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High throughput screening 
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Mesenchymal stem cells (MSCs) are increasingly used as regenerative therapies for patients in the 
preclinical and clinical phases of various diseases. However, the main limitations of such therapies 
include functional heterogeneity and the lack of appropriate quality control (QC) methods for 
functional screening of MSC lines; thus, clinical outcomes are inconsistent. Recently, machine 
learning (ML)-based methods, in conjunction with single-cell morphological profiling, have been 
proposed as alternatives to conventional in vitro/vivo assays that evaluate MSC functions. Such 
methods perform in silico analyses of MSC functions by training ML algorithms to find highly nonlinear 
connections between MSC functions and morphology. Although such approaches are promising, 
they are limited in that extensive, high-content single-cell imaging is required; moreover, manually 
identified morphological features cannot be generalized to other experimental settings. To address 
these limitations, we propose an end-to-end deep learning (DL) framework for functional screening of 
MSC lines using live-cell microscopic images of MSC populations. We quantitatively evaluate various 
convolutional neural network (CNN) models and demonstrate that our method accurately classifies 
in vitro MSC lines to high/low multilineage differentiating stress-enduring (MUSE) cells markers from 
multiple donors. A total of 6,120 cell images were obtained from 8 MSC lines, and they were classified 
into two groups according to MUSE cell markers analyzed by immunofluorescence staining and FACS. 
The optimized DenseNet121 model showed area under the curve (AUC) 0.975, accuracy 0.922, F1 
0.922, sensitivity 0.905, specificity 0.942, positive predictive value 0.940, and negative predictive 
value 0.908. Therefore, our DL-based framework is a convenient high-throughput method that could 
serve as an effective QC strategy in future clinical biomanufacturing processes.

Recent advances in regenerative medicine and tissue engineering have enabled stem cell therapies to progress 
to the preclinical and clinical phases in treating various degenerative  diseases1,2. In particular, mesenchymal 
stem cells (MSCs) have received considerable attention in tissue regeneration and the treatment of immune 
system-mediated  diseases3. Although MSCs exhibit regenerative and immunomodulatory potentials, clinical 
trials have reported inconsistent therapeutic  efficacies4,5, likely attributable to functional heterogeneities among 
MSCs from different donors, variations in MSC production, treatment methods, and recipient conditions; all of 
these factors exhibit considerable  variability4,6. In addition, vast numbers of functional stem cells are required 
for tissue regeneration, in which mass production (using automated cell culture systems) is already commercially 
 available7,8. Therefore, effective quality control (QC) of MSC functions is needed for consistent, high-quality, 
large-scale biomanufacturing of MSCs and their products, as well as successful clinical  translation9,10. However, 
current assessment methods lack clinical relevance, adequate assay throughput, and robustness; improved tech-
niques are necessary to better characterize MSC functions.

Recently, several studies have found connections between MSC functions and cell morphology by exploiting 
advances in high-content microscopic  imaging11. For example, MSC morphology has been correlated with dif-
ferentiation  capacity12,13,  motility14, and passage  number15,16. Another field of study seeks to predict in vitro MSC 
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functions via morphological profiling that employs machine learning (ML) algorithms, of which deep learning 
(DL) algorithms are optimal. Such algorithms have been used to predict MSC osteogenic  potential17,18, immu-
nosuppressive  capacity19,20, and microenvironmental  interactions21,22. These works yield in silico predictions 
based solely on cell morphology, potentially eliminating the need for costly in vitro/vivo experiments. Candidate 
therapeutic stem cells can be then identified by selecting lines that are expected to be highly effective and then 
confirming such efficacy. If efficacy can be predicted using light microscope images periodically acquired during 
cell culture, the required candidates can be derived without compromising the culture flow.

