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Surface functionalization 
of graphene nanosheet with poly 
(l‑histidine) and its application 
in drug delivery: covalent vs 
non‑covalent approaches
Zahra Najafi rad, Farzaneh Farzad* & Leila Razavi

Nowadays, nanomaterials are increasingly being used as drug carriers in the treatment of different 
types of cancers. As a result, these applications make them attractive to researchers dealing 
with diagnosis and biomarkers discovery of the disease. In this study, the adsorption behavior of 
gemcitabine (GMC) on graphene nanosheet (GNS), in the presence and absence of Poly (L-histidine) 
(PLH) polymer is discussed using molecular dynamics (MD) simulation. The MD results revealed an 
increase in the efficiency and targeting of the drug when the polymer is covalently attached to the 
graphene substrate. In addition, the metadynamics simulation to investigate the effects of PLH on 
the adsorption capacity of the GNS, and explore the adsorption/desorption process of GMC on pristine 
and PLH- grafted GNS is performed. The metadynamics calculations showed that the amount of 
free energy of the drug in acidic conditions is higher (− 281.26 kJ/mol) than the free energy in neutral 
conditions (− 346.24 kJ/mol). Consequently, the PLH polymer may not only help drug adsorption but 
can also help in drug desorption in lower pH environments. Based on these findings, it can be said that 
covalent polymer bonding not only can help in the formation of a targeted drug delivery system but 
also can increase the adsorption capacity of the substrate.

Gemcitabine (GMC) anti-cancer drug is used extensively to treat a variety of cancers such as pancreatic, breast, 
and lung cancer, etc.1,2. GMC as a prodrug enters the cell through nucleoside transporters and blocks cell growth 
by inhibiting the DNA synthesis in cells and leading to apoptosis of the cancer cells3. However, like the other 
anti-cancer drugs, this drug has a lot of side effects, such as bone marrow failure, liver and kidney problems, 
mouth ulcers, and neuropathy4. These disadvantages necessitate the design and development of an appropriate 
drug delivery system (DDS) for its delivery to target tissues. Many researches have shown that DDSs can increase 
the effectiveness of anti-cancer drugs and have beneficial therapeutic effects on cancer treatment5–7. Nowadays, 
in various drug formulation ns such as dermatological, oral, injectable, etc., there is no control over the speed, 
timing, and location of drugs8. Hence, the use of DDSs is essential to increase the bioavailability of the drugs at 
particular sites in the body and at specific times. The advantages of drug DDSs include maintaining delivering 
multiple drugs with one formulation, the concentration of the drug for a specified period, the ability to deliver the 
drug to the specific site, and adjusting the rate of the drug release at the target tissue9. These systems reduce the 
toxicity and side effects of the drugs on healthy organs and increase the therapeutic effects by delivering the drug 
to the desired location10. Besides, in the DDSs, the biological and physical properties of the drug are preserved 
until it achieves the desired tissue. Hitherto, various nanomaterials with different shapes, sizes, and chemical 
properties have been studied as carriers to deliver therapeutic factors. These nano-carriers include dendrimers, 
micelles, polymer matrixes, liposomes, metals, metal oxides, and carbon nanomaterials (e.g., carbon nanotubes, 
fullerenes, and, graphene nanosheet (GNS))11–14.

Among the nano-carriers, GNS has shown great potential for utilization in targeted therapeutics. As a two-
dimensional (2D) carbon nanosheet, GNS is made of sp2-hybridized C atoms and is packed in a honeycomb 
lattice15–19. In fact, GNS comprises some layers with π-conjugated six-membered rings that composes an aro-
matic and planar macromolecule. The planar structure supplies an extraordinary ability to immobilize various 
compounds such as drug molecules, biomolecules, fluorescent cells, and metals20. Given that pristine GNS is 
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very hydrophobic and poorly water-soluble, it’s better using of surface modifiers for its application in pharmacol-
ogy and biomedicine21–23. GNS has shown a loading capacity of 200%, which is significantly superior to other 
DDSs24,25. As a result, GNS that has been correctly modified can act as an appropriate material for the delivery 
of genes and anticancer drugs, biosensors, bioimaging, tissue engineering, antimicrobial application, and cell 
culture26–30.

