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Association studies 
between chromosomal regions 
1q21.3, 5q21.3, 14q21.2 
and 17q21.31 and numbers 
of children in Poland
Jeremy S. C. Clark1,5*, Thierry van de Wetering1,5, Błażej Marciniak2, Elżbieta Żądzińska3,4, 
Andrzej Ciechanowicz1, Mariusz Kaczmarczyk1, Agnieszka Boroń1, Kamila Rydzewska1, 
Konrad Posiadło1 & Dominik Strapagiel2

Number of children is an important human trait and studies have indicated associations with 
single-nucleotide polymorphisms (SNPs). Aim: to give further evidence for four associations using 
a large sample of Polish subjects. Data from the POPULOUS genetic database was provided from 
anonymous, healthy, unrelated, Polish volunteers of both sexes (N = 5760). SNPs (n = 173) studied: 
(a) 69 from the chromosome 17 H1/H2 inversion; (b) six from 1q21.3, 5q21.3 and 14q21.2; and (c) 
98 random negative controls. Zero-inflated negative-binomial regression (z.i.) was performed (0–3 
numbers of children per individual (NCI) set as non-events; adjustors: year of birth, sex). Significance 
level p = 0.05 with Bonferroni correction. Statistically-significant differences (with data from both 
sexes combined) were obtained from highly-linked inversion SNPs: representative rs12373123 gave 
means: homozygotes TT: 2.31 NCI (n = 1418); heterozygotes CT: 2.35 NCI (n = 554); homozygotes 
CC: 2.44 NCI (n = 43) (genotype p = 0.01; TTvs.CC p = 0.004; CTvs.CC p = 0.009). (Male data alone 
gave similar results.) Recessive modeling indicated that H2-homozygotes had 0.118 more children 
than H1-homozygotes + heterozygotes (z.i.-count estimates ± standard errors: CT, − 0.508 ± 0.194; 
TT, − 0.557 ± 0.191). The non-over-dispersed count model detected no interactions: of importance 
there was no significant interaction with age. No positive results were obtained from negative-
control SNPs or (b). Conclusions: association between the H1/H2 inversion and numbers of children 
(previously reported in Iceland) has been confirmed, albeit using a different statistical model. One 
limitation is the small amount of data, despite initially ~ 6000 subjects. Causal studies require further 
investigation.

Numbers of children (as well as the timing of births, changes in sex ratio at birth etc.) are important human traits, 
particularly relevant to public health (e.g., see Żądzińska et al.1; Jasieńska et al.2).

The present study analyzes several associations between single nucleotide polymorphisms (SNPs) and num-
bers of children which have been detected from various populations in two large studies: Stefansson et al.3 and 
Barban et al.4. The functional significance of these SNPs is mostly unknown but this is not a bar to further sta-
tistical analysis as functional studies can follow later.

It is of great value, regardless, to produce confirmatory replications for all associations involving human 
subjects, not only because of the high prevalence of false positives due to unknown sources of bias  (see5), but 
also because of the possibility of differences between  populations3. In general a reproduction study (a replica-
tion performed by another Institute) is only useful if the result is positive, because a negative result can always 
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be assumed to have arisen because of differences in methodology, population, some other systematic difference 
or, especially if the reproduction has less subjects, lack of power or random error.

In order to replicate genotype–phenotype association studies exactly there are several requirements: (1) the 
phenotypic parameter needs to be defined and data collected in the same way; (2) the genotypic change needs 
to be thoroughly understood; (3) the numbers of subjects should be at least as large; and (4) the exact regression 
model should be replicated.

In the presented study all four requirements present hurdles, as described below and in the Discussion, which 
means that the final results cannot be said to be exact reproductions of the initial results from the two original 
publications but, even so, can contribute to an evidential basis confirming association, if positive.

Phenotype. At first sight, genetics might not seem likely to play a major role in numbers of children, but it 
must be remembered that the extent to which human behavior is affected by genetics has not been fully clarified. 
To resolve such questions huge amounts of data are required, even for quite large effect sizes, in order to counter 
interacting effects and bias, due e.g. to socio-economic changes etc.. Even so, genome-wide association studies 
have identified at least 12 loci influencing human reproductive  behavior4. It should also be noted that it is dif-
ficult to disentangle effects due to variation in fertility from variation in human reproductive behavior, and any 
associations found would need further studies in order to do this.

Year of birth (with identical analysis to age) is likely to have considerable effect on numbers of children, 
not only because of changes in fertility with age, but also because socio-economic changes have brought about 
considerable increase in reluctance to have more than a few children, whereas previously large families were 
common. There are numerous demographic effects which have contributed to this, including the availability 
of contraception, which mean that human reproductive behavior has varied considerably over the time period 
studied. In addition there are multivarious factors, such as  obesity6, excessive exercise, smoking, alcohol con-
sumption and sexually transmitted diseases which all negatively affect the fecundity of females and  males7–10, 
and which also varied over the time period.

