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Adaptive‑mixture‑categorization 
(AMC)‑based g‑computation 
and its application to trace element 
mixtures and bladder cancer risk
Siting Li1, Margaret R. Karagas2, Brian P. Jackson3, Michael N. Passarelli2* & Jiang Gui4*

Several new statistical methods have been developed to identify the overall impact of an exposure 
mixture on health outcomes. Weighted quantile sum (WQS) regression assigns the joint mixture effect 
weights to indicate the overall association of multiple exposures, and quantile‑based g‑computation 
is a generalized version of WQS without the restriction of directional homogeneity. This paper 
proposes an adaptive‑mixture‑categorization (AMC)‑based g‑computation approach that combines 
g‑computation with an optimal exposure categorization search using the F statistic. AMC‑based 
g‑computation reduces variance within each category and retains the variance between categories 
to build more powerful predictors. In a simulation study, the performance of association analysis was 
improved using categorizing by AMC compared with quantiles. We applied this method to assess the 
association between a mixture of 12 trace element concentrations measured from toenails and the risk 
of non‑muscle invasive bladder cancer. Our findings suggested that medium‑level (116.7–145.5 μg/g) 
vs. low‑level (39.5–116.2 μg/g) of toenail zinc had a statistically significant positive association with 
bladder cancer risk.

Mixture analysis is commonly used in environmental epidemiology. Several studies have analyzed the association 
between a health outcome and a specific mixture, including the mixture of air pollutants (e.g.  PM2.5,  NO2)1,2, 
the mixture of persistent organic pollutants (POPs)3,4, and the mixture of per- and polyfluoroalkyl substances 
(PFAS)5,6. Since humans are exposed to multifarious mixtures of chemical elements via air, soil, food, and 
water, the joint effect of a mixture of chemical elements may better reflect the “real world” scenario. Analyses 
accounting for diverse mixtures of chemical elements could lead to a more comprehensive risk assessment than 
single-element  approaches7.

Weighted quantile sum (WQS)  regression8 is a popular method for assessing the association between mixture 
of exposures and health outcome. WQS defined the index of the overall mixture as a weighted linear combination 
of all exposures. Then it applies a weighted index  model9 to estimate the mixture effect. A limitation of WQS 
regression is that it assumes all associations are in the same direction (i.e., exposures in a mixture are either all 
positively or all negatively associated with the outcome). To overcome this limitation, Keil et al. developed an 
alternative method called quantile-based g-computation for mixture analysis that eliminates the restriction of 
directional  homogeneity10. Like WQS, quantile-based g-computation first transforms the exposures into quan-
tiles and uses generalized linear model to estimate the exposure effects in reference to the lowest quantile. If all 
the exposure effects are either all positive or all negative, then quantile-based g-computation is asymptotically 
equivalent to WQS. Otherwise, it redefines the weights to be positive and negative weights. In the way, both 
directions are taken into consideration. In contrast to WQS which estimates weights that sum to one within each 
bootstrapping, quantile-based g-computation permits positive weights and negative weights to both sum to one.

Both WQS regression and quantile-based g-computation transform the continuous mixture variables into 
quantiles (default setting) which is a common practice in epidemiology to account for a pre-specified nonlinear 
relationships between the exposures and  outcome11. The categorization can reduce the impact of outliers and 
make the regression analysis more robust compared to continuous exposures and can enhance the interpretability 
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of regression coefficients. However, this approach is not flexible because it uses fixed percentiles of the data as 
the cutoffs, which may not be the optimal categorization minimizing the variance within each category. In real 
data analysis, it is not always apparent without examining the distribution of each exposure to determine the 
most appropriate number of categories to use. In this paper, we propose the adaptive-mixture-categorization 
(AMC)-based g-computation approach, which utilizes a general F-statistic and a linear search strategy to opti-
mally categorize the exposures based on its variation. By maximizing the F-statistic during the categorization, 
AMC minimizes the within-category variation and maximizes the between-category variation to improve the 
accuracy for variable selection. G-computation is then applied to the AMC-categorized exposures to estimate the 
mixture effect. This AMC-based g-computation approach, which does not fix cutoff percentiles nor the number 
of categories, is more flexible than quantile-based g-computation.