Poly(l-histidine) (PLH) is one of the most prevalent pH-responsive polypeptides which undergoes a solubility 
transition within the physiological and tumor tissue pH and possesses a pKa of about 6.5 due to its imidazole ring. 
Moreover, PLH, like the other cationic polymers, can be caused endosomal escape due to the high pH-buffering 
capacity of this biomacromolecule31,32. Therefore, the composition of PLH and GNS will provide appropriate 
ground for designing advanced DDSs. Lately, Zhang et al.33 carried out a series of computational and experi-
mental researches on the interactions of doxorubicin with GNS. They reported that the GNS-histidine complex 
is stabilized by π-π interactions. Also, their results illustrated that functionalized GNS not only reveals high 
biocompatibility with cells in vitro but also increases the adsorption of antitumor drugs by cells.

Herein, firstly the dynamic adsorption process of GMC molecule on the surfaces of pristine GNS and GNS 
functionalized (F-GNS) with PLH, as covalently and non-covalent modification, via molecular dynamics (MD) 
simulation will be studied34,35. Afterward, we performed a well-tempered metadynamics (WT-MD) simulation36,37 
to elucidate the effects of PLH on the adsorption capacity of GNS in both neutral and acidic environments.

Materials and methods
Molecular models and initial structures.  The initial structure of the GNS (40*40 Å2), including 678 
carbon atoms and 72 hydrogen atoms, is acquired via the Gauss view program38. The edges are saturated with 
hydrogen atoms to compensate for the dangling bonds. GMC molecule is given from the PubChem database 
(PubChem CID: 60750). PLH molecule is modeled via Gauss view 06 software, and its topology file is imple-
mented using the CHARMM36 force field39. Figure 1 shows the chemical structure of the GNS carrier, GMC 
molecule, and PLH polymer.

Force fields and simulation boxes.  Force field parameters for the nanocarrier, drug, and polymer are 
generated with the CHARMM general force field. Overall, three simulation systems are designed, and MD simu-
lation is carried out, which are afforded in Table 1. In the GNS_PLH/GMC system, four chains of PLH (each 
chain contains eight-unit monomers) as covalently attached to the nano-carrier.

Figure 1.   The structure of (A) graphene nanosheet, (B) gemcitabine drug, and (C) PLH polymer, respectively.

Table 1.   Details of the MD simulation systems.

Systems Constituents No. adsorbed No. Water molecules No. Na+ No. Cl- Box size (nm3)

GRA/GEM GNS + GMC 4 16,489 47 46 8 × 8 × 8

GRA_PLH/GEM GNS + PLH (covalently) + GMC 7 18,498 47 49 8 × 8 × 8

GRA-PLH/GEM GNS + PLH (non-covalent) + GMC 5 16,290 46 59 8 × 8 × 8
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For the GNS-PLH/GMC system, the final orientation of GMC on GNS is extracted and then noncovalently 
functionalized with PLH chains. In each of the simulation systems, ten GMC molecules are located about 2 nm 
away from the carrier surface (see Fig. S1).

MD simulation.  Trajectory analysis is performed using programs within the GROMACS 5.1.4 (ver 2019.2) 
software40,41. The temperature (310 K, normal body temperature) and pressure (1 bar) are kept constant using 
the V-rescale and Berendsen algorithms, respectively42,43. All production MD runs under periodic boundary 
circumstances are carried out for 60 ns in each system. All bonds at their equilibrium length are constrained with 
the LINCS algorithm44. A 1.4 nm cut-off is adopted for van der Waals interactions, while the long-range elec-
trostatic interactions are examined based on the Particle-mesh Ewald Method45. The visual molecular dynamics 
package is utilized to view the entire simulation process46.

MD simulation: evaluation methods.  A set of descriptors are derived for investigation of the simulation out-
puts, which are briefly outlined below:

Radial distribution function (RDF).  The RDF is calculated by Rog and Martinez-Seara’s methodology to exam-
ine the distributions of drug molecules around the carrier46. Indeed, the analysis of RDF data shows how the 
particles in a system are arranged radially. RDF, or pair correlation function gij(r), between particles of type i and 
j, is defined as the following equation:

where, < ρj(r) > as the particle density of type j at a distance r around particles i is defined, and < ρj >local
 is 

the particle density of type j averaged over all spheres around particles i with radius rmax.

