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Improving remote material 
classification ability with thermal 
imagery
Willi Großmann*, Helena Horn & Oliver Niggemann

Material recognition using optical sensors is a key enabler technology in the field of automation. 
Nowadays, in the age of deep learning, the challenge shifted from (manual) feature engineering 
to collecting big data. State of the art recognition approaches are based on deep neural networks 
employing huge databases. But still, it is difficult to transfer these latest recognition results into the 
wild—various lighting conditions, a changing image quality, or different and new material classes are 
challenging complications. Evaluating a larger electromagnetic spectrum is one way to master these 
challenges. In this study, the infrared (IR) emissivity as a material specific property is investigated 
regarding its suitability for increasing the material classification reliability. Predictions of a deep 
learning model are combined with engineered features from IR data. This approach increases the 
overall accuracy and helps to differentiate between materials that visually appear similar. The solution 
is verified using real data from the field of automatized disinfection processes.

Humans recognize materials based on spectral, texture, and context  data1. Machine vision simulates this cogni-
tive process in many industrial applications. Application areas for material recognition are, for example, sorting 
processes such as waste  separation2, the monitoring of construction  progress3, and urban or botanical investiga-
tions with remote  sensing4. The knowledge about material properties is of great importance for the interaction 
of robots with everyday  objects5 or for the ongoing automation of manufacturing and other industrial processes 
using modern smart technology, also known as Industry 4.06.

Due to the coronavirus pandemic, the development of automatized disinfection processes has recently become 
a field of special interest. The recognition of materials is highly important in these applications, because material 
properties influence the persistence of  pathogens7 as well as the effectiveness of the  disinfectant8. An incorrect 
material classification could lead to an incorrect application of disinfectant and thus to an insufficient disinfec-
tion process.

One contemporary approach of material recognition uses Convolutional Neural Networks (CNN) to base 
identification not only on the consideration of different kind of visual data but also on created and learned 
context between given information. Huge existing material  databases9–11 enable the training of deep CNNs and 
allow investigations of material recognition possibilities on the basis of images. Additionally, a broad range of 
pretrained CNNs is available for transfer learning, giving the advantage of less effort to build databases and to 
train CNNs for new applications. By using such pretrained CNNs, less data is needed to train a solution for 
specific application  scenarios12.

However, the material classes of existing databases are defined too general for many technical applications. 
In disinfection or sorting processes, for example, the detection of various metallic materials or the distinction 
between wood and wood imitation, is a basic requirement. This distinction is much more difficult to determine 
because visually similar materials such as aluminum and stainless steel need to be considered.

Therefore, using only CNNs to evaluate visual appearance of materials no longer seems to be the solution. 
Even CNNs cannot distinguish between similar visual data and thus between materials with the same colors 
and textures.

A possible solution to this problem could be the evaluation of a larger electromagnetic spectrum, because the 
material specific information in the data increases. In this case, the identification could be almost 100 % precise, 
but this would require relatively expensive measuring equipment.

As an alternative solution, the use of the IR range seems to be a good compromise because it requires rather 
inexpensive cameras for the detection of thermal  radiation13. Based on these circumstances, this study follows 
three research hypotheses (RH):
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RH 1:  Evaluating the IR range additionally to the VIS range is a cost-effective option to significantly improve 
the reliability of remote material recognition for industrial processes.

RH 2:  In a controlled environment, thermal imaging helps to differentiate between materials that visually 
appear to be similar. According to the Stefan-Boltzmann law, the emissivity of technical bodies influ-
ences their thermal radiation performance. Therefore, the apparent temperature in relation to the true 
body temperature leads to the infrared emissivity as a material specific property.

RH 3:  The median and the variance of the relativized material temperatures are characteristic material features. 
Recognition accuracy can be increased when these engineered features are combined with learned VIS 
features from a CNN. A support vector machine (SVM) is suitable for this feature fusion. This approach 
outperforms other methods from the field of remote sensing such as data level fusion or image fusion.