In real data analysis, we applied our approach to toenail trace element mixture data from the New Hampshire 
Bladder Cancer Study. In the United States, bladder cancer is the fourth most common malignancies among 
 men12,13. Worldwide, there are approximately 430,000 incidents of bladder cancer and 165,000 deaths from blad-
der cancer per  year14. Toxic element exposure is a well-known risk factor for bladder cancer, but most studies 
consider one element at a  time15,16. For example, an age- and sex-matched case–control study from New England 
found low-to-moderate levels of arsenic from drinking water was associated with higher bladder cancer  risk15. 
Few previous studies have evaluated the association between trace element mixtures and bladder cancer. This 
study was designed to bridge this gap using a novel mixture method.

Results
Comparisons of methods on simulated datasets. The first simulation compared the performance of 
AMC-based g-computation, quantile-based g-computation and WQS by calculating the estimation bias of the 
mixture effect. We simulated each exposure from a mixture of four normal distributions, with both equal (sce-
narios 1 and 2) and unequal proportions (scenarios 3 and 4) of distribution. As shown in Fig. 1, for scenario 1, 
WQS, quantile-based g-computation and AMC-based g-computation achieved similar absolute value of average 
bias across the 1000 simulations. For scenario 2, AMC-based g-computation and quantile-based g-computation 
both had good effect estimates with a very small average bias, while WQS generated a large positive average bias 
of the joint mixture effect because the directional homogeneity assumption was not valid. For scenarios 3 and 
4, when the distribution proportions were unequal, AMC-based g-computation achieved the smallest average 
bias among all three methods. In scenario 4, WQS generated a large bias again because the exposure effects were 
not in the same direction. Relative to using fixed quantiles, AMC improved the performance of the joint effect 
estimate by categorizing more exposures into the correct hidden state rather than categorizing them by fixed 
percentiles. Overall, quantile-based g-computation outperformed WQS because of its capability to account for 
bidirectional effect estimates, but AMC-based g-computation still achieved the smallest average bias in all cases.

The second simulation evaluated the variable-selection performance by calculating the True Positive Rate 
(TPR) of identifying the correct causal variables. We assessed both monotonic effects (Table 1) and non-mono-
tonic effects (Table 2). Each simulation was repeated 1000 times to calculate the average TPR. The average TPRs 
of AMC-based g-computation were the highest among all scenarios. They were 2–3% higher than quantile-
based g-computation under monotonic effects, showing that categorization by AMC could improve the variable-
selection performance. Quantile-based g-computation performed satisfactorily by using ordinal variables that 
maintained the order of the continuous raw data. WQS assigned all exposures with positive weights because the 
joint mixture effect was positive, which led to the lowest TPRs among the three methods. Increasing the sample 
size n or decreasing the number of exposures m could achieve a higher TPR. AMC-based g-computation greatly 

Figure 1.  The estimate bias of the mixture effect. Bias = ψestimate − ψtrue . ψ was the effect of the mixture. 
Bias was calculated across 1000 simulations. The sample size of each exposure was 200. For more details of 
the meaning for parameters and simulation design, please refer to the “Methods and materials”. Scenario 1: 
Equal proportions: αj0 = αj1 = αj2 = αj3 = 0.25 ; Effects are both positive: β1 = β2 = 0.5 ; ψtrue = 1 Scenario 
2: Equal proportions: αj0 = αj1 = αj2 = αj3 = 0.25 ; Effects are positive and negative:β1 = 1.5, β2 = −0.5 ; 
ψtrue = 1 Scenario 3: Unequal proportions: αj0 = 0.4, αj1 = 0.3, αj2 = 0.2, αj3 = 0.1 ; Effects are both positive: 
β1 = β2 = 0.5 ; ψtrue = 1 Scenario 4: Unequal proportions: αj0 = 0.4, αj1 = 0.3, αj2 = 0.2, αj3 = 0.1 ; Effects 
are positive and negative: β1 = 1.5, β2 = −0.5 ; ψtrue = 1
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outperforms WQS and quantile-based g-computation when the effects are non-monotonic. In addition, the aver-
age False Positive Rates (FPRs) of AMC-based g-computation were the lowest in all scenarios under monotonic 
or non-monotonic effects (Supplementary Table 5).