It was decided that, even if positive results were obtained for association between number of children per 
individual (NCI) and a genotype, these would be regarded as negated by the presence of significant interaction 
with age because of the demonstrably high correlation between numbers of children and year of birth.

Genotype. Most SNPs are well defined, but here SNPs have been studied which either (1) lie on a 900 kb 
inversion on chromosome 17 or (2) are linked surrogates to those studied by Barban et al.4.

1. The H1_H2 inversion.

The H1 and H2 versions of the 900 kb inversion at chromosome 17q21.31 were described by Stefansson 
et al.3 and in the present study were identified using SNP alignments. The inversion has boundaries that are not 
necessarily easy to define using SNPs: Stefansson et al.3, using microsatellites and bacterial artificial chromosome-
based contiguous (BAC) sequences, showed that the two main haplotypes, H1 and H2, do not align exactly 
on respective chromosomes and, have associated duplicated region(s). A duplication will interfere with SNP 
analyses, meaning that it is safer to analyze SNPs covering a slightly smaller region than the whole inversion 
including flanking regions.

Stefansson et al.3 showed that the H1 and H2 lineages diverged around 3 million years ago, with H2 prob-
ably having an African origin. H2 was found to have extreme homogeneity among subjects with H1 relatively 
diverse. The strongest linkage disequilibrium was found in a Utah sample (with genetic relationships with Slavic 
Europeans) indicating very little, if any, recombination in the European population. No recombination, despite 
sufficient prevalence of H2 homozygotes, suggests recent positive selection for H2 and, probably, rapid expan-
sion in Europe, including in the Icelandic population studied by Stefansson et al.3. This provides the original 
hypothesis that the inversion might be associated with numbers of children.

Steinberg et al.11 used next-generation sequencing, BAC-based assemblies and fluorescence in-situ hybridi-
zation (FISH) to explore the architecture of the 17q21.31 region, especially in African populations, and found 
eight structural configurations based on duplication content and organization. They identified 887 SNPs which 
could distinguish the two variants (Stefansson et al.3 identified 36 SNPs) and concluded that an ancestral H2’ 
variant (’ = without a duplication) was replaced almost entirely by an H1’ variant. Subsequently, duplication events 
occurred separately in H1 (205 bp; H1D) and H2 (155 bp; H2D) and these are now found at high frequencies 
within European but not Asian or African populations. In the present study a range of SNPs were used to identify 
the extent of non-recombinant regions and therefore the two main inversion variants in a Slavic population.

2. The Barban SNPs.

In a genome-wide association study (GWAS) by Barban et al.4, three SNPs were found to show significant 
associations with numbers of children: rs10908474, rs13161115 and rs2415984 (on chromosoms 1, 5 and 14, 
respectively); referred to here as the "Barban SNPs". The p-values for these associations were: for female and 
male data together: rs10908474, p = 2.08 ×  10−8; rs2415984, p = 2.34 ×  10−8; from male data only: rs13161115, 
p = 1.37 ×  10−8. As these were below the significance level commonly used for GWASs (p = 5 ×  10−8), Barban et al.4 
searched for the nearest genes which might be involved in male fertility using many complex methods, but no 
firm conclusions were drawn. The three Barban SNPs could not be found in the POPULOUS database and so 
in the present study six surrogate SNPs were selected using logarithm of odds linkage scores (see Methods).
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Regression and sample size. Regression model presentation has recently improved, for example with the 
availability of the R statistical  platform12, where advanced regression models are freely available.

Stefansson et al. (2005)3 had analyzed 16 959 females and 12 178 males (5463 families with 29 137 individuals) 
born between 1925 and 1965 and examined the relationship between H2 genotypes and numbers of children 
in the Icelandic population. In Stefansson et al.’s Supplemental Fig.  7b3 an expected distribution for numbers of 
children is found with a peak at two children (for reports from males). However, Supplemental Fig. 7a from the 
same source shows a very unusual distribution with probably a peak at four children with reports from females 
(the fifth value shows ≥ 5 children; the number with exactly five children, and subsequent values, are almost 
certainly less). Assuming a dominant effect (with data from homozygotes and heterozygotes summed) with 
weighted, multiple (presumably linear) regression adjusted for year of birth, they showed that for both sexes com-
bined H2 homozygotes + heterozygotes had more children than H1 homozygotes. (Their study group contained 
related individuals and therefore standard errors and p-values were calculated using a permutation technique).

Barban et al.4 used association models with various adjustors: year of birth (and square or cube of this to con-
trol for possible non-linear birth cohort effects) and principal components to reduce confounding by population 
stratification. This was a huge study, with 343 072 subjects and 62 cohorts from 17 countries (from Australia, 
Europe and the USA), which was replicated internally with quality control conducted in two independent cent-
ers. Results were filtered using the QC protocol (QCGWAS16 and EasyQC17 filters) of the GIANT  consortium13 
and subsequently meta-analyzed (using a sample-size-weighted-fixed-method) for the 2.4 million SNPs that had 
passed the filters. SNPs with the lowest association p-values, indicated by multiple linear regression under an 
additive model, showed independent loci significantly associated with "number of children ever born" (NEB; 
which includes fetal deaths and still-births).