The mean square displacement (MSD).  For the designation of diffusivity of GMC molecules adsorbed to GNSs 
in different systems, at first, the following statement is used to estimate the MSD47,48:

During the simulation time, particle diffusion coefficient (Di) can be calculated from Einstein’s equation, as 
expressed in Eq. (2).

The number of hydrogen bonds (HB).  According to the geometric criteria, as follows, HB analyses examine the 
number of possible HBs made between donors and acceptors49.

The number of HBs made between the simulated components over time provides valuable insight into the 
nature of the forces between them.

The WT‑MD calculation.  To better understand the differences between the interactions of GMC with 
F-GNS in the neutral and acidic environment, two series of WT-MD simulations are performed. For each case, 
a simulation box with a 3.5 × 3.5 × 8 Å3 cubic dimension is designed that is contained a GMC on one side and 
a PLH on the other side. To construct protonated systems, the final structure of the GNS-PLH/GMC system is 
extracted, and then the relevant imidazole ring of PLH is protonated50. To create pH level for the GNS-PLH/
GMC system, the technique proposed by Adnan et al. is used in this work51. The sum_hills tool in Gromacs 
2019.252,53 patched with PLUMED version 2.5.2 plugin54 is utilized to do WT-MD simulations. The free energy 
(FE) surface of the investigated systems as a function of the COM’s GMC from the PLH (collective variable 
CVCOM) is computed. This CV allows the GMC comes close to the polymer in different orientations and confor-
mations. For two studied complexes, the WT-MD simulation is run for 120 ns.

Results and discussions
MD simulation.  Drug loading on the GNS and F‑GNSs.  One of the most significant applications of 2D na-
nomaterials in drug delivery is their ability to carry a high dose of drugs that can be affected by various agents55. 
In the present research, to examine the effect of the PLH functional group on the GMC adsorption mechanism, 
a high number of GMC and PLH (relative to the size of the selected GNS) is utilized.

The initial and final snapshots for the GMC adsorption on the pristine and functionalized GNSs are shown 
in Figs. S1 and S2. The final snapshots in Fig. 2 show that most of the GMC molecules adsorbed on the F-GNS 
surface after 60 ns in functionalized systems, while the number of drugs adsorbed in the pristine system is less. 
These findings can be attributed to the presence of the PLH functional group, which increases the tendency of 
the drug molecules to adsorb on F-GNS surfaces. The drug molecules interact with the nanocarrier through 
the formation of H-bond and π-π interactions. In addition, the final snapshots show that drug uptake in the 
GNS_PLH/GMC system is better than the other two systems.

(1)gij(r) =

〈

ρj(r)
〉

〈

ρj

〉

local

(2)MSD (�t) =
〈

(ri(�t) − ri(0))
2
〉

=
〈
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〉

(3)Di =
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6
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(4)r ≤ rHB = 0.35 nm and α ≤ αHB = 30◦
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Interaction energies.  To obtain a better understanding of the GMC adsorption mechanism on the GNSs sur-
faces, the interaction energy is calculated. Figure 3 represents the Lenard–Jones (L–J), coulombic (Coul), and, 
total energies for the adsorption process. The comparison of the energy values between the three studied systems 
shows that in the GNS_PLH/GMC system, the contribution of L–J energy increases significantly. But in the 
GNS/GMC and GNS-PLH/GMC systems, L–J energy values are almost equal. This result shows that the Coul 
energy between drug and PLH in the GNS_PLH/GMC system increases the total energy. It seems that the Coul 
energy has a significant role in strengthening the total energy so that in the GNS_PLH/GMC system, it also 
strengthens the total energy. As illustrated in Fig. 4, L–J interactions gradually increase as more and more drugs 
are being adsorbed on the carrier. Close inspection of Fig. 3 shows that the total interaction energy between 
GMC and GNS has negative values, in the following order: GNS_PLH/GMC > GNS-PLH/GMC > GNS/GMC. 
This result indicates that the total energy values for the interaction of the GMC with the GNSs in F-GNSs are 
more than GNS, especially in the GNS_PLH/GMC system where the GNS are covalently functionalized with the 
PLH groups. These findings have good agreement with the depicted snapshots. The more negative total energy 
in this system can be brought up as witnesses for the adsorption of a more GMC (cf. 70%) on the GNS_PLH sur-
face. Also, these results confirm that covalently functionalization GNS with PLH groups leads to the formation 
of a drug-carrier complex with more stability. To clearly show how the interaction energy affects the adsorption 
of drug molecules, all energy values are normalized. These values are calculated by dividing the total interac-
tion energy by the number of adsorption drug molecules and results are given in Fig. S2. As shown in Fig. 2, 
at the end of the simulation, the GNS_PLH/GMC system had the greatest average number of adsorbed drug 
molecules. While the lowest average number of adsorbed drug molecules is related to the GNS/GMC system. 