Application to toenail trace element mixture data from the New Hampshire Bladder Cancer 
Study. We applied AMC-based g-computation to identify the associations between the mixture of 12 toenail 
trace elements and the risk of non-muscle invasive bladder cancer (NMIBC). As shown in Table 3, NMIBC cases 
and controls were similar with regard to the matching factors (age and gender). Most cases and controls were 
men, consistent with what is known about the gender-specific incidence of bladder  cancer17–19. Cases were more 
likely to be smokers (including former and current smokers), less likely to complete a higher education, and 
more likely to have high-risk occupations than controls. The mean and median of toenail trace element concen-
trations for cases and controls are provided in Supplementary Table 1.

For consistent interpretation, we set the number of categorizations to be 3 so that each element was grouped 
into high, medium, and low levels by AMC. AMC-based g-computation was applied to log-transformed toenail 
trace element concentrations. Because the distributions of the toenail trace element exposures were right-skewed 

Table 1.  Average True Positive Rates (TPRs) of the three methods under monotonic effects. Average TPR was 
calculated across 1000 simulations; m was the number of exposures; n was the sample size.

m = 30 m = 50

n = 500 n = 1000 n = 1500 n = 500 n = 1000 n = 1500

AMC-based g-computation 72.2% 87.9% 94.8% 63.7% 82.0% 92.1%

Quantile-based g-computation 69.9% 85.9% 93.3% 60.9% 79.6% 89.6%

WQS 51.1% 65.2% 73.6% 39.3% 54.5% 64.4%

Table 2.  Average True Positive Rates (TPRs) of the three methods under non-monotonic effects. Average TPR 
was calculated across 1000 simulations; m was the number of exposures; n was the sample size.

m = 10 m = 20

n = 500 n = 1000 n = 1500 n = 500 n = 1000 n = 1500

AMC-based g-computation 78.0% 84.1% 86.6% 72.8% 82.6% 86.0%

Quantile-based g-computation 16.6% 14.4% 11.9% 15.4% 14.7% 12.5%

WQS 17.8% 17.0% 15.2% 15.8% 17.0% 15.4%

Table 3.  Demographics of participants, New Hampshire Bladder Cancer Study, 2002–2004a. a Participants 
were 265 non-muscle invasive bladder cancer (NMIBC) cases and 353 controls of the New Hampshire 
Bladder Cancer Study. b “Former smokers” quit smoking more than 1 year before they were diagnosed as cases 
or selected as controls. c “Current smokers” still smoked or quit smoking less than 1 year before they were 
diagnosed as cases or selected as controls.

NMIBC cases (N = 265) Controls (N = 353)

Age

Mean (SD) 65.1 (10.3) 64.6 (10.6)

Gender

Male 193 (72.8%) 253 (71.7%)

Female 72 (27.2%) 100 (28.3%)

Smoking

Non-smoker 41 (15.5%) 137 (38.8%)

Former  smokerb 144 (54.3%) 165 (46.7%)

Current  Smokerc 80 (30.2%) 51 (14.4%)

Education

High School 120 (45.3%) 132 (37.4%)

College 107 (40.4%) 155 (43.9%)

Postgraduate 38 (14.3%) 66 (18.7%)

Occupation

High Risk 133 (50.2%) 112 (31.7%)

Low Risk 132 (49.8%) 241 (68.3%)
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even after log-transformation, there is a possibility that only a few extreme large values may be grouped into the 
high-level category, leading to reduced statistical power. For this analysis, we required that no category would 
be assigned less than 10% of the total samples size among cases and controls combined. When applying g-com-
putation, we used dummy variables to allow for a nonlinear exposure-outcome relationship. The cut points and 
sample sizes in each exposure level are shown in Supplementary Table 2. We bootstrapped the original dataset 
1000 times and repeated g-computation to estimate a 95% confidence interval (CI).