It can be surmised that the tendency to have two or three children is, nowadays, so enforced by social norms 
that many couples try very hard to achieve this. However, some people quite possibly escape these pressures 
and after a certain number of children might not care so much about exactly how many children they have. It is 
this escape which becomes of interest if it can be shown to be genetically linked. By using zero-inflation models 
it is possible to set a non-event as being zero, one or more children. In the present article it was decided to set a 
non-event as being 0 to 3 children, three being the upper integer bound to the mean number of children. This 
is an important assumption intended to highlight possible differences between groups in terms of the numbers 
of individuals with more children than average.

The hypothesis was that one or several of the SNPs previously suggested to have association with numbers 
of children (and/or surrogates close to these SNPs) could be shown to give statistically significant associations 
with numbers of children (above three) per individual in the Polish population.

The aim of study was therefore to implement a zero-inflated negative binomial regression model to study 
association between frequency counts of SNPs, identical or closely-linked to SNPs previously associated with 
NEB by Stefansson et al.3 or Barban et al.4, with the numbers of children per individual, adjusted for year of 
birth and sex (and interactions). SNPs on chromosomes 1, 5, 14 and 17 were analyzed, as well as ~ 100 random 
negative control SNPs, using data from a large exomic SNP database collected from the entire geographical 
region of the Polish population.

Materials and methods
The POPULOUS database. Access to the POPULOUS database was granted for this study following a 
license agreement (PUM UL 001) between the University of Łódź (UL) and the Pomeranian Medical University 
(PUM), Szczecin, Poland. This database was the outcome of the TESTOPLEK project (funded by the European 
Union); approved by the UL Ethical Review Board, and all procedures were in accordance with the current Dec-
laration of Helsinki (2013). Genetic data was made available from anonymous Polish unrelated volunteers, who 
had declared themselves as healthy and signed written informed consent.

The question used to provide the phenotype "number of children per individual" (NCI) was simply "how 
many children have you had ?" [in Polish]. NCI is related to "number of children ever born" (NEB) but excludes 
fetal deaths and still-births.

Procedures used to collect samples, DNA isolation and genetic analysis can be found within the POPU-
LOUS project  description14. SNPs were selected which passed project quality-control criteria and had minor 
allele frequency (MAF) > 1% (to give "Populous data"). Genotype data were originally written onto Genome 
Studio software (Illumina, San diego, CA, USA; https:// www. illum ina. com) and were exported using a PLINK 
INPUT report plug-in (plink-input-report-plugin-v2-1–4; Illumina) into .MAP and .PED files which could be 
easily imported into  R12 and/or PLINK (version 1.9 64-bit; www. cog- genom ics. org/ plink/2.0;15). Illumina SNP 
names, and NCBI dbSNP rs numbers if available, were downloaded from the manufacturer’s website (infinium-
coreexome-24 -v1-1-support-files; Illumina). Phenotype data were: sex (Female (1), Male (2)), "Age", district 
location ("county"), and the number of children per individual ("NCI"). Age (which analyzes identically with 
year of birth) was calculated by subtracting the year of birth from 2012; phenotype data was for the status of the 
patient in the year 2012.

AgeRange selection. Age ranges included were ≥ 45 for data from women (n = 1219) and ≥ 55 for men 
(n = 728). These ranges follow Barban et al.4 and considerably reduce the chance that an individual might have 
more children after the survey.

Inversion SNP lists. Initial inversion SNP lists were established based on the position of the two micros-
atellite markers D17S810 and D17S791 i.e. Region 1 (between 17:43488002 and 17:44857562; all chromosomal 
locations use GRCh37.p13) which included flanking regions on either side and 177 SNPs identified in the 

https://www.illumina.com
http://www.cog-genomics.org/plink/2.0
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database. The inversion can also be enclosed by the closer microsatellite markers DG17S332 and DG17S161 
and Region 2 (between 17:43793582 and 17:44776837) was established including very small flanking regions: 
155 SNPs were identified in this region. SNP exclusion criteria: small insertion/deletions; one allele type (SNP 
base) for all 5642 subjects; < 75% subjects genotyped. Inclusion criteria (before alignment) included all SNPs not 
excluded: 118 SNPs for Region 1 and 99 SNPs for Region 2. (Following alignment, see below, SNPs at the edges, 
possibly within the flanking regions and suspected to lie outside the inversion region and which did not align, 
were also excluded.)