Figure 2.   The final snapshots of (A) GNS/GMC, (B) GNS_PLH/GMC, and (C) GNS-PLH/GMC systems. The 
number of adsorbed GEM molecules in the GNS/GMC, GNS_PLH/GMC and GNS-PLH/GMCsystems are four, 
seven and five drug molecules, respectively.

Figure 3.   Average Lenard- Jones (Green), coulombic (Blue), and total (Brown) interaction energies between 
different components of loading system.
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Accordingly, the number of adsorbed drug molecules in the studied systems was consistent with the normalized 
energy results (see Fig. S2). The L–J, Coul, and, total energy values for the interaction of GEM with PLH in the 
GNS-PLH/GMC system are reported in Table S1. The energy values in this table show that the value of the total 
interaction energy for the GNS-GEM combination is significantly higher than the GEM-PLH pair, which shows 
the drug molecule tends to make stronger interactions with the GNS.

RDF analysis.  For further structural analysis consistent with our findings, the effect of PLH functional groups 
on the GMC adsorption is examined by the RDF analysis, and the obtained results are depicted in Fig. 5. The 
RDF peak of drug molecules and GNS appeared at a distance of about 0.2 nm. RDF results show obvious peaks 
in the distance of about 0.4 nm for the GNS/GMC and GNS-PLH/GMC systems. As expected, the increase in the 
intensity of the RDF peak is more pronounced for the GNS_PLH/GMC system, and its height peak is estimated 
at around ~ 14. These results support our arguments about the most favorable interactions of GMC with nano-
carrier, resulting in higher adsorption efficiency drug on the GNS_PLH surface. In conclusion, it is predicted 
that GNS_PLH can carry the GMC drug most effectively, and it can be considered the most appropriate drug 
carrier. The lower intensity of the GNS-drug RDF peak for the GNS/GMC system confirmed the weaker interac-
tions of the drug with the pristine nano-carrier.

Figure 4.   The L–J interaction energy between the GMC molecules and GNSs as a function of simulation time.

Figure 5.   The RDF of the GMC anti-cancer drug loading onto GNS and F-GNS over 60 ns MD trajectories.
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HB analysis.  To obtain a deep insight into the changes in the hydrogen bonding pattern, the number of HB 
for the intended components is calculated via the “gmx hbond” module in the GROMACS program. The HB 
analysis between the chosen pairs of carrier and drug in the studied complexes is carried out based on a donor–
acceptor cutoff distance of 3.5 Å. Figure 6 depicts the variation in HBs formation between the carrier and the 
drug during simulation time. As shown in this figure, the number of HBs of the carrier-drug in the functional-
ized systems is more than the pristine ones, particularly in GNS_PLH/GMC system. In the other words, with 
the functionalization of the GNS surface, the number of host–guest HBs increased. As well as, it should be noted 
that the GNS/GMC system has the lowest number of HBs. This is due to the fact that in this system only four 
GMC molecules are adsorbed on the GNS surface, and the other GMC molecules do not tend to interact with 
the GNS surface or overlap with each other. Furthermore, it is clear that after adsorption of GMC on the GNS 
surfaces, the number of HB between drug and water molecules decreases, while the HB number between the 
GMC molecules and the GNS surfaces increases by passing the time (see Fig. S3). Thus, it can be concluded that 
hydrogen bonding can be a driving force for the adsorption of GMC molecules on the GNS and F-GNS surfaces.

