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Extended compartmental model 
for modeling COVID‑19 epidemic 
in Slovenia
Miha Fošnarič1, Tina Kamenšek1, Jerneja Žganec Gros2 & Janez Žibert1*

In the absence of a systematic approach to epidemiological modeling in Slovenia, various isolated 
mathematical epidemiological models emerged shortly after the outbreak of the COVID‑19 epidemic. 
We present an epidemiological model adapted to the COVID‑19 situation in Slovenia. The standard 
SEIR model was extended to distinguish between age groups, symptomatic or asymptomatic disease 
progression, and vaccinated or unvaccinated populations. Evaluation of the model forecasts for 2021 
showed the expected behavior of epidemiological modeling: our model adequately predicts the 
situation up to 4 weeks in advance; the changes in epidemiologic dynamics due to the emergence of 
a new viral variant in the population or the introduction of new interventions cannot be predicted by 
the model, but when the new situation is incorporated into the model, the forecasts are again reliable. 
Comparison with ensemble forecasts for 2022 within the European Covid‑19 Forecast Hub showed 
better performance of our model, which can be explained by a model architecture better adapted to 
the situation in Slovenia, in particular a refined structure for vaccination, and better parameter tuning 
enabled by the more comprehensive data for Slovenia. Our model proved to be flexible, agile, and, 
despite the limitations of its compartmental structure, heterogeneous enough to provide reasonable 
and prompt short‑term forecasts and possible scenarios for various public health strategies. The model 
has been fully operational on a daily basis since April 2020, served as one of the models for decision‑
making during the COVID‑19 epidemic in Slovenia, and is part of the European Covid‑19 Forecast Hub.

The COVID-19 pandemic forced nations worldwide to suspend significant parts of their social and economic 
 activities1. In Slovenia, SARS-CoV-2 was first detected in March 2020, and containment measures soon  followed2. 
Especially before the development and rollout of vaccines against SARS-CoV-2, such non-pharmaceutical inter-
ventions were the only means available to countries to slow down coronavirus infection rates and avoid over-
burdening health care systems. Because of potentially high social and economic costs of containment measures, 
it is important to make informed decisions about when to implement them and at what scale. A useful tool for 
predicting and controlling the evolution of infectious diseases and understanding the impact of public health 
interventions is mathematical epidemiological  modeling3.

In the absence of a systematic approach to mathematical epidemiological modeling in Slovenia, various iso-
lated mathematical epidemiological models emerged shortly after the outbreak of the COVID-19 epidemic. To 
benefit from more systematic access to epidemiological data and peer-review process, some of  them4–7 gathered 
around the emerging web portal COVID-19  Sledilnik2. Soon COVID-19 Sledilnik was widely accepted as a portal 
for aggregation, analysis, and representation of COVID-19 epidemiological data in Slovenia, and the results of 
some  models4,7 were used by government decision-makers.

In this work, we present an epidemiological model adapted to the COVID-19 epidemic in  Slovenia7. The 
standard SEIR  model3 was extended to distinguish between age groups, symptomatic or asymptomatic dis-
ease progression, and vaccinated or unvaccinated populations. Similar extensions of SEIR-like models have 
been widely used in the COVID-19 crisis, for example, to account for undetected infections, different stages 
of infection or age  groups8–13, the effects of vaccination and coexistence of different viral  variants14, to study 
different behavioral responses to public health  interventions15,16, or to forecast burden of epidemics on health 
care  systems17.

The model presented in this paper has been fully operational on a daily basis since April 2020, served as 
a decision support tool during the COVID-19 epidemic in Slovenia, was used for COVID-19 Sledilnik data 
 analyses2, and has been included in the European Covid-19 Forecast  Hub18 coordinated by the European Centre 
for Disease Prevention and Control.
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The rest of the paper is organized as follows. In the Methods section, the structure of the model with all its 
extensions, the outputs of the model, and the model evaluation methodology are explained. The model forecasts 
were evaluated for the years 2021 and 2022. The epidemic situation in Slovenia in 2021 and 2022 is described 
together with the evaluation results in the Results section and discussed in the following section. Before the final 
conclusions of the paper, the limitations of the model are explained.

Methods
Model. We developed a deterministic age-structured compartmental model of SARS-CoV-2 transmission 
with a population stratified into 5 age groups. The model was constructed by extending the standard SEIR 
 model3 with additional compartments to model symptomatic and asymptomatic disease progression and to 
model vaccinated and unvaccinated populations separately.

Extended compartmental SEIR model. We extended the standard SEIR model, by adding compartments to 
consider different courses of COVID-19 disease, as shown in Fig. 1.