Alignment of inversion SNPs. Diploid SNP bases, e.g. homozygote [A];[A], heterozygote [C];[T] and 
homozygote [C];[C] etc. are abbreviated in this article as AA, CT and CC etc. For each subject an artificial 
sequence was generated with all selected diploid SNP bases concatenated in the same order as on an H1 chro-
mosome and these were uploaded into an online multiple alignment tool (MAFFT version 7; https:// mafft. cbrc. 
jp/ align ment/ softw are/ tips. html;16; scoring matrix 1PAM/κ = 2). The .aln file results were uploaded to jalview 
(version 2, https:// www. jalvi ew. org) for visualization: with red for A (adenine), green for C (cytosine), blue for 
G (guanine) and yellow for T (thymine). Patterns were identified (without colors, this would be almost impos-
sible): most importantly to see if groups of subjects could be separated with many SNPs as either homozygous 
or heterozygous, and where these relationships broke down e.g. in border regions (perhaps associated with a 
duplication).

An initial SNP group was selected (from 99 SNPs) with a coverage of 100% i.e. with no missing data. Remain-
ing SNPs were placed into the alignment regardless of the presence of missing data, without changing the order 
of the subjects. Those SNPs for which all subjects (ignoring missing data) were homozygous within one group of 
subjects, heterozygous in the second group, and counter-homozygous in the third group, were considered most 
interesting as these represented non-recombinant groups. The H1-H1 genotype was assumed to be represented 
by the homozygous group with the largest number of subjects (see Discussion). Small numbers of subjects or 
SNPs which did not fit into the major categories were excluded.

Selection of Barban SNP surrogates. For each Barban SNP, two surrogate SNPs were selected in flank-
ing regions up to 50 000 bp on either side of the investigated SNP and logarithm of odds (LOD) scores identi-
fied in Haploview (https:// www. broad insti tute. org/ haplo view;17). The population chosen (EUR’) for analysis was 
most similar to that in Barban et al.4 and included data from England (GBR), Spain (IBS) and Italy (TSI). The 
two surrogate SNPs which had genotype frequencies consistent with Hardy Weinberg equilibrium and which 
had the highest LOD score (critical LOD score 3.0; with a tie the SNP nearest to the Barban SNP) were selected.

Random negative control SNPs. An initial list of 200 random SNPs was retrieved using random num-
bers from R runif. Locations were found in dbSNP [https:// www. ncbi. nlm. nih. gov/ SNP/] and those lying on 
chromosomes 1, 5, 14, X, Y or in the region of the inversion on chromosome 17 (between the two microsatellite 
markers D17S810 and D17S791), or those without three genotypes, were excluded.

Script. Included SNPs were analyzed by a custom-made script using the R statistical platform (version 3.4.3 
64-bit, https:// www.r- proje ct. org12; references to all packages are given in Supplemental_file_S1). PLINK was 
triggered by an R shell command to retrieve data files from the input file. The .ped and .map files created were 
read into the console and uploaded genotype data was merged with the phenotype data to obtain tables which 
were analyzed statistically.

Statistical models. Analyses used zero-inflated negative binomial regression with 0 to 3 children set to 
zero as non-events. (Note these are non-events as far as the count part of the model is concerned; in the zero’s 
part they would be considered zero "events".) For particular genotypes versus reference genotype:

model <—pscl::zeroinfl(NCI ~ SNP * Age * sex, data, weights, dist = "negbin").

Weights  followed3 as the inverse number of subjects in each Age bin, distributed to each subject and scaled 
to total number of subjects. Overdispersion was checked using the p-value for log(theta). If interactions were 
not significant then interactions were removed. For genotype association:

car::Anova(model, type = "II", test = "Chisq").

The significance level was set as p = 0.05. The inversion SNPs are highly linked and, although analyses of all 
filtered SNPs were performed, only one SNP is necessary as a representative SNP: this was chosen as rs12373123 
(with maximum data). For one model Bonferroni correction therefore included seven SNPs (the inversion rep-
resentative and the six surrogates for the Barban SNPs) i.e. giving an adjusted significance level of 0.05/7 = 0.007.

Ethics approval and consent to participate. Database production was approved by the regional ethical 
committee (Institutional Review Board of the University of Łódź). Genetic data was from anonymous healthy 
Polish unrelated volunteers who signed written informed consent (see Sobalska-Kwapis et al.18).

https://mafft.cbrc.jp/alignment/software/tips.html
https://mafft.cbrc.jp/alignment/software/tips.html
https://www.jalview.org
https://www.broadinstitute.org/haploview
https://www.ncbi.nlm.nih.gov/SNP/
https://www.r-project.org
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Results
The POPULOUS database consisted of 5760 subjects who declared themselves healthy. Based on data from the 
Polish Central Statistical Office (2012), this represented 0.015% of the Polish population (https:// demog rafia. stat. 
gov. pl/ BazaD emogr afia/ Start Intro. aspx). The ratio of females to males was approximately 50% overall and in each 
of the 16 districts of Poland. In general the number of subjects enrolled decreased with increasing age (which is 
one reason why weights were included, as  in3). The number of subjects with zero children was 1713; one child: 
1051; two children: 1641; three children: 747; four children: 316; five or more children: 239, giving an expected 
mode at two children (see Table 1). The maximum number of children registered per subject was 13 children.