The contributions of this paper are briefly described as follows. 

 (i) Material classes with a high technical range of application are differentiated. A distinction is made 
between different metals and visually similar materials.

 (ii) For this purpose, the material specific apparent temperature is fused with learned VIS features to increase 
the recognition accuracy for industrial remote sensing applications.

 (iii) The proposed fusion algorithm outperforms visual material recognition approaches and comparable 
sensor fusion algorithms from the field of remote sensing.

The rest of this paper is organized as follows: At first, related literature regarding material recognition approaches, 
thermal imaging, and electro optical sensor fusion is presented (In "Related work" section ). Next, details for the 
proposed architecture (In "Solution" section) and for the experimental design of the new material recognition 
approach (In "Experiments and results" section ) are provided. Finally, concluding remarks and further investiga-
tions (In "Conclusion and outlook" section) are proposed.

Related work
Early material recognition approaches evaluated color distributions and patterns.  Adelson14 started to study the 
general perception of materials and suggested differentiating materials based on their reflectivity and shape. Liu 
et al.15 suggested an extended rating to cover more aspects of appearance. They found that reflectance, texture, 
color, shape, and environment illumination are suitable parameters for material classification.

Experimenting on the Flickr Material Database (FMD)9,  Badami16 found a SVM is better suited to clas-
sify these features than previous methods. FMD therefore covers many aspects of the appearance of different 
materials.

Sharan et al.17 confirmed these results with their investigations and showed that local image information 
such as color, texture, or shape are not sufficient for material recognition. For better classification results they 
suggested taking context information (like the object category) into account.

Convolutional neural networks do not require any local image information to be given for material classifica-
tion. Instead, the algorithm learns the features required for recognition. Indeed, modern methods using CNNs 
show significantly better  results10,18.

The disadvantage of learning these networks from scratch is the high demand for labeled data. Possibilities 
to reduce this high demand for data are the employment of pretrained  models19,20.

Recent studies apply ensemble learning approaches to combine multiple pretrained  classifiers11,21 and achieve 
better classification results. However, higher accuracies can also be achieved by evaluating more specific material 
data with less computationally intensive algorithms. The latter could be addressed by the evaluation of IR data 
in addition to the visual information of the materials.

So far, only a few studies take the IR range into account. Its suitability for material classification has been 
shown in laboratory  environment22. Based on a thermodynamic model, they examined the material specific 
heat conduction for classification using a Nearest Neighbor algorithm. Additional parameters are based on a 
water permeation experiment. However, the experimental setup is not designed for industrial use. The material 
samples are heated, moistened, and recorded from a short distance for several minutes.

Another approach also considers changing environmental  conditions13. Thermal images are taken into the 
wild and classified using a CNN. However, the recording distance stays constant at approximately 0.5 m and 
the materials are chosen with quite characteristic patterns. Erickson et al.23 evaluate eight material classes of 
everyday objects. Here, the material recognition is improved by additional IR images in order to optimize the 
gripping process of a robot.

A more recent approach exploited thermal conductivities by making physical contact and observing tem-
peratures during heat  transfer24. This research confirmed that evaluating thermal data improves the accuracy 
of material identification.

While an IR- and VIS data fusion is not applied in most approaches for material recognition, it is quite com-
monly needed for electro-optical systems in different areas of remote sensing. State of the art approaches apply 
image fusions within a fusion  network25. For example, Li et al.26 propose a VGG 19 framework for an image fusion 
of RGB and IR images on feature level. Xu et al.27 introduce an unified unsupervised network for multi-sensor, 
multi-exposure, and multi-focus image fusion tasks. Xiao et al.28 are focusing on infrared - visible image fusing 
by introducing a Teacher-Student Network. This enables the fusion of multi resolution images.