The weights for each level of exposures from AMC-based g-computation with covariate adjustment and their 
95% CIs are shown in Fig. 2 and Supplementary Table 3. The reference category for each element was the low-level 
category. The weights for the medium-level and high-level categories of each element were observed to differ in 
magnitude, but most were in the same direction. Toenail arsenic, selenium, aluminum, iron, nickel, and copper 
had positive weights in both medium- and high-level categories, while vanadium, manganese, cadmium, and lead 
had negative weights in both medium- and high-level categories. The medium-level vs. low-level of toenail zinc 
had a statistically significant positive association with bladder cancer risk (w = 0.172; 95% CI 0.016 to 0.254). No 
statistically significant associations were identified for other trace elements. The joint mixture effect (ψ = 0.633; 
95% CI − 1.40 to 1.04; equivalent to the odds ratio OR = 1.88; 95% CI 0.25 to 2.83) suggested no statistically 
significant overall association between the toenail trace element mixture and risk of NMIBC.

Discussion
We proposed AMC-based g-computation to provide a more flexible categorization approach than quantile-
based g-computation and WQS. Our simulation study demonstrates that AMC-based g-computation reduces 
bias in coefficient estimation and improves accuracy in variable selection. Our proposed method uses empiri-
cal thresholds to categorize the data and maximize the between-group variance, thus minimizing information 
loss. AMC-based g-computation performed better than quantile-based g-computation and WQS at estimating 
the joint mixture effect by offering flexible, data-adaptable thresholds for categorization while still accounting 
for direction of effects. When the directional homogeneity assumption does not hold, both AMC-based and 
quantile-based g-computation greatly outperforms WQS, which does not account for direction of effects. We 
also found that our method outperformed the other two methods in variable selection. A potential drawback of 
our method is that the number of categories k may not be the global convex minimizing the p-value of F-test. 
In its current implementation, we restrict k ≤ 10 to limit the computational burden. K-means can be a viable 
alternative to linear search categorization. AMC procedure has a built-in procedure to select the value of k based 
on the p-value of F-test. However, in real data analysis, when exposures are categorized into different number of 
groups it may be difficult to interpret the finding. Therefore, we fixed k to be 3 in the analysis of trace elements 
and bladder cancer risk.

The association between trace element concentrations and the health outcomes can be complex and nonlinear. 
The human body needs essential trace elements to maintain cellular functions, but excess levels can be  toxic20–22. 

Figure 2.  Weights and 95% confidence intervals of toenail trace element exposures in the AMC-based 
g-computation model adjusted for age, gender, smoking, education, and high-risk occupation. Low, medium, 
and high levels were categorized by AMC. Trace elements were transformed to dummy variables with the low-
level set as the reference category. Weights were calculated by g-computation using R package “qgcomp”. 95% CIs 
were calculated by bootstrapping the original dataset 1000 times and performing repeated g-computation. All 
models adjusted for age, gender, smoking, education, and high-risk occupation. Positive weights and negative 
weights together sum to one.
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In addition, associations can be stronger in a certain range of concentration but weaker outside that range. For 
example, a study reported toenail arsenic exposure has an inverse association with BMI comparing the 3rd 
quartile vs. the 1st quartile, but not for the 4th  quartile23. Therefore, we applied AMC-based g-computation to 
detect a possible nonlinear relationship between exposure and outcome.