The efficacy indicators of human mesenchymal tissues may vary depending on the disease that requires ther-
apy. The multilineage differentiating stress-enduring (MUSE) marker evaluates stem cell capacity. MUSE cells are 
nontumorigenic pluripotent stem cells of human mesenchymal tissues expressing CD-105 and SSEA-323. MUSE 
cells readily home to damaged tissues and spontaneously differentiate into cells of such tissues, thus repairing the 
tissues and restoring  function24,25. Furthermore, MUSE cells exhibit immunomodulatory  properties26, and DNA 
repair  capacity24; these cells have been used to treat cardiovascular and neurological  diseases27,28. Therefore, it 
could be considered as an overall marker for evaluating the efficacy of stem cells.

In this study, human neural crest-derived nasal turbinate stem cells (hNTSCs) was used as the cell source for 
the analysis. In a previous study, after isolation of hNTSCs from inferior turbinate nasal tissue, MSC character-
istics were investigated according to the statement of position of the International Society for Cell  Therapy29. 
Surface epitope analysis revealed that hNTSCs were negative for CD14, CD19, CD34 and HLA-DR and posi-
tive for CD29, CD73 and CD90, indicating a characteristic phenotype of MSCs. The plasticity of hNTSCs has 
been confirmed in cartilage, bone, adipose and neuronal differentiation  conditions29–33. hNTSCs have several 
adventages: donor morbidity is low, and the collection time is short (5–10 min); the cells are derived from the 
easily acquired turbinate mucosa of patients undergoing surgical treatment of chronic hypertrophic rhinitis (a 
common condition). The cell numbers are high; these cells exhibit good proliferation, multilineage differentia-
tion potential, and immunomodulatory  properties29,34,35.

Therefore, we investigated whether high- and low-functioning hNTSC cell lines represented by MUSE mark-
ers could be distinguished from DLs through a simple live-cell microscopy imaging process.

Materials and methods
This section describes cell culture, in vitro assessments, and imaging methods and provides general explanations 
of DL-based methodologies and evaluation metrics.

Cell culture/expansion. We used human neural crest-derived nasal turbinate stem cells (hNTSCs); the 
work was approved by the Ethics Committee (approval no. KC08TISS0341) of Seoul St. Mary’s Hospital of the 
Catholic University of Korea and all methods were performed in accordance with the relevant guidelines and 
regulations. Prior to surgery, participants provided written informed consent. hNTSCs were isolated from the 
turbinate tissue of a human who had undergone partial turbinate resection. The lower turbinate tissue was 
washed with saline and phosphate-buffered saline (Thermo Fisher Scientific, Waltham, MA, USA) containing 
an antibiotic-antibacterial solution (Thermo Fisher Scientific), then cut into 1-mm3 pieces. Subsequently, the 
dish was covered with a sterile glass slide. The growth medium was α-minimum essential medium (α-MEM, 
Thermo Fisher Scientific) with 1% (v/v) penicillin/streptomycin (Invitrogen) and 10% (v/v) fetal bovine serum 
(Thermo Fisher Scientific). Incubation was performed at 37  °C in a humidified atmosphere under 5% (v/v) 
 CO2. The medium was changed at 2–3-day intervals during the 3-week culture period. Finally, the glass cover 
slide was removed, and cells attached to the culture plate were harvested into a 0.25% (w/v) trypsin solution 
in 1 mM ethylenediaminetetraacetic acid. hNTSCs were expanded for use in experiments. To analyze MUSE 
marker expression and deep learning model training in the culture (passage 6), 1 ×  106 cells were seeded in 6-well 
culture plate and a training image was taken. 8 MSC lines were classified into two groups according to MUSE cell 
markers analyzed by immunofluorescence staining and FACS.