MSD analysis.  The Di is a measure of diffusion mobility and translational of each molecule at thermodynamic 
equilibrium56,57. Figure 7 exhibits the MSDs and Di of GMC molecules in three studied systems. By referring to 
this figure, it is found that the GNS_PLH/GMC system reveals the lowest MSD for the GMC diffusion, the GNS-
PLH/GMC system affords medium drug diffusion and the GNS/GMC system has the highest one. This means 
that the covalent functionalization of GNS increases the interaction between a drug and the nanocarrier. For 
effective delivery of GMC, the system must reveal the lowest MSD, therefore, the GNS_PLH/GMC system, which 

Figure 6.   The number of HB formed between the drug and carrier.

Figure 7.   The MSD of drug molecules with carrier and corresponding Di values in the investigated systems.
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possesses the slowest and the most controlled GMC transport/diffusion, can be considered the most favorable 
system. The lowest diffusion coefficient is observed for the GNS_PLH/GMC system (0.0109 × 10–5 cm2/s), and 
the GNS/GMC system shows the highest GMC diffusion coefficient (0.0302 × 10–5 cm2/s). As a result, the capac-
ity of the DDSs to deliver the GMC obeys the following order, GNS_PLH/GMC < GNS-PLH/GMC < GNS/GMC. 
This fact can be related to the weaker interaction of GMC with the GNS surface. It is confirmed by the RDF plots 
presented in Fig. 5 that show the distance between GMC and carrier in GNS_PLH/GMC system is shorter than 
in the other two systems. We also calculate the diffusion coefficient of drug molecules adsorbed on the GNSs 
(see Table S2). According to the data in this table, the lowest Di for the GNS_PLH/GMC system confirms the 
stronger interactions in this system. It should be noted that the highest Di of GMC belongs to the GNS/GMC 
system which has the lowest interaction energy.

WT‑MD simulations.  The effect of functional groups on GMC loading and releasing is studied by evaluat-
ing the FE surface. In this part, the variation in FE surface relative to changes in distances between the COMs of 
drug and polymer, both in neutral and acidic circumstances is investigated. As shown in Fig. 8, the global mini-
mums of GMC adsorption at neutral circumstances are set 0.17 nm away from the PLH’s COM with the release 
of − 346.24 kJ/mol of energy. Nevertheless, the energy release is increased by − 64.98 kJ/mol in acidic conditions. 
In addition, the difference between the drug FE at the time of adsorption on the polymer compared to when it is 
freely solved in an aqueous medium shows a significant reduction in acidic conditions. Therefore, it seems that 
the acidic circumstances can help to release the drug from the nanosheet.

Conclusion
The GNS as a suitable carrier for GMC drug is investigated using the MD and WT-MD simulations, and the effect 
of the PLH functional group (as covalently and non-covalent modification) on the GMC adsorption is examined. 
The interaction energy, probability of finding the drug on the nanosheet surface, the number of HB, and mean 
square displacement after drug adsorption are evaluated. Assessing the interaction energies of GMC with the 
GNSs in the absence and presence of the polymer showed that L–J interactions have a considerable role in the 
GMC adsorption process. Close inspection of the FE surface of GMC revealed that the global minimum of drug 
adsorption at a neutral environment is set 0.17 nm away from the PLH’s COM, with a release of − 346.24 kJ/mol 
of energy. Whereas, in an acidic environment, the energy desorption is increased and set at − 281.26 kJ/mol. 
The obtained results show that the GNS_PLH due to the strong interaction with the GMC drug is an appropriate 
candidate for the targeted drug delivery. This result is nicely confirmed by RDF and MSD analyzes. The present 
work emphasizes that the GNS_PLH is an appropriate substrate for the adsorption of GMC molecules and will 
encourage the researcher and experimentalists to explore and use this substrate as a GMC carrier.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.

Code availability
The codes that support the findings of this study are available from the corresponding authors upon reasonable 
request.

Figure 8.   Free energy curves for the adsorption of GMC on GNSs.
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