Previous studies have reported on the association between toenail elements and bladder cancer  risk24,25. A 
study in  Finland25 reported no association between toenail selenium concentration and bladder cancer. In con-
trast to our findings, a Netherlands Cohort  Study24 identified an inverse association between toenail selenium and 
bladder cancer risk. A possible reason for the inconsistency with our findings is the very different overall distri-
bution of selenium. In the Netherlands study, the 1st quintile of toenail selenium concentration was ≤ 0.483 μg/g 
and the 5th quintile was > 0.630 μg/g. However, in the New Hampshire Bladder Cancer Study toenail selenium 
concentration was much higher, the 1st quintile was ≤ 0.781 μg/g and 5th quintile was > 1.036 μg/g. In fact, this 
difference in distribution makes the results incomparable given that the selenium concentration in the 1st quin-
tile (reference level) of the New Hampshire study was higher than the 5th quintile of the Netherlands study. The 
Netherlands study reported that their covariate-adjusted incidence rate ratios (RR) were 1.09, 0.55, 0.63 and 0.67 
respectively for 2nd–5th quintiles vs. 1st quintile, with 0.55, 0.63 and 0.67 being statistically significant, suggesting 
an inverse, but possibly non-linear association. Other reasons for the inconsistency could be the different study 
periods and geographic locations, different measurement techniques, measurement errors, statistical methods, 
and choices for covariate adjustment.

Our mixture analysis found no statistically significant association between the toenail trace elements as a 
mixture and bladder cancer risk, but did suggest higher zinc may be associated with an increased risk. The weight 
for medium-level zinc (116.7–145.5 μg/g) vs. low-level zinc (39.5–116.2 μg/g) was positively associated with blad-
der cancer risk, which is consistent with previous studies of urinary  zinc20,26,27, but in the opposite direction of 
previous studies of serum  zinc26,28,29. Previous studies have observed that high arsenic concentration in drinking 
water is associated with higher bladder cancer  risk15,30,31, yet studies of toenail arsenic have reported no associa-
tion with bladder cancer  risk32 or associations only in subgroups such as  smokers33. Different substrates could 
also lead to varying results. Longnecker et al. observed that the Pearson correlation between dietary selenium 
intake and biomarkers in descending order were urine, whole blood, serum, and  toenail34.

Relaxing the requirement for directional homogeneity enables assessment of more diverse mixtures. Dif-
ferent components of a mixture can have different directions of effect on a health outcome. For example, total 
cholesterol in blood is a mixture, with high low-density lipoprotein (LDL) cholesterol associated with increased 
risk of coronary heart disease (CHD) risk and high high-density lipoprotein (HDL) cholesterol associated with 
decreased CHD  risk35–37. Furthermore, each exposure within a mixture can have non-linear relationship with 
the outcome. We used dummy variables to allow for a nonlinear exposure-outcome relationship in our real data 
analysis. We observed an inverted U-shaped relationship between toenail zinc concentrations and risk of non-
muscle invasive bladder cancer: relative to low-level zinc, medium-level zinc had a statistically significant positive 
association (β = 0.17; 95% CI 0.02 to 0.25), but an inverse association that was not significant for high-level zinc 
(β = − 0.30; 95% CI − 0.41 to 0.01). A biological mechanism for this inverted U-shaped relationship is unclear.

Further studies are required to confirm this finding and clarify a functional role of zinc in bladder cancer 
development. Among the study limitations, longitudinal pre-diagnostic concentrations of trace elements were 
not available, and we cannot exclude the possibility that observed exposure levels were caused by the disease 
itself or post-diagnosis treatment. A cohort study or nested case–control study design would help ensure that 
trace element exposures were measured prior to diagnosis or the onset of preclinical  disease38,39.

In summary, we proposed an adaptation to the method of quantile-based g-computation that categorizes 
exposures based on the observed within and between category variance to improve mixture effect estimation 
performance and variable selection. We applied AMC-based g-computation to toenail trace element data from 
the New Hampshire Bladder Cancer Study, and it can be applied to investigate the association between mixtures 
and other diseases, such as lung cancer, breast cancer and neurodegenerative diseases. This method may help 
unveil the complex relationship between mixture and health outcomes.