Flow cytometry. Single cell suspensions were prepared form hNTSCs. Cells were incubated for 30 min at 
4 °C with stage-specific embryonicantigen-3 (SSEA-3) antibody (1:100, Abcam, Cambridge, UK, ab16286) fol-
lowed by Alexa Fluor 633 anti-rat antibody (1:1000, Thermo Fisher scientific, A21094). After incubation with the 
SSEA-3 antibody, the cells were incubated with CD105 antibody (1:100, PE-conjugated, BD Pharmingen; catalog 
no. 560839) for 30 min at 4 °C for double staining. The cells were re-suspended in DPBS (Gibco) and acquired 
through FACS Canto II (BD biosciences) with DIVA software.

Imaging and preprocessing. Live-cell microscopic imaging was performed using the Lionheart LX auto-
mated microscope (BioTek, Winooski, VT, USA) at 37  °C under 5% (v/v)  CO2. Images were acquired using 
phase objectives (40× and 100×). Data were acquired as 904 × 1224 8-bit grayscale images, which were preproc-
essed in terms of hue (H), saturation (S), and value (V) to reduce experimental variations. Images with mean V 
values > 230 were excluded because their excessive brightness impeded the distinction of cell morphology from 
the background. The remaining images were adjusted to achieve a mean V value of 130; the images were resized 
to 226 × 306 pixels using an interpolation method within Python OpenCV Toolbox software. Subsequently, the 
pixel values were normalized to [0, 1].

Immunofluorescence staining. The expression levels of SSEA-3 (derived using anti-SSEA-3; 1:300, 
Abcam, Cambridge, UK, ab16286) and CD-105 (derived using a PE mouse anti-human CD-105; 1:300, BD 
Pharmingen; catalog no. 560839) were determined via immunofluorescence staining. After 2 days of culture 
in the medium described above, hNTSCs were fixed in 2% (w/v) paraformaldehyde and washed with phos-
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phate-buffered saline. The cells were then permeabilized with 0.3% (v/v) Triton X-100 (Sigma-Aldrich) and 
washed with phosphate-buffered saline. After cells had been blocked with 1% (v/v) normal goat serum (Jackson 
ImmunoResearch Laboratories Inc., West Grove, PA, USA), they were incubated with the primary antibodies 
mentioned above; they were then incubated with a goat anti-rat Alexa-Fluor 488 antibody (1:1000; Molecular 
Probes). The nuclei were labeled with 4′,6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich), and fluorescence 
was observed under a Zeiss LSM510 confocal microscope (Carl Zeiss).

Deep learning. We compared various convolutional neural network (CNN) models when selecting the 
appropriate architecture. Specifically, we reviewed  VGG1936,  ResNet50V237,  DenseNet12138,  InceptionV339, and 
 Xception40 (Supplementary Fig. 1). The final feature extraction layers of all networks were subjected to single-
element averaging using global average  pooling41, followed by the designation of surrogate classification layers 
as described in Supplementary Table 1. We leveraged various strategies to train our networks and optimize the 
trainable parameters. First, we employed transfer  learning42, which effectively transfers knowledge among dif-
ferent domains and has been successfully employed in several biomedical imaging  applications43. Our transfer 
learning strategy featured three steps (Supplementary Fig. 2). In the first step, we obtained pre-trained networks 
on the ImageNet  dataset44, in which the feature extraction layers are pre-trained to identify low-level image 
features (Supplementary Fig. 2a). The trainable parameters of the feature extraction layers were frozen, and a 
new classification layer (trained using our cell image dataset) classified cell populations into high/low MUSE 
cells markers using the features learned in the previous step (Supplementary Fig. 2b). Finally, the entire network 
was fine-tuned at a reduced learning rate (Supplementary Fig. 2c). During training, trainable parameters were 
initialized using the normal He normalization  method45 and optimized using the Adam  optimizer46. Early stop-
ping, L2  regularization47, and  dropout48 were used to avoid overfitting. We then optimized each model’s hyper-
parameters using Bayesian optimization (BO)49 (Supplementary Fig. 3). Unlike systematic approaches such as 
the grid and random searches (Supplementary Fig. 3a,b respectively)50, BO reduces the computational cost by 
considering all prior knowledge that facilitates the optimization process (Supplementary Fig. 3c). BO features 
simultaneous interactions between a surrogate model and an acquisition function. The surrogate model proba-
bilistically models an unknown objective function that maps a set of hyperparameters to the evaluation results 
by considering previously evaluated samples. The acquisition function suggests a new set of hyperparameters 
based on exploration of (and exploitation within) the established surrogate model. A Gaussian  process51 served 
as the surrogate model, while the expected improvement (EI)  algorithm52 served as the acquisition function. 
Further details regarding model training are provided in Supplementary Table 1.