Those who are susceptible to the disease (compartment S) may become infected and enter the incubation 
state (compartment E), after some time they become infectious (compartment I) and begin to recover from the 
infection in different ways. Most people can have an infection with mild symptoms or are asymptomatic (com-
partment M) and then recover from the infection (compartment R). This is the pathway S → E → I → M → R in 
the model. Some have severe symptoms requiring hospitalization (compartment H), where they may remain 
until further recovery (compartment R). This is the pathway S → E → I → H → R in the model. Some of the 
patients require additional intensive care (compartment C). Patients in the intensive care units may recover and 
go to compartment R, this is the pathway S → E → I → C → R, or die, this is the pathway S → E → I → C → D in 
the model. There is an additional compartment Z for modeling people who died from COVID-19 but were not 
treated in hospitals. This corresponds to the pathway S → E → I → Z → D in the model. This compartment was 
added during the second wave of COVID-19 in Slovenia in the fall/winter of 2020, when Slovenia witnessed 
severe outbreaks of SARS-CoV-2 in nursing and retirement homes and could not treat all severely ill people in 
hospitals. In the following waves of the epidemic, such a course of the disease was rare.

The above idea was applied separately to vaccinated and unvaccinated populations. The joint model was then 
merged from these two submodels by dividing the susceptible group (S) into two subgroups, Sn and Sv, repre-
senting the unvaccinated and vaccinated susceptibles, respectively. The split of the susceptible group into Sn and 
Sv is defined by the parameter u, which represents the proportion of vaccinated at a given time. As can be seen 
from Fig. 1, the two submodels have identical compartments but differ in parameters related to the probability 
of infection, severity of disease, and possibility of death.

All the parameters of the model are summarized in Table 1. The parameters can be broadly divided into three 
groups: the proportion parameters, the duration parameters, and the parameters corresponding to the transmis-
sion of the infection. The proportion parameters are vaccination rate u(t) , the proportion of mild/asymptomatic 
infections pM(t) , the proportion of hospitalizations pH (t) , the proportion of intensive care hospitalizations pC(t) , 
the proportion of hospitalizations resulted in death 1− pR(t), and the proportion of deaths outside hospital care 

Figure 1.  Scheme of the extended SEIR model with additional compartments to model asymptomatic and 
symptomatic cases with hospital and ICU admissions, split into two separate submodels to model vaccinated 
and unvaccinated populations.
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pZ(t) . All these parameters are estimated daily using data on confirmed positive cases, regular and intensive care 
hospitalizations, deaths, and vaccination progress. Duration parameters correspond to the latent period dura-
tion 1/a(t), the infectious period duration 1/γ (t) , the mild/asymptomatic period duration 1/γM(t) , the intensive 
care hospitalization 1/γC(t) , the non-ICU hospitalization 1/γH (t) , and the pre-death duration 1/γZ(t) of patients 
in nursing/retirement homes. It should be noted that from a mathematical point of view, the compartment of 
exposed individuals (E) can often be omitted by appropriately including the latent period in the infectious period. 
In this work, we treated the compartment E separately to preserve the epidemiological perspective of the existing 
incubation period after infection with SARS-CoV-2. This group also includes two durations of waning immunity: 
the period of waning immunity after disease 1/wf R(t) and the period of waning immunity after vaccination 
1/wf V (t) . The time 1/wf R(t) corresponds to the mean duration, in which the patient becomes susceptible to re-
infection, the time 1/wf V (t) represents the mean duration, in which the vaccinated person becomes susceptible 
to infection. The two durations of waning immunity are set to a longer period, e.g., one year, which means that 
in one year those who have been vaccinated or recovered from the disease will again become susceptible. Both 
rates are included in the model so that the proportion of those vaccinated or recovered that migrate back to the 
susceptible class decreases exponentially over time. In this way, we have also attempted to include in the model 
the efficacy of the vaccine, which changes over time.

Disease transmission is included in the model by the parameters �(t) corresponding to the force of  infection3, 
which are computed in the age-stratified extended SEIR model described in the next section.

Age‑stratified extended SEIR model. The SEIR model from the previous section has been additionally extended 
to model five age groups of the population. This was done by cloning a structure of the base model (Fig. 1) five 
times and allowing population mixing across all age subgroups from these submodels. The resulting extended 
SEIR model is shown in Fig. 2.

Each submodel of the model schemed in Fig. 2 allows for modeling of the same disease courses and has the 
same parameters as the base SEIR model shown in Fig. 1, whereby the values of the parameters in the submodels 

Table 1.  The parameters of the model. All parameters are functions of time.

Parameter Meaning Value (range)/description

u(t) Proportion of vaccinated Estimated from daily vaccination reports, age-stratified

�(t) Force of infection Calculated from transmission coefficients and contact matrices (see 
age-stratified model)

1
a(t)

Mean duration of latent period (3–5) Days, depends of SARS-CoV-2 variants
1

γ (t)
Mean infectious period (3–8) Days, depends of SARS-CoV-2 variants

1
γM (t)

Mean duration of mild/asymptomatic infection (7–14) Days, depends of SARS-CoV-2 variants
1

γH (t)
Mean duration of non-ICU hospitalization (10–15) Days

1
γZ (t)