Methods and materials
Loss function for categorization. Without loss of generality, suppose that there are n observations 
for each exposure. For a given category number k ≥ 2 , let f (n, k) denote the categorization which classi-
fies n observations of an exposure variable into k categories (C1, . . . ,Ck) . Let C1 =

{

X11, X12, . . . ,X1n1

}

 , 
C2 =

{

X21, X22, . . . ,X2n2

}

,…, Ck =
{

Xk1, Xk2, . . . ,Xknk

}

 , where n1 + n2 · · · + nk = n. The goal is to identify 
the categorization rule f (n, k) that minimizes the within-category variation and maximizes the between-cate-
gory variation. Here, we propose to employ the F-statistic40,41 as the criterion function and define the loss func-
tion as the reciprocal of the F-statistic:

w h e re  Variationwithin =
∑k

i=1

∑ni
j=1

(

Xij − Xi

)2
,  d e n o t i n g  t h e  w i t h i n - c at e g o r y  v a r i a t i o n ; 

Variationbetween =
∑k

i=1 ni
(

Xi − X
)2 , denoting the between-category variation; the mean of the ith category 

is denoted by Xi , and the mean over all categories is denoted by X  . We can get the optimal categorization by 
minimizing this loss function. Note that optimal categorization refers to exposure variation and not necessarily 
optimal estimation of the mixture effect.

L
(

f (n, k)
)

=
Variationwithin/(n− k)

Variationbetween/(k − 1)
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Increase categories by linear search. When categorizing the n observations into k categories an exhaus-
tive search identifying all possible classifications can lead to computational complexity given by the combination 
formula:

The computational complexity will become extremely large when the sample size n is large. To apply this 
method in an efficient way, we increase k by linear search, which has lower computational complexity, k(n− 1), 
compared to the exhaustive search. In this way, the algorithm will first set k = 2 for a dichotomous categoriza-
tion. Fixing this initial boundary, we will continue to find another boundary for k = 3 , and so on. In general, 
the kth category will be defined based on fixing the previous k − 1 categories. As the number of categories k is 
unknown, we can select an appropriate k that minimizes the p-value from the F test. The degree of freedom of 
the F test will be used to account for the number of categories k. After we determined the optimal thresholds 
using AMC, we implement g-computation to estimate the joint mixture effect using the R package ‘qgcomp’10.

To demonstrate the steps of our method, consider an example of categorizing a variable with 16 observations 
as displayed in Fig. 3:

1. Starting with k = 2 , we sort the data, exhaustively divide the sorted data into two categories, and calculate 
the loss function. The optimal categorization is the one with the smallest loss function.

2. Increase k by 1. Keep the cutoff from previous step(s) and search for another cutoff that minimizes the 
loss function.

3. Repeat the previous step until the increase of k does not result in a p-value for the F test that continues to 
decrease. The k that minimizes the p-value of F test will be our final choice. We do not consider k > 10 to limit 
the computational burden.

In Fig. 3, the p-value of F-test decreases when increasing k from 2 to 3, but it increases after increasing k to 
4, so AMC will divide this example into 3 categories. The above steps are used to categorize exposure variables, 
where F-test is applied to a single exposure each time and then applied sequentially to every exposure. Next, 
g-computation is employed to estimate the mixture effect.

Simulation. We performed two simulations to evaluate the bias in estimating the overall mixture effect and 
the accuracy to identify the true predictors.

In the first simulation, we evaluated the performance of the three methods (AMC-based g-computation, 
quantile-based g-computation, and WQS) when the number of exposures and sample size varies. We simulated 
data with a total of m continuous exposures each with n sample size and set m equal to 5, and n equal to 200. 
Let Zj

(

1 ≤ j ≤ m
)

 represent the latent-state factor corresponding to the jth exposure Xj , and each exposure has 
4 hidden states as follows:

Assume the probability of each hidden state is α =
(

αj0, αj1, αj2, αj3
)

, where 0 < αj0, αj1, αj2, αj3 < 1, and 
αj0 + αj1 + αj2 + αj3 = 1. Zj is generated from a multinomial distribution with parameters n and α . The value of 
Xj is simulated from a mixture of normal distributions fj0, fj1, fj2, fj3 corresponding to the normal distribution 
at each hidden state, Xj ∼ αj0fj0 + αj1fj1 + αj2fj2 + αj3fj3.