Evaluation metrics. To evaluate the results of our CNN models, we considered areas under the curves 
(AUCs), F1 scores, accuracies, sensitivities, specificities, positive predictive values (PPVs), and negative predic-
tive values (NPVs) (Supplementary Table 2).

Statistical analysis. Statistical difference between two groups were assessed with the unpaired t test (two 
tailed). All results are presented as the mean ± SD. A p-value of less than 0.05 was considered statistically sig-
nificant.

Results
This section presents and discusses the experimental results of our DL-based MSC screening method. Previous 
studies found that the number of functional subpopulations was correlated with the overall therapeutic function-
ality of an MSC  batch53–55; moreover, subpopulations exhibited distinct morphological  features20,56–58. We thus 
hypothesized that microscopic images from functional cell lines contain a higher ratio of such subpopulation 
distributions; we also hypothesized that a CNN could classify the images based on the morphological characteris-
tics. Therefore, all images were labeled as a whole; images of cell lines with high MUSE cell markers were positive, 
whereas images of cell lines with low MUSE cell markers were negative. A schematic is shown in Fig. 1. We first 
conducted multivariate in vitro assessments of eight cell lines from different donors. group with a high expres-
sion of MUSE cells (n = 4) and group with a low expression of MUSE cells (n = 4) were identified (Supplementary 
Fig. 4). Then (as shown in Fig. 1), the total dataset was split into training, validation, and test sets. Three sets of 
MSC images were obtained for training from six cell lines; each set contained 1,530 images from a positive cell 
line and 1530 images from a negative cell line. This dataset was used to conduct threefold cross-validation that 
quantitatively compared the classification performances of various CNN models by splitting the dataset into 
non-overlapping subsets. We identified the most promising model, then used this model to conduct a further 
quantitative and qualitative evaluation of an independent dataset with 6,120 cell images/class from test data.

Characteristics of the classified hNTSC group. Confocal microscopy images confirmed the difference 
in the MUSE cell markers SSEA-3 and CD-105 between the two groups (Supplementary Fig. 5). Supplementary 
Fig. 6 showed flow cytometry results of MUSE cells in the six passage showing of SSEA-3, CD105 expression. In 
FACS analyses, which were performed to confirm this result quantitatively, the results of comparing the MUSE 
cell markers of the four high groups and the four low groups showed that the MUSE cell marker expression was 
approximately twofold higher in the high group (3.5%) than in the low group (1.7%). It was confirmed that there 
was a significant difference between the forces (Supplementary Fig. 6b).

Bayesian optimization and model comparison. Using the search spaces of the hyperparameters listed 
in Supplementary Table 1, we subjected various models to BO (we recorded the mean threefold cross-validation 
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accuracies); the results are shown in Fig. 2 and Table 1 while the confusion matrices are shown in Supplementary 
Fig. 7. BO utilizes prior knowledge concerning the optimization process, then searches for new hyperparam-
eter sets (Fig.  2a). The threefold cross-validation accuracy gradually increased with increasing optimization; 
early, accuracy was low, and variance was high; later, accuracy was high and appeared to converge for all mod-
els. The optimal hyperparameter sets are starred; the values are listed in Supplementary Table 1. As shown in 
Fig. 2b, DenseNet121 outperformed the other methods in most evaluation metrics. When analyzed with the 

Figure 1.  Schematic of the deep learning (DL) framework used to screen for functional mesenchymal stem cell 
(MSC) lines. Mesenchymal stem cell (MSC) cultures were obtained from eight cell lines from different donors 
for image data acquisition. To compare the classification performances of various convolutional neural network 
(CNN) models, threefold cross-validation was conducted by splitting the dataset into non-overlapping subsets.