Mean duration of the disease before death in nursing/retirement home 14 Days
1

γC (t)
Mean duration of ICU hospitalization (14–21) Days

pM (t) = 1− pH (t)− pZ (t) Proportion of mild/asymptomatic infections Computed from proportions pH (t) in pZ (t) , age-stratified

pH (t) Proportion of infections requiring hospitalization Estimated from data, proportions between daily incidence of cases and 
hospitalizations, age-stratified

pC(t) Proportion of hospitalizations requiring ICU Estimated from hospitalization data reports, proportions between 
daily incidence of hospitalizations and ICU, age-stratified

pZ (t) Proportion of infections without hospitals resulting in death Estimated for the data in the 2nd wave, in all other waves eq. to 0.0, 
age-stratified

pR(t) Proportion of recovered hospitalizations Estimated from hospitalization data reports, proportions between 
daily incidence of hospitalizations and deaths, age-stratified

1
wfR(t)

Mean duration of waning immunity (180–365) Days

�V (t) =
1

fIV (t)
· �(t) Force of infection in the vaccinated group

Force of infection in the vaccinated group is equal to force of infection 
in the unvaccinated group lowered by a certain factor fIV
fIV (t) is in range (2–5), depends of SARS-CoV-2 variants

pMV (t) = 1− pHV (t)− pZV (t) Proportion of mild/asymptomatic infections in the vaccinated group Computed from proportions pHV (t) in pZV (t) , age-stratified

pHV (t) =
1

fHV (t)
· pH (t)

Proportion of infections requiring hospitalization in the vaccinated 
group

Proportion of hospitalization in the vaccinated group is equal to 
proportion of hospitalization in the unvaccinated group lowered by a 
certain factor fHV
fHV (t) is in range (5–10), depends of SARS-CoV-2 variants, age-
stratified

pCV (t) Proportion of hospitalizations requiring ICU in the vaccinated group pCV (t) = pC(t) , age-stratified

pZV (t)
Proportion of infections without hospitalizations resulting in death in 
the vaccinated group 0.0 (vaccination starts in Slovenia after the 2nd wave)

1− pRV (t) =
1

fDV (t)
·
(

1− pR(t)
) Proportion of hospitalizations resulting in death in the vaccinated 

group

Proportion of hospitalizations resulting in death in the vaccinated 
group is equal to the proportion of hospitalizations resulting in death 
in the unvaccinated group lowered by the factor fDV
fDV (t) is in range (5–10), depends of SARS-CoV-2 variants, age-
stratified

1
wfV (t)

Mean duration of waning immunity after vaccination (180–365) days
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may differ. We chose to model five age groups of the population to obtain an age-stratified model that better fits 
the epidemiological situation with the age-dependent vaccination strategy in Slovenia and the different severity 
of disease progression within different age groups.

Disease transmission in this model is defined by assuming mixing of populations between age groups and 
between vaccinated and unvaccinated groups. The force of infection in each submodel is computed as

where �i(t) is the force of infection in the submodel representing age group i, and is computed as the sum over 
all age groups of the rates of how many unvaccinated and vaccinated infected individuals from the age group 
j, denoted by Ij and Ivj, infect susceptibles from the age group i. The rates for each combination of the groups i 
and j are computed as βij(t) · Ij(t) , where βij(t) represents the contact rate between individuals of group i and 
individuals of group j. Contact rates βij(t) are computed as βij(t) = β(t) · wij(t) , where β(t) is an overall transmis-
sion rate of the disease, and wij(t) are the weights for increasing or decreasing the transmission rate according 
to the assumed contact mixing of the groups i and j. The weights are stored in the contact matrix W. The overall 
transmission rate β(t) is computed as a product of the effective reproduction number R(t) and the mean infec-
tious period 1/γ (t) , namely β(t) = R(t)/γ (t).

(1)�i(t) =

5
∑

j=1

βij(t) · Ij(t)+

5
∑

j=1

βij(t) · Ivj(t),

Figure 2.  Scheme of the group-stratified extended SEIR model obtained by cloning the base model from Fig. 1, 
which allows for weighted and time-dependent population mixing between groups. The concept was used to 
model five population age groups.
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Note that the forces of infection of vaccinated groups, �vi(t) , are the same as �i(t) reduced by a specific fac-
tor fIV(t) that accounts for the effectiveness of vaccination in reducing transmission of the disease (see Table 1). 
This was done in a similar way as  in11,12, where the force of infection of the vaccinated group was reduced by the 
percentage of the reduced infections due to vaccination.

Model outputs. The model produces the following projections for each age group: 7-day averages of daily posi-
tive cases, daily non-intensive care hospitalization admissions and active stays, daily intensive care admissions 
and active stays, and 7-day averages of deaths. The projections are additionally summarized across all age groups 
to obtain overall projections. From these projections, we derived cumulative projections of positive cases, hos-
pitalizations, intensive-care hospitalizations and total deaths. In addition, the model also generates weekly inci-
dence of positive cases, hospitalizations and deaths.

