg 

grating. Opt. Express 22, 25084 (2014).
	20.	 Karimi, P., Khavasi, A. & Mousavi Khaleghi, S. S. Fundamental limit for gain and resolution in analog optical edge detection. Opt. 

Express 28, 898 (2020).
	21.	 Lv, Z., Ding, Y. & Pei, Y. Acoustic computational metamaterials for dispersion Fourier transform in time domain. J. Appl. Phys. 

127, 123101 (2020).
	22.	 Liu, Y., Kuo, J., Abdelmejeed, M. & Lal, A. Optical measurement of ultrasonic fourier transforms. In 2018 IEEE International 

Ultrasonics Symposium (IUS) 1–9 (2018). https://​doi.​org/​10.​1109/​ULTSYM.​2018.​85799​38.
	23.	 Hwang, J., Kuo, J. & Lal, A. Planar GHz ultrasonic lens for fourier ultrasonics. In 2019 IEEE International Ultrasonics Symposium 

(IUS) 1735–1738 (2019). https://​doi.​org/​10.​1109/​ULTSYM.​2019.​89256​62.
	24.	 Hwang, J., Davaji, B., Kuo, J. & Lal, A. Planar lens for GHz fourier ultrasonics. In 2020 IEEE International Ultrasonics Symposium 

(IUS) 1–4 (2020). https://​doi.​org/​10.​1109/​IUS46​767.​2020.​92516​14.
	25.	 Kwon, H., Sounas, D., Cordaro, A., Polman, A. & Alù, A. Nonlocal metasurfaces for optical signal processing. Phys. Rev. Lett. 121, 

173004 (2018).
	26.	 Zuo, S.-Y., Wei, Q., Cheng, Y. & Liu, X.-J. Mathematical operations for acoustic signals based on layered labyrinthine metasurfaces. 

Appl. Phys. Lett. 110, 011904 (2017).
	27.	 Zuo, S.-Y., Tian, Y., Wei, Q., Cheng, Y. & Liu, X.-J. Acoustic analog computing based on a reflective metasurface with decoupled 

modulation of phase and amplitude. J. Appl. Phys. 123, 091704 (2018).
	28.	 Lv, Z., Liu, P., Ding, Y., Li, H. & Pei, Y. Implementing fractional Fourier transform and solving partial differential equations using 

acoustic computational metamaterials in space domain. Acta. Mech. Sin. https://​doi.​org/​10.​1007/​s10409-​021-​01139-2 (2021).
	29.	 MohammadiEstakhri, N., Edwards, B. & Engheta, N. Inverse-designed metastructures that solve equations. Science 363, 1333–1338 

(2019).
	30.	 Zhu, T. et al. Plasmonic computing of spatial differentiation. Nature Commun. 8, 1 (2017).
	31.	 Zangeneh-Nejad, F. & Fleury, R. Topological analog signal processing. Nature Commun. 10, 1 (2019).
	32.	 Abdollahramezani, S., Hemmatyar, O. & Adibi, A. Meta-optics for spatial optical analog computing. Nanophotonics 9, 4075–4095 

(2020).
	33.	 Solli, D. R. & Jalali, B. Analog optical computing. Nat. Photon. 9, 704–706 (2015).
	34.	 Guo, C., Xiao, M., Minkov, M., Shi, Y. & Fan, S. Photonic crystal slab Laplace operator for image differentiation. Optica 5, 251 

(2018).
	35.	 Macfaden, A. J., Gordon, G. S. D. & Wilkinson, T. D. An optical Fourier transform coprocessor with direct phase determination. 

Sci. Rep. 7, 1 (2017).
	36.	 Goodman, J. W. Introduction to Fourier Optics (W. H. Freeman and Company, Hoboken, 2017).
	37.	 James, J. F. A Student’s Guide to Fourier Transforms: With Applications in Physics and Engineering (Cambridge University Press, 

Cambridge, 2015).
	38.	 Oran Brigham, E. The Fast Fourier Transform and its Applications (Prentice Hall, Hoboken, 1988).
	39.	 Stark, H. Applications of Optical Fourier Transforms (Academic Press, Cambridge, 1982).
	40.	 Juvells, I., Vallmitjana, S., Carnicer, A. & Campos, J. The role of amplitude and phase of the Fourier transform in the digital image 

processing. Am. J. Phys. 59, 744–748 (1991).
	41.	 Gonzalez, R. C. & Woods, R. E. Digital Image Processing (Pearson, London, 2018).
	42.	 Duffieux, P. M. The Fourier Transform and its Applications to Optics (Wiley, Hoboken, 1983).
	43.	 Beekes, M., Lasch, P. & Naumann, D. Analytical applications of Fourier transform-infrared (FT-IR) spectroscopy in microbiology 

and prion research. Vet. Microbiol. 123, 305–319 (2007).
	44.	 Voelz, D. G. Computational Fourier Optics: A MATLAB Tutorial (Spie Press, Bellingham, 2010).
	45.	 Voelz, D. G. & Roggemann, M. C. Digital simulation of scalar optical diffraction: Revisiting chirp function sampling criteria and 

consequences. Appl. Opt. 48, 6132 (2009).
	46.	 Zhang, H., Zhang, W. & Jin, G. Adaptive-sampling angular spectrum method with full utilization of space-bandwidth product. 

Opt. Lett. 45, 4416–4419 (2020).
	47.	 Zhang, W., Zhang, H., Sheppard, C. J. R. & Jin, G. Analysis of numerical diffraction calculation methods: From the perspective of 

phase space optics and the sampling theorem. J. Opt. Soc. Am. A 37, 1748 (2020).
	48.	 Zhang, W., Zhang, H. & Jin, G. Frequency sampling strategy for numerical diffraction calculations. Opt. Express 28, 39916 (2020).
	49.	 Riley, K. F. & Hobson, M. P. Mathematical Methods for Physics and Engineering: A Comprehensive Guide (Cambridge University 

Press, Cambridge, 2008).

Author contributions
R.F.U. planned the research project, mathematically modeled the ultrasonic Fourier transform, carried out the 
simulations, and analyzed the data. B.V.P. initiated the project and supervised R.F.U. Both authors reviewed the 
manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​21753-9.

https://doi.org/10.1109/ULTSYM.2018.8579938
https://doi.org/10.1109/ULTSYM.2019.8925662
https://doi.org/10.1109/IUS46767.2020.9251614
https://doi.org/10.1007/s10409-021-01139-2
https://doi.org/10.1038/s41598-022-21753-9
https://doi.org/10.1038/s41598-022-21753-9


9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17124  | https://doi.org/10.1038/s41598-022-21753-9

www.nature.com/scientificreports/

Correspondence and requests for materials should be addressed to R.F.U.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A metalens-based analog computing system for ultrasonic Fourier transform calculations
	Results
	The Ultrasonic Fourier Transform Analog Computing System (UFT-ACS). 
	Design of the UFT-ACS. 
	UFT of various input functions. 
	Optimization of accuracy. 
	Zero padding. 
	Truncation and bandlimiting. 


	Discussion
	Methods
	Ultrasonic metalens designing process. 
	Wave propagation simulations. 
	Simulation parameters. 

	References