Inversion SNPs. SNPs from chromosomal regions at 17q21.31 (see Methods) allowed identification of non-
recombinant groups indicating the large inversion; SNPs from Region 1 (177 SNPs) and the enclosed Region 
2 (155 SNPs), were selected. Following final exclusions (tertiary exclusions of non-aligned SNPs from Region 
2), SNPs which remained were: 118 SNPs for Region 1 and 99 SNPs for Region 2. Only two of these SNPs, 
rs12373123 and rs12373139, had a coverage of 100% subjects (n = 5470) and these formed identical groupings of 
homozygous and heterozygote subjects. The first, rs12373123, was chosen as the representative SNP for the H1_
H2 inversion. The SNPs rs62054815, rs12185233, rs12185268 and rs12373142 showed exactly the same three 
groups with less coverage (numbers of subjects not genotyped: 59, 1, 23 and 8, respectively). 16 other SNPs (14 
SNPs within the inversion region, 2 SNPs presumed to lie in a flanking region) were automatically arranged into 
one of the three groups and aligned with the above six SNPs, although some subjects (n = 10) were found to have 
a contrasting genotype for one or more of these SNPs (assumed to have resulted from mutation subsequent to 
H1/H2 divergence; borderline subjects were assigned to a group according to maximum similarity). Overall the 
alignments for these 22 SNPs (the "indicator" SNPs) were very good. The remaining SNPs were manually placed 
into the alignment without changing the subject order. Figures 1 and 2 show small sections of the delineations 
(red arrows) between homozygote and heterozygote subjects.

The largest group of subjects (n = 4050, 70.3%), each subject having a homozygous genotype for all of the 22 
indicator SNPs, were presumed (see Discussion) to have an [H1][H1] genotype (referred to as the H1_H1 group 
or "homozygous genotype 1"). The 1561 (27.1%) subjects found to have a heterozygote genotype for all of the 
indicator SNPs are referred to as the H1_H2 group. The smallest subject group (n = 149, 2.59%) is referred to as 
the H2_H2 group (or "homozygous genotype 2") and each subject in the H2_H2 group had a complementary 
genotype to that of subjects in the H1_H1 group for all or most SNPs.

The R coding for zero-inflated negative binomial (with 0 to 3 children set as non-events, Supplemental_
file_S1) was designed to analyze many SNPs at once and was run for all the inversion SNPs (data: Supplemen-
tal_file_S2; results: Supplemental_file_S3). Statistically significant results (p < 0.05) were obtained with 27 (from 
69) of these highly-linked SNPs (with male and female data together and with male data alone; female data alone 
gave only four such results). (13 inversion SNPs did not form a correct model e.g. with only two genotypes after 
setting non-events, or lack of an interaction model).

However, only one SNP (rs12373123) is necessary to represent the inversion (Table 1) and regression model 
results for this SNP, adjusted by year of birth and sex, are shown in Table 2. (The initial regression model with 
(non-significant) interactions is given in Supplemental_file_S8.) For completeness sake, numbers of children 
from male and female reports separately are given in Supplemental file S8, and regression results are given in 
each Supplemental results file after those for both sexes combined.

Table 1.  Numbers of subjects or alleles with each number of children per individual (NCI) for the genotypes 
of rs12373123, representing the large chromosome 17 inversion. Data from males and females combined.

Genotype

Numbers of subjects or alleles with each NCI:

0 1 2 3 4 5 6 7 8 9 10 11 12 13

CC 6 7 19 7 0 1 0 0 0 1 0 0 1 1

CT 65 66 217 107 56 22 14 2 1 1 3 0 0 0

TT 132 218 539 308 132 43 27 6 6 4 2 1 0 0

CT + TT 197 284 756 415 188 65 41 8 7 5 5 1 0 0

CC + CT 71 73 236 114 56 23 14 2 1 2 3 0 1 1

allele_C 77 80 255 121 56 24 14 2 1 3 3 0 2 2

allele_T 329 502 1295 723 320 108 68 14 13 9 7 2 0 0

Genotype Total number Mean NCI

CC 43 2.44

CT 554 2.35

TT 1418 2.32

CT + TT 1972 2.32

CC + CT 597 2.35

allele_C 640 2.36

allele_T 3390 2.32

https://demografia.stat.gov.pl/BazaDemografia/StartIntro.aspx
https://demografia.stat.gov.pl/BazaDemografia/StartIntro.aspx
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Note that for rs12373123 all of: TTvs.CC, CTvs.CC and genotype gave significant results for association with 
numbers of children per individual (Table 2). If all models were considered then these did not survive Bonferroni 
correction; however if only one model was considered then TTvs.CC (p = 0.004) did survive Bonferroni correc-
tion. The largest numbers of children were found with CC homozygotes (mean 2.4 children per individual, see 
Table 1), with both CT and TT having less (both means 2.3 NCI; regression count estimates ± standard errors: 
CT, − 0.508 ± 0.194; TT, − 0.557 ± 0.191; Table 1). A recessive model is indicated by these statistics. Interactions 
with year of birth and sex were not significant (see Supplemental_file_S8) and were removed from the model. 
Year of birth and sex effects were not significant but were kept in the model,  following3. Log(theta) was also not 
significant, showing that the final model was not overdispersed (it would be quite surprising if it was, as both 
negative binomial and the zero-inflation are designed to counter this). In the zeros part of the regression model 
the year of birth was highly significant as expected and no genotype associations were significant.