However, these fusion approaches do not meet the requirements of this work. The aim of image fusions from 
the field of remote sensing is the combination of complementary pattern information from several source images. 
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The material data available here show few distinctive temperature and visual patterns. In addition, since images 
are fused, these approaches do not consider combining temperature and visual data.

Remote sensing applications required for autonomous driving successfully apply SVMs for multimodal sensor 
 fusions29. These applications need to fuse visual images with multiple disparate data such as radar or vibration 
 information30.

Therefore, in order to use material recognition algorithms for industrial applications, several additional 
investigations are required. Based on the research hypotheses, this study examines the following circumstances 
that have not been taken into account yet:

(RH 1) The previous material recognition approaches focused on the investigation of general visual phenom-
ena. The material classes were selected based on specific patterns or general appearance. The material data of 
this study focuses on high technical benefit and a wide range of applications. In addition, different lighting 
conditions and shooting distances are considered to take realistic environmental conditions into account for 
industrial applications.
(RH 2) The basic feasibility of using thermal data for material recognition has already been proven. However, 
the recognition of visually similar materials or imitations has not been investigated yet. Everyday materials 
often appear similar. For example, plastics can be used as an imitation for metals or wood. In order to evalu-
ate this, a distinction is made in this study between visually similar material classes such as aluminum and 
stainless steel or wood and wood imitation.
(RH 3) SVMs are a proven algorithm for classifying engineered and learned features. They are also used 
successfully to evaluate various sensor data from electro-optical systems. However, it must first be evaluated 
whether the measured temperature distributions have material specific properties. From this distributions, 
features can be engineered that help with material identification.

Solution
Since there is no known database that combines IR and VIS for the required material classes, a new database is 
specifically created for this study. The VIS feature extraction and evaluation is done with a CNN, while the final 
sensor fusion is realized using a SVM. The proposed algorithm fuses learned VIS features with engineered IR 
features. This enables the identification of visually similar materials.

This study focuses on raw temperature data instead of false color images. According to the Stefan-Boltzmann 
law, the temperature data appear comparatively characteristic. This enables a description with statistical param-
eters. The material specific expected temperature value is estimated by calculating the median of a temperature 
field. The median is chosen instead of the average because of its greater robustness to outliers. In addition, the 
variance around mean of the temperature is taken as a scatter parameter.

The visual data appear significantly less characteristic. This data is evaluated and classified here using a CNN. 
For the proposed solution, the results from the CNN are combined with the engineered statistical parameters.

Database. Aluminum, copper, brass, wood, wood imitations, ceramics, plastics, textiles, stainless steel, and 
paper are chosen for evaluation. These materials are broadly applied in industry and have certain similarities in 
texture and color.

The images of the materials are presented in Fig. 1, showing the resemblance between brass (c), wood (d), 
wood-imitations (e) and cellulose (j) as well as between aluminum (a), stainless steel (i), and some of the 
textiles (h).

The material samples are photographed from distances d ∈ {1, 1.5, 2, 2.5} m with an angle α < 90 ◦ , as pre-
sented in Fig. 2.

The samples are placed on cardboard to facilitate segmentation. The pictures are taken with the FLIR T540 
(Flir Systems Inc., Wilsonville, OR, US). This uncooled thermal camera has an integrated digital camera which 
enables taking IR and RGB images simultaneously.

The database includes 1112 cropped RGB images with corresponding temperature distributions. The images 
are taken indoor in closed rooms avoiding thermal radiation reflections and ensuring the sample temperature 
corresponded with the ambient temperature. On this account, the material specific IR emissivity leads to material 
specific temperature distributions, when measured with the thermal camera.

Feature extraction with relearned CNN. Cropped images from the database are used to relearn a VGG 
 1631. This CNN is pretrained on the  Imagenet32 database and loaded from the PyTorch Model Zoo. The VGG 16 
architecture itself has proven suitable as a classification model for material recognition  applications3,10,18.