Figure 2.  Hyperparameter optimization of comparative convolutional neural network (CNN) models during 
80 Bayesian optimization (BO) iterations revealed by mean threefold cross-validation accuracies. (a) A 
progressive plot illustrating the BO process (stars indicate points of optimal performance and DenseNet121 was 
considered the best model) and (b) the threefold cross-validation metrics for each model after BO. AUC, the 
area under the curve; and Acc., accuracy.
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DenseNet121 model, AUC 0.941 ± 0.089, F1 0.893 ± 0.115, accuracy 0.892 ± 0.117, sensitivity 0.885 ± 0.099, spec-
ificity 0.899 ± 0.138, PPV 0.902 ± 0.133, and NPV 0.884 ± 0.104 were obtained. Comparing the best-performing 
CNN with others, DenseNet121 had an AUC average score of 0.941, while VGG19 had an AUC score of 0.885; 
VGG19 exhibited the worst performance, reflecting the consensus that deeper networks benefit from their abil-
ity to model mappings of higher  complexity36. InceptionV3 and Xception models performed poorly compared 
to DenseNet121; these findings suggested that their multi-scale convolution operations overexpressed our cell 
image dataset, thus leading to overfitting. Although VGG19 exhibits the fastest inference speed due to its rela-
tively simple architecture [964 frames per second (FPS)], all models perform above 300 FPS, which is sufficient 
for real-time implementations. The threefold cross-validation results indicate that our method robustly managed 
the heterogeneities of cell lines. Below, we focus exclusively on DenseNet121.

Independent test set evaluation. All images from the threefold dataset were merged and used to retrain 
DenseNet121 with the hyperparameter set suggested by BO. We evaluated the performances of the optimized 
DenseNet121 (termed DenseNet121-BO) and the pre-optimized DenseNet121 (trained using the initial hyper-
parameters of Supplementary Table 1) using an independent test dataset derived from the remaining cell lines 
(Fig.  3 and Table  2; the confusion matrices are shown in Supplementary Fig.  8). Quantitatively, all metrics 
(including receiver operating characteristic curves) improved after BO. The optimized DenseNet121 model was 
improved to AUC 0.975, accuracy 0.922, F1 0.922, sensitivity 0.905, specificity 09.42, PPV 0.940, and NPV 09.08. 

Table 1.  Threefold cross-validation metrics of all convolutional neural networks (CNNs) after Bayesian 
optimization (BO). AUC, the area under the curve; PPV, positive predictive value; NPV, negative predictive 
value; FPS, frames per second. Significant values are given in bold.

AUC F1 Accuracy Sensitivity Specificity PPV NPV FPS

VGG19 0.885 ± 0.098 0.768 ± 0.1 0.793 ± 0.086 0.689 ± 0.099 0.897 ± 0.075 0.869 ± 0.01 0.744 ± 0.076 964 ± 48

ResNet50V2 0.893 ± 0.072 0.769 ± 0.134 0.792 ± 0.102 0.718 ± 0.182 0.867 ± 0.103 0.846 ± 0.097 0.765 ± 0.11 458 ± 61

DenseNet121 0.941 ± 0.089 0.893 ± 0.115 0.892 ± 0.117 0.885 ± 0.099 0.899 ± 0.138 0.902 ± 0.133 0.884 ± 0.104 378 ± 25

InceptionV3 0.927 ± 0.094 0.865 ± 0.11 0.858 ± 0.12 0.886 ± 0.084 0.83 ± 0.159 0.846 ± 0.135 0.874 ± 0.103 519 ± 30

Xception 0.901 ± 0.116 0.812 ± 0.12 0.827 ± 0.113 0.754 ± 0.13 0.9 ± 0.121 0.886 ± 0.133 0.787 ± 0.11 364 ± 34

Figure 3.  Receiver operating characteristic (ROC) curves of DenseNet121 operating on the independent test 
dataset before and after Bayesian optimization (BO). The prediction performance of DenseNet121 was improved 
after the BO process.