Parameters computation and model optimization. The model is calibrated to the current state of the epidemic 
in Slovenia by adjusting the model parameters in Table 1. All parameters are treated as functions of time, so their 
values may change over time according to the varying epidemiological situation. While some model parameters 
are calculated daily, others are estimated by observing the dynamics of the epidemic in the population, and some 
are set according to the literature and mainly remain fixed over time.

We performed the optimization routine to minimize the error of the model projections on four different 
objective functions: daily reported infections, daily deaths, daily reported number of current hospitalizations not 
requiring intensive care and daily reported number of current hospitalizations requiring intensive care. All the 
data for tuning the parameters were collected from COVID-19  Sledilnik2 and the Slovenian National Institute 
of  Health19. We collated the population into 5 age groups: 0–24, 25–44, 45–64, 65–74, and older than 75. This 
age grouping was chosen because, from a clinical point of view, these groups represent in some cases the finest 
granularity we could find in the data, and from a computational point of view, it reduces the dimension of the 
optimization  problem12.

The parameters estimated daily are the forces of infection �i(t) and the vaccination rates ui(t) in each age 
group i. The force of infection �i(t) is calculated according to Eq. (1). For these computations we need the daily 
estimated effective reproduction number R(t) weighted by the contact matrix W. The reproduction number R(t) 
is estimated from the time-series of daily reported infections by using the EpiNow2 CRAN R  package20, while 
the contact matrices W(t) were set manually by  following21 and corrected over time to follow the current epide-
miological interventions in the population. The vaccination rates are computed directly from the data of the daily 
reported vaccination rates in the collated age groups provided by the Slovenian National Institute of  Health19.

The proportions pH (t) , pC(t) , pZ(t) and pR(t) are also determined daily. The proportion of hospitalizations 
pH (t) is estimated from the ratio of the time-series of daily active confirmed cases and the hospital stays; the 
proportion of intensive care hospitalizations pC(t) is determined from the time-series of intensive care and non-
intensive care hospitalizations; and the proportion of hospitalizations resulted in death, 1− pR(t), is computed 
from the time-series of hospitalization data and reported deaths. The proportion of deaths outside hospital care 
pZ(t) was used in the second wave in Slovenia and was estimated from the time-series data of hospital deaths and 
all reported deaths due to COVID-19 in Slovenia in that wave. In all other cases it was set to 0. All these propor-
tions are estimated separately for each age group. For example, the proportions of hospitalizations or deaths are 
much lower in the 0–24 age group than in the 75+ age group. Similarly, the vaccination rates also differ greatly 
in time between age groups, etc.

The duration parameters 1/a(t), 1/γ (t) , 1/γM(t) , 1/γC(t) , 1/γH (t) , 1/γZ(t) and the durations of waning 
immunity 1/wf R(t) , 1/wf V (t) are determined manually. They were set according to the literature and remain 
mainly fixed over time. We changed them only in cases of different SARS-CoV-2 variants when suggested in 
the  literature22–24.

The optimization and additional calibration of the model are performed daily in the following way. The effec-
tive reproduction number R(t), the proportions piH(t) , piC(t) , piZ(t) , piR(t) and the vaccination rates ui(t) are 
computed daily from the time-series data of daily active confirmed cases, intensive care and non-intensive care 
hospitalizations, reported deaths and vaccination reports. The estimation of the proportion parameters of the 
model is performed using the past data from the beginning of the modeling because this process is not compu-
tationally intensive, while the effective reproduction number is estimated based on one-year of past data. Several 
runs of the model are performed, perturbing the parameters around these estimated values (by using perturba-
tion range of ±10% ). The resulting model projections are additionally calibrated in each run by automatically 
adjusting the proportion parameters so that the resulting projections better fit the objective functions on the past 
data. Typically, 100 runs are made in such an optimization procedure, resulting in 100 instances of model pro-
jections. The final projections are created using the median values of these instances. By estimating appropriate 
quantiles from these instances, we also estimate the 50%- and 95%-confidence intervals of the final projections.

Model evaluation. We have conducted two evaluations of the model: one for the year 2021 (SI-2021 evalu-
ation) and one as part of the European Covid-19 Forecast  Hub18, in which we have participated with our model 
since December 2021 (EUHub-2022 evaluation).

In both assessments, we focused on three forecast targets: the weekly incidence of new COVID-19 cases, the 
weekly incidence of new COVID-19 hospitalizations (intensive care and non-intensive care), and the weekly 
incidence of new COVID-19 deaths in Slovenia. In the SI-2021 evaluation, forecasts were compared with data 
from COVID-19  Sledilnik2. In the EUHub-2022 evaluation, forecasts were compared with data provided by 
the European Covid-19 Forecast  Hub18, which relies on data from the Johns Hopkins University (for cases and 
deaths) and data collated by ECDC from national health authorities (for hospitalizations).