Barban SNP results. The three Barban SNPs could not be found in the POPULOUS database and therefore 
six surrogate SNPs were chosen as detailed in the Methods. One of the highest LOD scores was found for a sur-
rogate SNP almost 35 000 bp away from a Barban SNP, while closer SNPs often gave much lower scores (Table 3). 
Each surrogate SNP selected was strongly linked to its Barban SNP, with those furthest away presumably having 
frequently interpositioned double-recombination events rendering lower LOD scores for closer SNPs. (For one 
Barban SNP, rs13161115, two surrogate SNPs with very high LOD scores were found on the same side of the 
Barban SNP; see Table 3, and these were analyzed).

With negative binomial regression, using identical coding to that used for the inversion SNPs, all SNPs formed 
a model. No significant associations were found between Barban SNPs and NCI, either for male and female 
data together or separately (Supplemental_file_S1; data: Supplemental_file_S4; results: Supplemental_file_S5).

Figure 1.  Subjects (each row one subject; anonymized codes in first column) showing non-recombinant groups 
H1_H1 and H1_H2. Concatenated diploid SNP bases (two adjacent columns for each SNP) were aligned 
using MAFFT (see methods). Red arrow shows demarcation between subjects with (mostly) homozygous or 
heterozygous SNP bases. Red: A, adenine; green: C, cytosine; blue: G, guanine and yellow: T, thymine. (The 
figure shows only a small part of the total alignment).

Figure 2.  Subjects, as in Fig. 1, aligned with non-recombinant groups and labelled as H1_H2 and H2_H2 
groups. (The figure shows only a small part of the total alignment).
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Random negative control SNPs. After exclusions, 109 negative control SNPs were analyzed using zero-
inflated negative binomial regression using identical coding as above. Models were not formed with 11 SNPs, 
leaving 98 SNPs as negative controls. No significant associations were found between these SNPs and NCI for 
male and female data together or for male data alone. However, for female data, one SNP: rs4485340, did give a 
positive result for GA vs. AA, p = 0.0261 (data: Supplemental_file_S6; results: Supplemental_file_S7).

Discussion
Although a recessive model is indicated by the data, a dominant descriptive statistic can be created to compare 
with that given by Stefansson et al.3: With reports from both sexes combined, homozygotes/heterozygotes with 
the H2 allele were estimated to have 0.0796 more children in the Icelandic  population3; and 2.353 − 2.315 = 0.0380 
more children in the Polish population (from the present study). Together with the significant regression result 
this can be regarded as positive confirmation that the inversion is associated with more children. The recessive 

Table 2.  Results from zero-inflated negative binomial regression of rs12373123 (representing the chromosome 
17 inversion) genotypes against numbers of children (NCI), adjusted for year of birth (as Age) and sex; 
interactions were not significant and were removed. Numbers of children 0 to 3 were set as non-events. 
Significance codes: ***p < 0.001; **p < 0.01; *p < 0.05.

Pearson residuals: Min 1Q Median 3Q Max

zeroinfl (formula = NCI ~ SNP + Age + SEX, data, weights, dist = "negbin")

 − 0.8199  − 0.4048  − 0.3406  − 0.2595 5.8534

Estimate SE z value Pr( >|z|)

Count model coefficients (negbin with log link):

(Intercept) 1.986560 0.259944 7.642 2.13e − 14 ***

SNP:CT  − 0.508373 0.194147  − 2.618 0.00883 **

SNP:TT  − 0.557395 0.191392  − 2.912 0.00359 **

Age 0.001188 0.002895 0.410 0.68149

Sex 0.028820 0.055795 0.517 0.60548

Log(theta) 15.476737 35.489470 0.436 0.66277

Estimate SE z value Pr( >|z|)

Zero-inflation model coefficients (binomial with logit link):

(Intercept) 3.906649 0.691704 5.648 1.62e − 08 ***

SNP:CT  − 0.988095 0.575369  − 1.717 0.0859

SNP:TT  − 0.700774 0.569460  − 1.231 0.2185

Age  − 0.027448 0.006922  − 3.965 7.33e − 05 ***

Sex 0.118935 0.134470 0.884 0.3764

Theta = 5,265,762.6024; Number of iterations in BFGS optimization: 14

Log-likelihood: − 1514 on 11 Df

Analysis of Deviance Table (Type II tests); car::Anova(MODEL, type = "II", test = "Chisq")