The cropped material images as shown in Fig. 1 show very few characteristic patterns and many color simi-
larities. Compared to the Imagenet database, better classification results cannot be achieved by learning more 
complex features such as object shape. The recognition ability of visually similar materials is instead improved 
by using IR data. That is why the proven feed-forward VGG 16 is suitable as the baseline model.

For transfer learning, the prediction layer is replaced with an adapted fully connected layer. While the original 
VGG 16 architecture can classify 1,000 different labels, only 10 are required here. The relearned CNN, as shown 
in Table 1, is then used to classify the RGB images from the database. The applied hyper parameters are presented 
in Table 2. Applied data pre-processing includes pixel standardization and image resizing to 224× 224 pixels.

Finally, if the cropped image IRGB ∈ R
83×83×3 is the input and ppp ∈ R

10 are the outputs of the classification 
model CNN(·) , the above relation can be formally written as ppp = CNN(IRGB) . The Softmax outputs are used 
here instead of the raw CNN features due to the much higher information density.
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Figure 1.  Material classes and samples of the database used. The first two rows show some material samples: 
(a) Aluminum, (b) Copper, (c) Brass, (d) Wood, (e) Wood Imitations, (f) Ceramics, (g) Plastics, (h) Textiles, (i) 
Stainless Steel, (j) Cellulose. Some cropped images are shown in the same order in the lower two rows. These 
images were used for training and evaluation of the CNN.

Figure 2.  Experimental design of collecting images from material samples: The IR and RGB images were taken 
with an angle α < 90 ◦ and a distance d between 1 and 2.5 m.
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Sensor fusion with SVM. The temperatures of each temperature field T are relativized by dividing them 
with the ambient temperature ϑa . In order to consider IR data for material recognition, the median Med(·) and 
variance Var(·) of the relative sample temperatures are used as features and linked with the Softmax outputs ppp 
of the VGG 16 as shown in Fig. 5. The median is preferred to the mean as the expected value, as this is more 
robust to outliers.

Thus, the feature vector xxx consists of predictions per material class (VIS features) and median as well as vari-
ance around mean of the relative sample temperatures (IR features), what is formally presented in Algorithm 1. 

A SVM with Radial Basis Function (RBF) kernel and the one–versus-one approach for the multi-class clas-
sification SVMRBF(·) is chosen to classify the materials based on the combined feature vector. Compared to other 
knowledge-based classifiers such as Nearest Neighbor or Random Forests, SVMs find the most robust separation 
of given features due to their optimization algorithm.

The proposed 2-stage design is preferred to an end-to-end solution for this study because IR features can be 
examined objectively. More precisely, repeated learning of neural networks leads to statistical errors. This influ-
ence is eliminated in the experiments by introducing the second stage.

Experiments and results
Subsequently, the median relative temperature T̃rel is calculated and histograms are created, describing the fre-
quency of the median values per class(see Fig. 3). These histograms show characteristic distributions for each 
material. So, in principle, the classification of materials must benefit from this additional IR data. Especially 
the metals shown in the first column have a very specific frequency distribution, which clearly differentiates 
them from non-metals and aluminum. Aluminum is covered by a characteristic oxide layer, which influences 
the emissivity.

Empirical tests. For a convergence analysis, 80 % of the samples are randomly chosen for the training 
and 20 % for the validation. The training set is oversampled to balance the numbers of samples per class. The 
balanced dataset is used to relearn the pretrained VGG 16 1,000 times applying the hyperparameters shown in 
Table 2.

Finally, the SVM is fitted with the Softmax outputs from the CNN and the IR features. For image processing 
and the subsequent evaluation, Python 3.7 specifically the packages Scikit-Image33,  PyTorch34 and Scikit-Learn35 
are used.

To investigate the influence of the IR features, an additional classification is done with dropped IR features as 
baseline. The resulting probability distribution of the accuracies is presented in Fig. 4, on the left side.