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16916  | https://doi.org/10.1038/s41598-022-21612-7

www.nature.com/scientificreports/

Forecasts were made for 1, 2, 3, and 4 weeks ahead, with forecasts calculated each Monday from data up to 
the last Sunday. Thus, the parameters of the model were estimated from past data, and forecasts were made for 
up to 4 weeks in advance. Possible future interventions planned by the health authorities to change epidemic 
dynamics were not considered. Consequently, we assessed the short-term forecasts of the model rather than 
different possible scenarios according to planned changes in epidemics.

The quality of the forecasts in the SI-2021 evaluation was assessed graphically and by calculating two error 
statistics. The graphical observations were used to estimate the accuracy of the model over time, while the overall 
performance of the model was measured by the two error statistics. The absolute differences RAEi =

∣

∣yi − ŷi
∣

∣/yi 
were calculated for a set of observations yi , i = 1, . . . , n and point predictions ŷi , i = 1, . . . , n . The first error 
statistic was then computed as the median of RAEi with interquartile range to compensate for possible outliers in 
the forecast errors. To obtain a more scale-free error statistic, we compared the model forecasts with baseline fore-
casts. The baseline forecasts were constructed as forecasts by repeating an observation from the current week four 
times to predict future observations 4 weeks in advance. The comparison of forecast errors was then measured 
using a ratio θ =(mean of RAEi of our model)/(mean of RAEi of baseline model). The ratio θ is a measure of the 
relative performance of our model compared to the baseline model. For θ < 1 our model outperforms the base-
line model, and for θ > 1 the baseline model is better. This measure was developed according to Cramer et al.25.

In the EUHub-2022 evaluation, we reported evaluation results according to the European Covid-19 Forecast 
Hub reporting style, using the relative weighted interval score (rel.wis) for the evaluation metric, as described 
in Cramer et al.25. Comparisons of our model were made with the ensemble and the baseline EuroCOVIDhub 
 models26, which were evaluated on the Slovenian data.

Results
Epidemic situation in Slovenia in years 2021 and 2022. Slovenia started 2021 with a peak of COVID-
19 cases from a prolonged second wave that had already begun in the summer of 2020, and rapid antigen testing 
(RAT) and vaccination against COVID-19 were introduced in late  20202,19,27,28.

As shown in Fig. 3a, after a brief decline in cases in March 2021, the number of COVID-19 infections, pre-
dominantly with the Alpha variant, which was more than 50% more transmissible in humans compared with 
the original virus, began to rise again. The proportion of vaccinated individuals in Slovenia at that time was 
approximately 9%, including 5% with completed initial vaccination protocol. To stop the rise in infections, a 
partial lockdown was imposed in early April, by keeping education and work at a distance, restricting move-
ment, and limiting entry and exit from the country. To visit certain establishments, bars, or shelters, people had 
to be vaccinated, tested, or show proof of recovery (3G rule). By summer, the number of COVID-19 infections 
in Slovenia had decreased significantly, after which the measures were  relaxed2,19,27,28.

In August 2021, the number of COVID -19 infections in Slovenia started to rise again. At the beginning of 
the new school year in September, about 50% of Slovenians were vaccinated, with 45% of the population fully 
vaccinated. Due to the steady increase in Delta variant infections, the government reintroduced the 3G rule for 
most of social life on September 15. Measures included restricting social life, limiting the number of people 
engaged in economic activity, mandatory wearing of surgical or FFP2 masks, and self-testing (3 times per week) 
for unvaccinated school children, students, and employees in all activities. The increase in infections stalled, 
but in October the number of new infections began to rise again, reaching a record of more than 22.000 weekly 
confirmed cases in early November. Slovenia was on the verge of another lockdown as the capacity of 300 beds 
in intensive care units had almost been reached. The maximum of 288 occupied intensive care unit beds was 
reached on November  252,19,27,28, without any further implementation of a lockdown. By the end of 2021, 60% of 
people had been vaccinated, 57% of the population with two doses.

The fifth epidemic wave (Fig. 3b) began with the first Omicron variant case confirmed in Slovenia on Decem-
ber 14, and with stricter restrictions over New year holidays. A dramatic increase in infections followed in 
January 2022, with the wave peaking on January 31 with a weekly incidence of confirmed COVID-19 cases of 
nearly 100,000 (nearly 5% of the country’s population). It should be noted that despite the record number of 
confirmed cases, the number of hospitalizations and deaths was not higher than in the previous waves, due in 
part to the fact that infections with the Omicron variant are often milder than with the Delta variant, and in part 
to the high vaccination rate in the elderly population. Thereafter, numbers began to decline more rapidly than in 
previous waves, and measures were gradually relaxed. Entry restrictions and quarantine were lifted, the 3G rule 
was abolished (except for certain high-risk activities), and a less strict mask-wearing regime was introduced. 
The percentage of vaccinated individuals had not improved significantly from data at the end of  20212,19,27,28.

Model forecasts evaluation for Slovenia in year 2021. Figures 4, 5, and 6 show model forecasts for 
the weekly incidence of COVID-19 confirmed cases, hospitalizations, and deaths in Slovenia in 2021, respec-
tively. More detailed versions of these graphs can be found  online29.