Among the m simulated exposures, assume only X1 , X2 have effect on the outcome while X3, . . . ,Xm do not. 
The outcome Y is generated by the latent states Z1 and Z2 using the formula below:

where ε ∼ N(0, 1) . The joint mixture effect is defined as ψ = β1 + β2.
We compared the bias of the estimated joint mixture effect among the three methods, where this bias is 

defined as ψestimate − ψtrue . The simulation was repeated 1000 times to calculate the average bias for each method. 
Parameters were set to be fj0 = N

(

1, 0.332
)

, fj1 = N
(

2, 0.332
)

, fj2 = N
(

3, 0.332
)

, fj3 = N
(

4, 0.332
)

 . We used 
equal proportions for the four distributions and set the parameters to be αj0 = αj1 = αj2 = αj3 = 0.25 (Scenarios 

(

n− 1

k − 1

)

=
(n− 1)(n− 2) · · · (n− k + 1)

(k − 1)(k − 2) · · · 1

(

Zj0, Zj1, Zj2, Zj3
)

= (0, 1, 2, 3)

Y = β1Z1 + β2Z2 + ε

0.1   0.1   0.1   0.2   0.2   0.2   0.2   0.4   0.4   0.7   0.8   0.8   0.9   1.1   1.8   2.2

0.1   0.1   0.1   0.2   0.2   0.2   0.2   0.4   0.4   0.7   0.8   0.8   0.9   1.1   1.8   2.2

0.1   0.1   0.1   0.2   0.2   0.2   0.2   0.4   0.4   0.7   0.8   0.8   0.9   1.1   1.8   2.2 p = 3.1e-05

p = 2.6e-09

p = 3.2e-09

After categorization: 1   1   1   1   1   1   1   1   1   2   2   2   2   2   3   3

k=2

k=3

k=4

Before categorization:

Figure 3.  Overview of AMC procedure.
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1 and 2 in Fig. 1). We also used unequal proportions with αj0 = 0.4, αj1 = 0.3, αj2 = 0.2, αj3 = 0.1 (Scenarios 
3 and 4). As for directions of exposure effects, we considered two scenarios: (1) Effects are both positive, set 
β1 = β2 = 0.5 ; ψtrue = 1 ; (2) Effects are positive and negative, set β1 = 1.5, β2 = −0.5 ; ψtrue = 1.

In the second simulation, parameters were set to be αj0 = 0.4, αj1 = 0.3, αj2 = 0.2, αj3 = 0.1; 
fj0 = N

(

1, 0.332
)

, fj1 = N
(

2, 0.332
)

, fj2 = N
(

3, 0.332
)

, fj3 = N
(

4, 0.332
)

 , and sample size n equals to 500, 1000 
or 1500. First, in a simulation of monotonic exposure effects, we assumed the outcome Y was associated with the 
first 10 exposures and was defined by the linear sum of their latent states:

where ε ∼ N(0, 1), β1 = β2 = β3 = β4 = β5 = β6 = β7 = 0.1, and β8 = β9 = β10 = −0.1. The true joint expo-
sure effect ψtrue equals 0.4 by  definition10. We set the total number of exposures m equal to 30 or 50. We applied 
the three methods on the simulated data to calculate the exposure weights for X1, X2, . . . ,Xm. The weights were 
sorted in descending order. For the positive weights, we counted the number of X1–X7 if they were among the 
largest 7 weights and denoted this count as TP1. For the negative weights, we counted the number of X8–X10 if 
they were among the smallest 3 weights and denoted this count as TP2. We used true positive rate (TPR) as the 
criterion of variable-selection performance, defined as TPR = TP/P . Here, TP = TP1 + TP2 , represents the 
number of correctly-identified variables and P equals 10, representing the number of true exposures.