The VGG 16 (blue) clearly converges to the arithmetic mean µ = 70.96 . The mean of the SVM without IR 
features (green) is nearly the same as the VGG 16 while the SVM with IR features (red) is showing significant 
better results as the SVM with dropped IR features. A one-sided paired t-test confirms this with a p-value of one.

To further examine the algorithm on the database, a cross validation is done ten times in a second test with 
a stratified tenfold split of the database. The probabilities of the accuracies are shown in Fig. 4, on the right side. 
Except of the split ratio, here nine to one, all other model settings are the same. Even when the distributions 
are not as separated as in the previous test, the improvement in accuracy of material recognition when using IR 
features is still significant, as another one-sided paired t-test confirms with a p-value of one.

Comparison to previous work. State of the art material recognition approaches use CNNs to classify 
visual images. The VGG 16 has proven itself and is taken here to extract the visual features. A comparison to 
recent classifiers is presented in Table 3.

To investigate each network capability for feature extraction, similar classifier parts (see Table 1) are chosen. 
In addition the hyperparameters are the same as presented in Table 2. All models are loaded pretrained on 
the ImageNet dataset. The classifiers of all three models are relearned as presented in "Feature extraction with 
relearned CNN" section.

MobileNets are compact CNNs designed for lightweight applications. On the other hand, ResNet models 
are able to learn very complex features due to their very deep depth. However, the VGG16 clearly outperforms 
the other approaches.
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To enable the most meaningful comparison possible, all experiments apply the same classification algorithm 
(see "Feature extraction with relearned CNN" section) with the same hyperparameters (see Table 2). The only 
difference is the proposed sensor fusion.

While there is no comparable approach in the field of material detection, optical sensor fusions are often 
performed in similar remote sensing applications. Two approaches are presented here for comparison. The first 

Figure 3.  Histograms of the material specific median relative temperature T̃rel . As described in Algorithm 1, the 
temperature fields of each material sample were put into perspective with the respective ambient temperature. 
The median was then calculated for each temperature field. The distribution across the database is presented in 
the histograms above.

Table 1.  Applied VGG 16 configuration. All 2d convolution kernels have a receptive field size of 3x3 pixels. A 
ReLU activation function is applied after the Convolution- (Conv2d) and Fully Connected layers (FC). During 
training two Dropout layers randomly zeroes some FC elements with a probability of 0.5. Finally, the output ppp 
is calculated by applying a Softmax activation function.

VGG 16

Features Classifier

2 x Conv2d - 64 FC - 4096

Maxpool Dropout - 0.5

2 x Conv2d - 128 FC - 4096

Maxpool Dropout - 0.5

3 x Conv2d - 256 FC - 10

Maxpool

Softmax

3 x Conv2d - 512

Maxpool

3 x Conv2d - 512

Maxpool
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state of the art image fusion approach proposes a fusion of super-resolution of infrared and visible  images28. The 
merged image contains key features of both input images.

Since this study uses temperature arrays, a transformation is realized by normalizing and multiplying by 255. 
The result therefore corresponds to an 8-bit grayscale image. Infrared and visible images are aligned and rescaled.

The second approach applies an information  fusion38. They suggest to set the grayscale IR image as an addi-
tional color channel. The fused image is classified using a relearned VGG 16 with extended first layer kernels. 
The new initial weights are set as the mean RGB weights. Here, the temperature array is rescaled, aligned, and 
standardized to implement this data fusion approach. The mean results of a tenfold split are presented in Table 4. 
The same setup is used for classification in all experiments.

The proposed fusion and the feature fusion method are both two stage approaches. But the proposed fusion 
clearly outperforms the other feature fusion approach. The aim of image fusions from the field of remote sensing 

Figure 4.  Histograms of the convergence analysis: To evaluate whether the algorithm converges, one 
experiment was done 1,000 times with a constant train test split (left) and another with 10 times in a stratified 
tenfold split (right).