According to the figures, the accuracy of model forecasts over time depends on the epidemiological situation. 
The model forecast is less accurate at the beginning and near the peak of the wave, whereas it is more accurate in 
periods of rising or falling of the wave. This pattern can be clearly seen in the weekly incidence of cases (Fig. 3) 
and in the weekly incidence of hospital admissions (Fig. 4), while the forecasts of the weekly incidence of deaths 
(Fig. 6) are more aligned with the actual data even for 4 weeks ahead.

The overall assessment of the model forecasts for the year 2021 is summarized in Table 2. It can be seen that 
the median of RAE for the weekly incidence of confirmed cases, hospitalizations, and deaths is below or around 
10% and exceeds this value only for the forecasts of confirmed cases for 4 weeks ahead and the forecasts of hos-
pitalizations for 3 and 4 weeks ahead. The median of RAE for the weekly incidence of confirmed cases is only 
about 3% for the 1-week-ahead forecast, with the Q3 quartile barely reaching 4%. For the longer-term forecasts, 
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the error statistics become larger, as expected, but the median of RAE for the forecast of confirmed cases for 
3 weeks ahead is still only about 6%.

The relative performance of the model to the baseline model was measured by the ratio θ . The values θ are 
in all forecasts well below 1.0, indicating that our model outperformed the baseline forecasts in all cases. For 
almost all forecasts in Table 2, the values are even below 0.5, which means that our model almost always provides 
a forecast that is more than twice as good as the baseline model. For the forecasts of confirmed cases for 1 and 
2 weeks ahead and deaths for 3 and 4 weeks ahead, the values θ are even below 0.2, which means that we can 
expect a more than 80% better prediction compared to the baseline model.

Model forecasts evaluation within European Covid‑19 Forecast Hub for year 2022. The evalu-
ation of the model for the first three months of 2022 was conducted as part of the European Covid-19 Forecast 
Hub project. The evaluation results in Table 3 show the relative weighted interval score (rel.wis) for three models: 
our model (named ULZF-SEIRC19SI in the table), the ensemble model (named EuroCOVIDhub-ensemble in 
the table) and the baseline model (named EuroCOVIDhub-baseline in the table). The evaluation was performed 
using data from January 1, 2022 to March 28, 2022. The ensemble is built from all of the models providing fore-

(a) Epidemic situation in Slovenia in 2021

(b) Epidemic situation in Slovenia in 2022

Figure 3.  COVID-19 epidemic situation in Slovenia in years 2021 (a) and 2022 (b). Weekly incidence of 
confirmed COVID-19 cases (black) and the proportion of population vaccinated against COVID-19 with 
the first (red), the second (yellow), and the booster dose (blue)2,19,27,28 are shown. The phases of the epidemic, 
together with prevailing viral variants and non-pharmaceutical public health interventions, are briefly described 
in the timeline on top.
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casts for Slovenia (9 for the weekly incidence of cases, 4 for the weekly incidence of hospital admissions, and 
7 for the weekly incidence of deaths). The baseline forecasts are computed in the same way as in the previous 
evaluation. Note also that the relative interval score is the evaluation measure that compares the performance of 
the evaluated model to all other models, with values below 1.00 indicating better performance (lower error) of 
the evaluated model relative to its compared counterparts. More details can be found in Cramer et al.25.

According to the results in Table 3, our model outperformed the ensemble model in almost all forecasts in 
all three categories. For the forecasts of weekly incidence of cases, our model performed better in all 4 forecasts, 
with a larger gap in the long-term forecasts. The forecasts of hospital admissions are almost the same for weeks 
2, 3, and 4, whereas there is a higher gap in favor of our model for the forecast for 1 week ahead. The weekly 
incidence of deaths is better forecasted for 1 week ahead with the ensemble model, and for 2, 3, and 4 weeks 
ahead with our model.

Discussion
The accuracy of the model over time clearly depends on the epidemiological situation, as can be seen in Figs. 2, 
3, and 4. The forecasts are less accurate at the beginning and near the peak of the two epidemiologic waves in 
2021. Both waves in 2021 were caused by new variants of the SARS-CoV-2 virus with different transmission 
characteristics. The timing of the introduction of a new viral variant into the population can be speculated, but 
not accurately predicted. Therefore, forecasts of the onset of waves caused by new variants with different trans-
mission characteristics cannot be accurate. However, when the new viral variant was detected and its transmis-
sion properties were incorporated into the model, model forecasts became more reliable and could accurately 

Figure 4.  Model forecasts of weekly incidence of COVID-19 confirmed cases. Black dots represent actual data. 
The colored dots represent predictions for 1, 2, 3 and 4 weeks ahead, the colored areas represent their confidence 
intervals. Forecasts from the same date are represented with the same color.