Table 2.  Quantitative metrics of DenseNet121 derived using an independent test dataset before and after 
Bayesian optimization (BO). AUC, the area under the curve; PPV, positive predictive value; NPV, negative 
predictive value; FPS, frames per second. Significant values are given in bold.

AUC F1 Accuracy Sensitivity Specificity PPV NPV FPS

DenseNet121-BO 0.975 0.922 0.923 0.905 0.942 0.940 0.908 324

DenseNet121 0.908 0.820 0.825 0.800 0.849 0.842 0.810 389



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17507  | https://doi.org/10.1038/s41598-022-21653-y

www.nature.com/scientificreports/

The FPS deteriorates slightly since the number of dense neurons in the classification layers increases after BO 
(Supplementary Table 1). However, FPS values above 300 are sufficient for real-time screening. The prediction 
performance of DenseNet121 after BO process would be expressed with an AUC score of 0.975. To further 
analyze the effects of BO, we examined the feature representations of all classification layers before and after BO 
using the t-stochastic neighborhood embedding  algorithm59. Figure 4 shows the embedded feature distributions 
of the test dataset in the global average pooling and dense layers of our model; the distributions of the two classes 
gradually became disentangled as they progressed within the layers. Notably, the layer distributions became 
more distinct after BO because BO optimizes the dense layer structures (Supplementary Table 1). Overall, BO 
improved the generalization afforded by our DenseNet121 model. Finally, we used several saliency mapping 
algorithms to highlight regions of interest (ROIs) that substantially contributed to the classification results. For 
this purpose, we used gradient-based class activation mapping (Grad-CAM++)60, layer-wise relevance propa-
gation (LRP)61, and visual back-propagation (VisualBackProp)62. Sample true-positive (TP) and true-negative 
(TN) images (with ROIs) are shown in Fig. 5. All three algorithms highlighted similar ROIs within the images; 
the TP images featured large ROIs (upper two rows), and the TN images featured small ROIs (bottom two rows). 
We calculated the normalized pixel scores of all images via saliency mapping by thresholding each pixel value 
below 0.5 to 0, then averaging the remaining values. The normalized pixel score distributions revealed clear dif-
ferences between TP and TN images. The Grad-CAM++ distribution illustrates overlaps between the two classes 
due to the algorithm’s tendency to highlight relatively large ROIs, resulting in large normalized pixel scores. The 
opposite was true of VisualBackProp and LRP; the ROIs of TP images were small, and the ROIs of TN images 
were nearly absent, which led to distinct distributions and small normalized pixel scores.

Discussion
In this study, we divided stem cell lines with different MUSE cell markers into two groups (high vs. low MUSE 
expression) when establishing our DL model that was trained using simple light microscopic images. Evaluation 
of hNTSCs with distinct patterns of MUSE cell marker expression enabled the separation of hNTSCs donor 
variation. It was verified that SSEA-3 and CD105 of the high MUSE expression group were higher than those of 
the low MUSE expression group by using immunofluorescence staining, and it was confirmed more clearly by 
FACS analysis. The optimized DenseNet121 DL model showed AUC 0.975, accuracy 0.922, F1 0.922, sensitivity 
0.905, specificity 09.42, PPV 0.940, NPV 0.908 results, therefore, it is possible to discriminate groups with high 
or low expression of MUSE cell markers from cell images with very high accuracy.