Figure 5.  Algorithm pipeline: The CNN extracts and classifies VIS features from a RGB Image. The Softmax 
outputs ppp , the median relative temperature T̃rel and the variance Trel,σ 2 are part of the feature vector. A SVM 
merges these features for classification and predicts the resulting material.

Table 2.  Table of hyperparameters used to implement the transfer learning.

Hyperparams

Epochs 20

Batch size 10

Optimizer Adam algorithm

Learning rate 1 ∗ 10−4

Criterion Cross entropy loss

Split Stratified tenfold

Random state 42
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is the combination of complementary pattern information from different sensors. However, the material data 
available here show few distinctive IR patterns and many visual similarities. The characteristic of the IR data is 
more like a material-specific bias, as shown in Fig. 3.

The other comparison relates to an early sensor fusion approach. The IR and VIS images are convolved within 
the first CNN layer. Although theoretically there is less information loss with this approach, actual results lag 
behind the proposed approach.

However, early information fusion is more accurate than the later feature fusion. This might be because color 
and texture from the visual image can be successfully combined with the different gray levels of the infrared 
image. The classification results of the visual and infrared data are given for completeness.

Figure 6.  Confusion matrices from the cross validation test. The mean accuracies are shown when the feature 
vector is classified with dropped IR data (left) and with included IR data (right).

Table 3.  Baseline study comparing different CNNs for visual feature extraction. Scores are averaged over 
a tenfold split and sample wise weighted to account for imbalanced data. The computing time required to 
evaluate a ten-fold split is set in relation to the time required for the VGG 16. The highest accuracy value is in 
[bold].

Model Precision Accuracy F1-Score Rel. Time

VGG  1631 0.6757 0.6321 0.6216 1

MobileNetV3Large36 0.1443 0.1798 0.1072 0.77

InceptionResNetV237 0.5532 0.4793 0.4772 2.95

Table 4.  Comparison of different sensor fusion approaches. The VGG 16 model is applied in all experiments 
to ensure comparability. The highest accuracy value is in [bold].

Method Precision Accuracy F1-Score

VIS 0.6757 0.6321 0.6216

IR 0.1989 0.2023 0.1637

Feature  fusion28 0.4156 0.3588 0.3296

Information  fusion38 0.5258 0.5323 0.4979

Proposed fusion 0.7535 0.7347 0.7325
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Evaluation of experiments. For cross validation, the material specific benefit of IR data as an additional 
feature is demonstrated in Fig. 7. The median improvement of the accuracy from aluminum, brass, and cellulose 
is about ten percent points (pp). Wood shows the best improvement of more than 15 pp. The median of the other 
materials is about zero, to be discussed next in Fig. 6.

It shows the arithmetic mean accuracy of each predicted vs. true label, comparing the classification without 
(left) and with (right) IR data. The SVM, using a feature vector with dropped thermal features, reaches an overall 
mean accuracy of 66.4 % in the sample recognition. The overall mean accuracy increases by 6.1 pp when the IR 
features are added.

In principle, regarding the mean accuracies per material, the combined model benefits from IR features. This 
is when VIS features are similar and IR features are different. The combined model can distinguish, for example, 
much better between wood and wood imitations by using IR data. The mean accuracy of the class wood imita-
tions increases just by 3 pp, because more samples are classified as plastic, being the actual material.

The accuracy of aluminum recognition increases by 21 pp because the miss classification as stainless steel 
or as textiles decreases. The IR data helps to distinguish between these two metals, which visually appear to be 
similar. As shown in Fig. 3, aluminums emissivity significantly differs from the emissivity of other metals because 
of its characteristic oxide layer. Many of the cropped textile images visually appear similar like stainless steel or 
aluminum, as Fig. 1 shows. About 20 % of the textile samples are false classified as these materials. By using IR 
data, the mean accuracy of textiles increases by 14 pp.