Figure 5.  Model forecasts of weekly incidence of COVID-19 hospital admissions. The representation is the 
same as in Fig. 4.
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predict the peak of the wave, assuming no additional public health measures were introduced that could affect 
epidemiologic dynamics. However, in both waves in 2021 in Slovenia (April 2021 and October-December 2021), 
a number of public health measures were introduced to slow down the transmission dynamics. Accordingly, at 
the beginning of the waves, we could not include the changes in transmission due to the measures in the model. 
As a result, the long-term forecasts predicted peaks without any interventions. The moment the interventions 
were included in the model, the predictions became more accurate. Errors both at the onset and near the peak 
of the waves are therefore to be expected and are well known in epidemiological  modeling30–32.

Transmission characteristics of new virus variants were incorporated into the model by estimating the effec-
tive reproduction number R, whereas interventions were accounted for by changes in the contact matrix W. The 
correct estimation of R and contact matrices remains a difficult task and depends strongly on the model structure 
on the one hand and on the behavior of people during the epidemic on the  other33,34.

Figure 6.  Model forecasts of weekly incidence of deaths due to COVID-19. The representation is the same as in 
Fig. 4.

Table 2.  Statistics of the forecast performance of our model in 2021. The first row in the data cells is the 
median of RAE with interquartile range in square brackets (1st and 3rd quartiles) and the second row is the 
relative performance of our model compared to the baseline model, measured by the ratio θ.

Error type\forecast for Week 1 Week 2 Week 3 Week 4

Weekly incidence cases Median of RAE [Q1, Q3]
Comparison to baseline

2.9 [1.6, 4.1]%
θ = 0.14

3.2 [1.9, 6.7]%
θ = 0.17

6.0 [2.4, 17.8]%
θ = 0.34

15.0 [4.8, 51.2]%
θ = 0.57

Weekly incidence hospitals Median of RAE [Q1, Q3]
Comparison to baseline

7.6 [4.1, 12.2]%
θ = 0.39

8.5 [4.0, 16.0]%
θ = 0.26

11.3 [6.2, 23.2]%
θ = 0.29

18.3 [5.9, 35.2]%
θ = 0.38

Weekly incidence deaths Median of RAE [Q1, Q3]
Comparison to baseline

9.8 [3.9, 20.3]%
θ = 0.45

9.8 [4.1, 18.3]%
θ = 0.27

9.8 [4.2, 18.7]%
θ = 0.19

9.8 [4.1, 21.2]%
θ = 0.16

Table 3.  Performances of the 3 models within European Covid-19 Forecast Hub project on the Slovenian data 
from January 1, 2022 to March 28, 2022, measured by the relative weighted interval score (rel.wis).

Model

Rel. wis

Week1 Week2 Week3 Week4

Weekly incidence cases

ULZF-SEIRC19SI 0.45 0.51 0.58 0.56

EuroCOVIDhub-ensemble 0.58 0.62 0.72 0.77

EuroCOVIDhub-baseline 1.00 1.00 1.00 1.00

Weekly incidence hospitals

ULZF-SEIRC19SI 0.49 0.49 0.51 0.61

EuroCOVIDhub-ensemble 0.61 0.55 0.48 0.64

EuroCOVIDhub-baseline 1.00 1.00 1.00 1.00

Weekly incidence deaths

ULZF-SEIRC19SI 0.73 0.58 0.47 0.56

EuroCOVIDhub-ensemble 0.65 0.60 0.54 0.62

EuroCOVIDhub-baseline 1.00 1.00 1.00 1.00
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It should also be noted that a vaccination campaign was underway in Slovenia in 2021, where 5% of the 
population, primarily the elderly, was fully vaccinated at the start of the first wave in March 2021, and the second 
wave started in September 2021 with 45% of the population fully vaccinated. Vaccination was carefully included 
in the model by dividing the population into age groups and modeling vaccinated and unvaccinated populations 
separately, following the modeling approach presented by Matrajt et al.11,12. This allowed us to more accurately 
include and track the vaccination strategy in Slovenia, resulting in more accurate predictions of hospitalizations 
and deaths.

Our model also shows an overall better performance compared to the base model and the ensemble  model35 
in the European Covid-19 Forecast Hub 2022 evaluation. Although the model is expected to outperform the 
baseline model, this should not be the case for the ensemble model. Nevertheless, in the model assessment of 
the first three months of 2022, conducted as part of the European Covid-19 Forecast Hub project, our model 
performed better than the ensemble model in almost all cases.

The epidemic situation in Slovenia in early 2022 coincided with a large wave of daily confirmed cases that 
peaked in early February 2022, whereas hospitalizations and deaths did not follow this pattern. This was due to 
the Omicron variant of the SARS-CoV-2 virus, which is highly transmissible and does not cause as many severe 
courses of disease as earlier  variants36. The model could not predict the exact timing of the onset of the Omicron 
wave, but later, when the model was updated with the features of the new variant and since there were no inter-
ventions that caused substantial changes in epidemic dynamics, we were able to accurately predict the timing 
and height of the peak of the wave as well as the decline. More precise tuning of the proportion parameters in 
the model and separate vaccination modeling allowed our forecasts to more accurately predict hospitalizations 
and deaths, although they did not follow the same pattern as in previous waves.