Df Chisq Pr(> Chisq)

Response: NCI

SNP 2 8.8689 0.01186 *

Age 1 0.1685 0.68149

Sex 1 0.2668 0.60548

Table 3.  Linkage disequilibrium analyses (using Haploview with the EUR’ population) between single 
nucleotide polymorphisms (SNPs) found by Barban et al.4 to be associated with numbers of children (Barban 
SNPs) and surrogate SNPs which were chosen with the highest logarithm of odds (LOD) scores up to 50 000 
base pairs from each Barban SNP. *Estimated distance in base pairs (bp): minus = upstream of Barban SNP; D’, 
Lewontin’s D′ statistic;  r2, Pearson’s r-squared statistic.

Barban SNP Surrogate SNPs Distance (bp)* D’ LOD score r2

rs10908474 rs6427268  − 33 035 0.675 20.3 0.286

rs4434872 20 551 0.953 10.1 0.119

rs13161115 rs2194207  − 16 426 0.972 94.4 0.911

rs12656808  − 3414 1.00 17.2 0.164

rs2415984 rs10149370  − 23 065 0.957 95.0 0.840

rs1669786 20 379 1.00 113 0.911
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model, indicated by the results to be more appropriate, gave 2.442 − 2.324 = 0.118 more children for Polish H2 
homozygotes.

The prevalence of H2 haplotypes, as identified by SNP non-recombinant groups, was estimated as 15.9% in the 
Polish population (from Table 1: number of C alleles / total number of alleles), which compares with frequencies 
of H2 microsatellite haplotypes found by Stefansson et al.3: 1% (n = 66) in subjects of Asian descent, 6% (n = 177) 
with relatively recent African descent and 21% (n = 241) with European descent.

As mentioned in the Introduction, similarities or differences between phenotypes should be considered. The 
phenotype studied in the present article is the number of children per individual (NCI). Several researchers have 
defined the "number of children ever born" (NEB; meaning how many conceptions the woman had including 
still-births and fetal deaths) (e.g. 3.). However, for various reasons including cultural sensitivities, it is not always 
possible to get correct answers to questions which concern still-births, especially if a man is asked the question. 
In 2019 the numbers of stillbirths in Poland was estimated at ~ 0.2%19 and this is unlikely to affect association 
outcomes except via interactions with age (which analyzes identically to year of birth; this is of importance with 
decreases in infant mortality over time).

Additionally, as well as the obvious uncertainties in data derived from male responses, there is also uncer-
tainty inherent with parental age: young people might have more children after the survey. Fertility rate falls 
with  age20 and data was therefore used from minimum ages  following4. Note that even the age at which women 
remain fertile might change with year of birth as the fecundity period of women appears to be  lengthening21.

A second feature to be considered is the regression model. In the present study Poisson-related regressions 
were utilized, following Ibeji et al.22. These have numerous advantages over linear regression, not least that in 
linear regression a fundamental assumption often only loosely followed is that the relationships should be some-
what linear (!) which is not the case if there is a peak at two or more children. (The female H2 data in Stefansson 
et al.3 mentioned in the Introduction was configured to have near-linearity, but other genotypes almost certainly 
had peaks at two children, as with the male H2 data.) Poisson-related distributions are designed for count data 
and the negative binomial is the least subject to over-dispersion. (Zero-inflated models also provide a further 
counter to over-dispersion).

Perhaps surprisingly, there is no evidence whatsoever that sex has an effect on the phenomenon considered, 
for two reasons: (1) in two studies now the main sex effects were not significant, and (2) casual observation 
of results from separated sexes (disregarding non-significant SNP main effects, and small amounts of data 
for separated sexes in the present study) might lead to a guess that sex has exactly opposite effects in the two 
populations—which is a highly unlikely scenario. The lack of effect of sex is another reason for supposing that 
any causal relationship is more likely to be to do with human reproductive behavior than, for example, effects 
on male fertility.

The association does not give any direct evidence for a causal effect, as the inversion could well be correlated 
with other aspects of the genome. However, it is already known that the inversion, and/or genes within it, have 
various associations with neurological effects. For example, the H1D and H2D versions studied by Steinberg 
et al.11 and highly prevalent in Europeans (note it was not possible to distinguish these from the less common 
H1’ and H2’ versions in the present study) have been associated with protection against various neurological 
disorders such as Parkinson’s disease, Alzheimer’s disease, and progressive supranuclear  palsy23,24. The H2D 
haplotype has also been associated with a microdeletion syndrome causing developmental delay and epilepsy, 
among other clinical characteristics, in ~ 1/16,000  Europeans25.

Additionally, the inversion contains at least five genes; KANSL1, NSF, MAPT, CRHR1 and SPPL2C, all of 
which have been associated with neurological conditions. This functional clustering is either coincidence, might 
reflect structural/functional organization of the human genome, or perhaps some functional associations have 
been misinterpreted due to strong linkage with other genes (?). These genes are described below.