Second, we simulated non-monotonic effect of exposures. Each latent-state factor Zj
(

1 ≤ j ≤ m
)

 were trans-
formed to a set of four dummy variables Zdummy

j =

(

Z
dummy
j0 , Z

dummy
j1 , Z

dummy
j2 , Z

dummy
j3

)

. The corresponding 
coefficient vector was βj =

(

βj0, βj1, βj2, βj3
)

= (0, 1, − 1, 0) , including positive, negative and zero values 
representing non-monotonic effects. We assumed the outcome Y was associated with the first 5 exposures:

where ε ∼ N(0, 1) . We set m equal to 10 or 20; αj0 = 0.4, αj1 = 0.3, αj2 = 0.2, αj3 = 0.1; fj0 = N
(

1, 0.332
)

, 
fj1 = N

(

2, 0.332
)

, fj2 = N
(

3, 0.332
)

, fj3 = N
(

4, 0.332
)

 , and sample size n equal to 500, 1000 or 1500. We fol-
lowed the same procedure described above to calculate the TPR. For the positive weights, we counted the number 
of Xj1

(

j = 1, 2, 3, 4, 5
)

 if they were among the largest 5 weights and denoted this count as TP1. For the negative 
weights, we counted the number of Xj2

(

j = 1, 2, 3, 4, 5
)

 if they were among the smallest 5 weights and denoted 
this count as TP2. TPR is defined as TPR = (TP1 + TP2)/10 to compare the variable-selection performance.

Dataset and pre‑processing for the application of real data. Participants of the New Hamp-
shire Bladder Cancer  Study42 used in this analysis were recruited from January 1, 2002 to July 31, 2004. New 
Hampshire Bladder Cancer Study is a population-based case–control study conducted among New Hampshire 
 residents43. The cases were 396 patients diagnosed with histologically-confirmed urothelial bladder cancer at 
ages 31–79, identified through the New Hampshire State Cancer  Registry44. A total of 426 controls, frequency-
matched to cases by gender and age, were selected from the state Department of Motor Vehicles (DMV) records 
and the Centers for Medicare and Medicaid Services (CMS) beneficiary  records45. The New Hampshire Bladder 
Cancer Study was conducted in accordance with the guidelines and regulations of the Declaration of Helsinki. 
The study was approved by the Committee for the Protection of Human Subjects at Dartmouth College, and all 
participants provided informed consent.

Participants of the New Hampshire Bladder Cancer Study provided toenail clippings for quantification of trace 
element  concentrations46–48. Inductively coupled plasma mass spectrometry (ICP-MS)46 was used to measure 
the concentrations of 12 trace elements (arsenic, selenium, zinc, aluminum, vanadium, chromium, manganese, 
iron, nickel, copper, cadmium, and lead). Analysis of the toenail samples was conducted at the Dartmouth 
Trace Element Analysis Core, which has analyzed over 10,000 nail samples, employs a rigorous quality control 
program, and has participated in the external QMEQAS proficiency program operated by the Centre for Toxi-
cology, Quebec since 2011.

We restricted our analysis to 327 cases with non-muscle invasive bladder cancer (NMIBC) because NMIBC 
comprised 83% of the bladder cancer cases in the study. Among the NMIBC cases and controls, 55 cases and 
59 controls did not provide toenail samples. Another 7 cases and 14 controls were excluded due to missing 
demographic information or missing concentrations of trace elements. In total, 265 cases and 353 controls were 
included in logistic regression modeling. The model covariates included age, gender, smoking status, education, 
and high-risk occupation. High-risk occupation included vehicle repairers, electrical and electronics repairers, 
precision metalworkers, military occupations, drafting occupations and others as described by Colt et al.49. 
Trace element concentrations below the limit of detection (LOD) were imputed using the LOD divided by  250,51.

Data availability
De-identified data described in the manuscript will be made available upon reasonable request pending approval 
of an application for data use addressed to Dr. Margaret Karagas (Margaret.R.Karagas@dartmouth.edu), and 
execution of a data use agreement or material transfer agreement with Dartmouth College. R code implement-
ing our proposed method can be accessed at https:// github. com/ sitin gLi/ amc. All simulation code is available at 
https:// github. com/ sitin gLi/ AMC_ simul ations.

Y =

10
∑

i=1

βiZi + ε

Y =

5
∑

j=1

Z
dummy
j βT

j + ε

https://github.com/sitingLi/amc
https://github.com/sitingLi/AMC_simulations
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