Since our model is one of the models included in the ensemble for Slovenian forecasts within the European 
Covid-19 Forecast Hub, better results mean that our model forecasts were among the best among all other mod-
els. A closer look at the evaluation results of the European Covid-19 Forecast Hub 2022 shows that among the 
models providing forecasts for Slovenia, our model performed best in all cases of forecasting hospitalizations 
and deaths, while ranked first for week 1 and second for weeks 2, 3, and 4 for weekly incidence of confirmed 
cases. The better forecasts in these cases were from the USC-SLKJalpha  model37.

The overall better performance of our model compared with other models for the Slovenian forecasts could 
be explained by a more appropriate structure of the model for the epidemic situation in Slovenia, in particular 
by a more refined structure for vaccination and by more and better parameter tuning made possible by the data 
provided by COVID-19 tracker for  Slovenia2.

Model limitations
Our model is a compartmental model, in which the epidemic dynamics within the modelled subgroups of the 
population are assumed to be homogeneous. We introduced the heterogeneity of transmission to the model by 
dividing the population into five age groups and modeling the vaccinated and unvaccinated populations sepa-
rately. But this might not be sufficient to capture the actual dynamics of transmission in the population. This prob-
lem could be addressed with other modeling approaches, such as agent-based or network-based  modeling38,39. 
However, such modeling introduces a lot of open parameters that need to be estimated using data from different 
sources (e.g., mobility, localization data, more individual data) that were not available during the epidemics in 
Slovenia. Therefore, we opted for a less complex and well-established compartmental model, but with exten-
sions that allowed us to increase the model’s accuracy by adding the compartments and parameters that can be 
estimated from the data we have. It should be noted here that the model can be also extended to other groups of 
population, for example to model individual regions in Slovenia. This would probably lead to better estimates 
of the epidemic waves in Slovenia, but since only the data of infections are individually reported for regions and 
municipalities, and no other data, the model could not be reliably estimated.

Nevertheless, our model has more than 100 parameters that need to be properly determined. Since many 
parameters in the model are arbitrarily estimated and may not fully reflect the actual epidemic situation, we 
attempted to compensate for this by performing an additional calibration of the proportion parameters in the 
model optimization process. This calibration tries to change the proportion parameters of the model (e.g., the 
proportion of hospitalizations, the proportion of intensive care, deaths, etc.) to better fit the model projections 
to the actual data, even if the parameters would no longer reflect the actual situation in the data. In this way, 
we achieve a better fit of the model projections to the current and past data and compensate for some loosely/
arbitrarily estimated open parameters of the model.

In addition, the model forecasts rely only on current data, and we did not attempt to incorporate any expected 
future interventions into the model, even if they could be predicted based on the model projections. Therefore, 
the forecasts tend to predict what would happen without possible future interventions or other unexpected 
situations. In daily operational runs of the model, we also created additional scenarios for situations in which 
a new epidemiologic wave or a new variant of the SARS-CoV-2 virus was expected. Note that epidemiological 
forecasts and other epidemiological statistics for Slovenia are calculated daily with our model starting in April 
2020. All the results can be found on our web  page7.

Conclusion
The presented compartmental model is used for modeling the COVID-19 epidemic in Slovenia. The SEIR model 
was extended by dividing the population into five age groups and allowing separate modeling of vaccinated and 
unvaccinated populations, to better account for the vaccination strategy in Slovenia as well as various courses 
of the disease and transmissibility caused by different SARS-CoV-2 variants. The model was extended to the 
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complexity at which the model parameters can still be reliably estimated from the epidemiological data avail-
able in Slovenia.

Despite the known limitations of such modeling, we were able to obtain acceptable forecast results for short-
term forecasts for up to 4 weeks in advance. Evaluation of model forecasts for 2021 showed the expected behavior 
of epidemiological modeling: if we do not interfere with disease dynamics, the model predicts the situation well; 
the changes in epidemiologic dynamics due to the emergence of a new viral variant in the population or the 
introduction of new interventions cannot be predicted by the model, but when the new situation is incorporated 
into the model, the forecasts are again reliable.

Comparison of model forecasts with the ensemble forecasts for 2022 within the European Covid-19 Forecast 
Hub showed better performance of our model, which can be explained by a more appropriate structure of the 
model for the epidemic situation in Slovenia, in particular a more refined structure for vaccination, and better 
parameter tuning enabled by the more comprehensive data for Slovenia included in our modeling.

The model has been fully operational on a daily basis since April 2020 and served as one of the models for 
decision-making during the COVID-19 epidemic in Slovenia. The model is also part of the European Covid-19 
Forecast Hub, coordinated by the European Centre for Disease Prevention and Control.

Data availability
The data that support the findings of this study are openly available at https:// covid- 19. sledi lnik. org/ and https:// 
github. com/ sledi lnik. Sources of the model described in this study can be found at https:// github. com/ janez z25/ 
SEIR- C19- SI.
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