1. A similar disease phenotype to microdeletion syndrome is found with haplotype insufficiency in the KANSL1 
gene, thought to be involved with neuronal  function26. Recurrent partial duplications of the KANSL1 gene 
have occurred on both H1 and H2 haplotypes and have risen to high frequency in European populations. 
Steinberg et al.11 confirmed three haploid copy number states for the KANSL1 locus.

2. The NSF locus also has three haploid copy number states and with a copy number of two, the NSF gene (which 
codes for Vesicle-fusing ATPase) has one copy which lies outside of the inversion and one (with the first 13 
exons only) inside—which is therefore inverted in H2. Mutations in the NSF gene cause infantile epileptic 
 encephalopathy27.

3. The MAPT (Microtubule-associated protein tau) gene was found to have two highly divergent H1 and H2 
variants and strong linkage disequilibrium, and this gene has been implicated in, for example, Parkinson’s 
disease, Alzheimer’s disease, and progressive supranuclear  palsy23,24,28–30.

4. The CRHR1 gene is unusual in that very similar segments exist on H1 and H2 which are thought to be too 
large to be due to gene conversion; Steinberg et al.11 concluded that a double recombination had taken place, 
probably before the dispersal of modern humans out of Africa. The CRHR1 gene has been implicated in brain 
function and  anxiety31.

5. Lastly, the SPPL2C gene (which encodes Signal peptide peptidase-like 2C = Intramembrane protease 5), has 
been associated with Parkinson’s  disease32.

It is therefore quite possible that combinations of versions of the above genes have neurological effects on 
human reproductive behavior, although this would need to be established. Establishing causal relationships 
between behavior and genetics is, at present, thought to be exceptionally difficult  (see33). Less likely, although 
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possibly in combination with behavioral effects, there might also be some relationship with male fertility, 
although the genes mentioned above do not seem to suggest this.

There are numerous systematic differences between the result presented here and that from Stefansson et al.3, 
any one of which, or any combination, might theoretically have led to misleading results or a false positive in 
either study, but are now, following replication, thought not to have done so. Non-biological differences include: 
(1) the definition of phenotype; (2) the source of data, including whether the subjects were related or unrelated; 
(3) the number of subjects (which might contribute to random effects); (3) the age ranges chosen for analysis; 
and (4) the regression model. Therefore, the fact that effects have been shown in both studies, despite these (and 
many other possible) differences, leads to the conclusion that there is indeed some sort of effect of the inversion 
on numbers of children. Further replication is also warranted, especially to confirm the more advanced regres-
sion model used in the present study.

Limitations of the present study: in further replication it would be advisable to (1) switch to or confirm data 
using genealogy databases rather than questionnaires; (2) include phenotype data for obesity, excessive exercise, 
smoking, alcohol consumption and sexually transmitted diseases to be used as adjustors; and (3) increase the 
sample size to nearer that in the Stefansson et al.3 study. Perhaps surprisingly, even though an initial base of 
almost 6000 subjects were assessed, age/genotype divisions reduced the numbers of H2_H2 homozygotes, and 
a future sample size of 25 000 could be recommended. The prevalence of the H2 haplotype was (relatively) quite 
high in the Polish population, and as this might also be true of related Slavic populations, a study of Eastern 
European populations might possibly give similar results. It is also worth considering how much data would 
need to be collected in order to confirm the previous studies without concerns relating to changes in societal 
pressures (and other changes) over time. To parallel the Stefansson et al.3 study but with only male data selected 
from a one-year age group, e.g. men aged 55, would require a population study with data collected similarly to 
the present study of around five million people. Interestingly, GWASs with over one million subjects are starting 
to be  processed34, so with time such data may become available for analysis.

Using sequencing it would be possible to confirm the H2 genotype, but although this was not confirmed in 
the present study there are no countries in the world which have an H2_H2 predominance and H2 is consistently 
the minor allele. However, sequencing would also be useful to distinguish genotype subtypes and especially to 
measure the prevalence of H2D and H2’.

No conclusions can be made concerning the Barban SNPs, especially as surrogate SNPs were analyzed. Future 
bead-chip arrays might include the exact SNPs, or next-generation sequencing would also improve the chances 
of showing association, if one indeed exists, in the population.

In conclusion, notwithstanding caveats regarding different methodologies between the present study and that 
of Stefansson et al.3 in the Icelandic population, an association has been replicated between the H2 haplotype of 
the large inversion on chromosome 17 at 17q21.31 and increased numbers of children in the Polish population, 
providing some evidence that this association applies at least to European populations. Although five genes in 
the inversion are likely associated with neurological effects, relationships between these and human reproductive 
behavior (or even, perhaps, male fertility) have yet to be established.

Data availability
All data is found in Supplemental materials and is also found at https:// github. com/ Abiol ogist/ Inver sionS NPs. git.
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