The recognition accuracy of brass increases by 12 pp, because the differentiation from wood-imitations, wood, 
and textiles is enhanced by IR data. On the other hand, 8 pp more brass samples were classified as aluminum 
although VIS- and IR features should be different. This could be an indication to train the CNN within further 
epochs.

Plastics and cellulose are the least recognized material classes with an accuracy of 33 % without IR data. 
Their recognition increases by 4 pp when IR data is considered. It seems like the CNN was not able to learn the 
characteristic visual properties. Additionally, 10 % of the plastics were classified as wood imitate, which actually 
is plastic.

Copper shows no improvement, see Fig. 7. That is because the accuracy with dropped IR features is already 
at 97 %. However, the mean accuracy can still be improved when IR features are added, as Fig. 6 shows.

IR data enhances differentiation between stainless steel and non-metals. The miss classification of cellulose 
and textiles decreased. But unlike above, adding IR features did not help differentiating between aluminum and 
stainless steel.

Discussion. The asymptotic behavior of the solution is examined as part of a convergence analysis and by 
a repeated cross validation. Based on these experiments, the material specific improvement is assessed using 
confusion matrices and boxplots.

In summary, IR features as an additional feature enhance differentiation between materials and boost recogni-
tion ability. The accuracy of the solution increases significantly when including IR data.

Materials which visually appear to be similar, such as wood and wood imitate, or aluminum and stainless 
steel were classified and could be differentiated more precisely.

This study uses a SVM to combine learned visual features from a CNN with engineered IR features from 
thermal imaging. To evaluate the results, the classification is done with and without these features. The aim of 
this study is not to reach the best possible classification results but to examine whether infrared data helps to 
increase the recognition accuracy.

Figure 7.  Boxplots of the material specific improvement when using IR features for ten times in a tenfold cross 
validation.
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Nevertheless the proposed method clearly outperforms previous approaches. It is remarkable that other fusion 
algorithms leads to poorer classification results than evaluating the data without fusion.

One possibility could be the homogeneity of the respective temperature fields. These appear more material 
specifically constant and without texture. Feature and image fusion approaches, on the other hand, try to com-
bine characteristic textures.

Conclusion and outlook
In the age of deep learning, the main challenge in material recognition is not feature engineering but data col-
lection. Nevertheless, it is shown that engineered features based on a physical model can still help to improve 
the recognition accuracy.

When extending the evaluated electromagnetic spectrum to the IR range, a significant improvement of 
recognition is possible. With the engineered features, the overall mean accuracy increases by 6 pp. Also, the 
additional features help to classify materials which visually appear to be the same.

Therefore, over 1100 VIS and IR images were taken from ten material classes in controlled indoor environ-
ments. Even if the evaluated temperature distributions, based on the IR emissivity, do not lead to material specific 
fingerprints, they help differentiating between certain materials when used as an additional feature.

Based on the three research hypotheses, this article provides the following answers:

(RH 1) Evaluating the IR range additionally to the VIS range has proven to be an effective option to signifi-
cantly boost the reliability of material recognition for industrial processes.
(RH 2) Therefore, materials which are broadly applied in industry and have certain similarities in texture and 
color are evaluated. Additionally, different lighting conditions and recording distances are taken into account.
(RH 3) The IR features used are material-specific and increase classification accuracy. The proposed sensor 
fusion algorithm is realized with a SVM which has proven to be a suitable option for this material recogni-
tion application.

The results show significant improvements for material recognition. However, it is not examined whether 
these are the best possible accuracy results. Therefore, an extended training by comparing different pipelines is 
necessary.

In addition, the database should be extended with more material samples to further investigate the reliability 
of the results and to increase the generalization ability. While the data of metals seems to appear characteristic, 
the identification of cellulose and plastic in particular must be backed with additional training samples in order 
to obtain sound classification results.

Data availibility
The dataset used and analysed during the current study is available from the corresponding author on reason-
able request.
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