Although ML-based methods effectively predict in vitro MSC function, several aspects require investigation; 
these motivated our work. First, DL-based principles should be used to create an end-to-end framework that opti-
mizes feature  extraction47. ML algorithms require manual identification of morphological features in single-cell 
images; thus, high-content imaging followed by extensive image-processing is  necessary63. This approach limits 
screening throughput and hinders the complete exploitation of high-dimensional morphological information 
inherent in the image data. Additionally, manually identified features are experiment-dependent; they are not 

Figure 4.  t-stochastic neighborhood embedding (t-SNE) visualizations of the feature outputs of different 
classification layers and the distributions of softmax outputs of the final classification layers before and 
after Bayesian optimization (BO). As the layers progressed within the models and after the BO process, the 
distributions of the two classes gradually became disentangled. GAP, global average pooling.
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generalizable to cells produced under different  conditions19. Second, an optimal method must be generalizable 
to MSCs from various donors evaluated under different experimental conditions. Although a previous  study64 
successfully utilized CNNs that evaluated cell morphology to predict the immunofluorescence levels of nine dif-
ferent surface markers, the proof-of-concept study reported results from only a single donor culture after only a 
few passages at a low seeding density. To address the above limitations, we proposed a novel DL-based method 
to identify MSC lines to high/low MUSE cells markers using live microscopic images. Previous  reasearch20,56–58 
showed that the proportions of morphological subpopulations reflect MSC therapeutic functions. Also, the num-
ber of functional subpopulations was correlated with the overall therapeutic functionality of an MSC  batch53–55. 
We thus hypothesized that CNNs could be used to examine whole-labeled, live-cell microscopic images of MSC 
populations, then identify the in vitro characteristics of those populations. By leveraging various DL principles, 
we circumvented the extensive imaging procedures that were required by previous ML approaches; our MSC 
screening strategy is much faster performing above 300 FPS. We initially established and optimized several 
CNN models, using BO; DenseNet121 was considered the best model (Fig. 2, Table 1). Our model demonstrated 
AUCs > 0.94 during validation involving MSC images from eight different cell lines. We then explored the inter-
pretations of the CNN using various saliency mapping algorithms; we sought to ensure that our method was 

Figure 5.  Interpretation of convolutional neural network (CNN) analyses using three saliency 
mapping algorithms: gradient-based class activation mapping (Grad-CAM++), visual back-propagation 
(VisualBackProp), and layer-wise relevance propagation (LRP). The Grad-CAM++ exhibited overlaps between 
the two classes due to the algorithms’ propensity to highlight large ROIs, while VisualBackProp and LRP 
provided distinct distributions. Normalized pixel score distributions are shown for each algorithm.
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reliable. When used with single-cell morphological  profiling63, we provided insights that could serve as potential 
biomarker candidates for identifying desired subpopulations. The visualization results strongly supported our 
initial hypothesis: CNNs can classify whole-labeled images into high/low MUSE cells markers by examining 
the morphological features of subpopulations, as well as the proportions of such subpopulations. Our DL-based 
method is generalizable and offers high throughput. Identifying surface markers unique to these  subpopulations65 
would enable their enrichment using methods such as fluorescence-activated cell sorting (FACS)53. Finally, 
our approach will facilitate inter-and intra-laboratory research; morphological profiling is more cost-effective 
and less sensitive to experimental conditions compared with conventional immunohistochemistry- and flow 
cytometry-based  methods66.

Conclusions
We developed a DL-based in silico method to identify MSC lines to high/low MUSE cells markers; this method 
facilitates high-throughput QC during biomanufacturing. Through this process, function screening, replacing 
some of the in vivo and in vitro tests performed to confirm the function of each cell stem line can be accom-
plished. Therefore, our non-invasive, automated in silico system, which uses simple microscopy alone, will aid 
cell biomanufacturing and translation to cell therapies.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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