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Polycrystalline silicon PhC cavities 
for CMOS on‑chip integration
S. Iadanza1,2*, G. C. R. Devarapu1,2, A. Blake1, P. Acosta Alba3, J.‑M. Pedini3 & L. O’Faolain1,2

In this work, we present an on‑chip 2D and 3D photonics integration solution compatible with 
Front End of Line integration (FEOL) using deposited polycrystalline silicon (poly:Si) for optical 
interconnects applications. Deposited silicon integration on a bulk silicon wafer is here discussed in all 
its processing steps and configurations. Moreover, results of deposited silicon high‑Q Photonic Crystal 
(PhC) resonators are shown, demonstrating the possibility to employ optical resonators patterned on 
this material in the next generation of 2D and 3D integrated optical interconnects.

The need for photonics at the CPU level is greatly intensifying in current years. The recent decrease in the size 
of transistors (down to the 2 nm node equivalent − 333.33 MTr/mm21,2 and predicted 1 nm node in  20293), 
translated into increased transistor densities, has led to a fast growth of the number of floating-point operations 
(FLOP) that processors can perform, from 1 TFLOP in 2007 to 7.2 TFLOPs in 2015 and to predicted 96.8 TFLOPs 
in 2022. Moreover, in order to maintain the optimum processor architecture ratio of 1 byte/FLOP, the chip I/O 
bandwidth needs a continuous scaling over multiple hundreds of Tb/s1. However, the chip area is limited to its 
current size due to manufacture yield and cost, which manifests in a very slow increase in the number of signal 
pins, greatly limiting chip packaging capabilities. It follows that current bandwidth demands can only be faced 
by increasing the off-chip clock over 65 GHz by  20294. Concurrently, on-chip heat dissipation limits the maxi-
mum chip power consumption to 300  W2, with the need to also reduce energy budget for off-chip communica-
tion from thousands to tens of fJ/bit. As a consequence of these bandwidth and energy requirements, optical 
interconnects need to be implemented on the electronics chip in place of existing electrical links. A traditional 
optics-electronics packaging approach involves the chip-bonding of optical links on the electronics, which is, 
however, still limited in bandwidth by the pitch of the flip-chip signal I/Os. This approach manifests parasitic 
electric affecting the performance of both the optical and electronic components, beside imposing a bandwidth 
density bottleneck. Another promising integration approach consists in the monolithic front-end integration 
of silicon photonic circuits, which involves the realization of the optical and electronic components in the same 
SOI layer of crystalline silicon, on a single  chip5, offering a very compact integration of photonics and electron-
ics, maximizing bandwidth density and lowering parasitic effects. However, beside SOI higher cost compared 
to bulk Si wafers, this approach severely hinders the performance of electronics as, at telecom wavelengths, 
low-loss optical confinement in the photonic waveguides requires at least a 1 µm thick buried oxide, while SOI 
transistors need very thin buried oxide (100 nm or lower) for thermal dissipation and electrostatic effects. Thick 
buried oxide means that transistor gate lengths must be longer than 100 nm and transistor density  decreases6,7, 
considerably limiting processors performance and scalability. Some effort has also been directed towards the 
front-end integration of waveguides on bulk-Si8–10 and thin-SOI  substrates11,12, but these techniques always 
comprise the fabrication steps involving the modification of the silicon electronics layer. Another integration 
approach, referred to as monolithic back-end  integration13, involves the realization of the photonic components 
on different plane respect to the electronics layer, offering high bandwidth densities similar to front-end pro-
cesses, but with added the possibility to keep the optimized fabrication of the transistor layer unchanged, as 
opposite to front-end integration requirements. The photonic layer typically involves deposited silicon in vari-
ous phases and forms, as standard crystalline silicon cannot be deposited with standard CMOS technology, but 
only formed through epitaxial  growth14 if a crystalline seed is already present, or transferred from a donor c:Si 
wafer to another target wafer through ion implantation and wafer  bonding15,16, like in the case of SOI. Deposited 
silicon materials for photonics can assume the form of silicon nitride (SiN), amorphous silicon (a:Si) and more 
recently polycrystalline silicon (poly:Si). Despite the optimization of the optical properties of these deposited 
materials, SiN and a:Si platforms intrinsically exhibit poor electrical properties (low effective carrier mobility) 
due to their amorphous atomic structure, as opposite to what is typically required for electro-optic modulation, 
switching, and photodetection. Conversely, deposited poly:Si, still compatible with front-end integration, is 
characterised by electrical properties similar to monocrystalline silicon, unlocking the possibility to employ 
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this material in fully integrable and very efficient optoelectronic components. Yet, deposited poly:Si normally 
exhibits high surface roughness and numerous grain boundaries that greatly affects the optical performances of 
photonic components, mainly due to scattering mechanisms. Moreover, almost all of the reported poly:Si layers 
required high temperature deposition, annealing and post-treatment (typically T ≥ 900 °C), as shown  in17–22. 
This temperature range is not compatible with back-end fabrication  processing23, leading to electronic doping 
diffusion, and therefore cannot be used for vertical integration. In this work, we optimise the deposited poly:Si 
platform through laser annealing and chemical–mechanical planarization processes for the development of 
high quality PhC resonators to be employed FEOL compatible on-chip integrated optical interconnects (beside 
remaining fully compatible with BEOL  integration24). In this work we also create smooth poly:Si on thick  SiO2 
islands nested into a bulk Si wafer. The created poly:Si regions on the wafer are suitable for photonics without 
compromising the suitability of the rest of wafer for high performance transistors. The enhancement of the light 
matter-interaction provided by photonic crystals allows high performance photonics to be created that consume 
only a small fraction of the wafer area.

The manuscript is divided into the following macro-sections:

• The optimisation of the poly:Si deposition, annealing and surface planarization,
• The integration of deposited poly:Si islands on bulk silicon wafers,
• The development of high-Q PhC resonators on poly:Si.

Fabrication and optimisation of the poly:Si substrates for photonics applications
Deposited silicon is one of the most important solutions for 3D integrated Silicon Photonics. However, the 
material in both the amorphous and polycrystalline form has poor optical qualities due to absorption and rough-
ness scattering mechanisms occurring in the as deposited materials. Their employment in integrated photonics 
applications requires careful material treatment techniques to lower intrinsic material losses related to linear 
absorption due to Silicon dangling bonds in the amorphous form and light scattering due to surface and grain 
boundary roughness in the polycrystalline form. In the case of a:Si, losses can be greatly decreased by means of 
Hydrogen implantation, quenching absorption at telecom wavelength from silicon dangling bonds by the forma-
tion of S–H  bonds25. Poly:Si, in addition, exhibits poor optical performances mainly related to its microcrystal-
line nature, for which many different crystalline domains, grains (Fig. 1a), are formed during the crystallisation 
from the deposited amorphous material. Monocrystalline silicon-like optical properties characterise the inside 
of these grains, but the different orientation of their crystalline plane from grain-to-grain forms physical rough 

Figure 1.  (a) Schematics of atomic arrangements in monocrystalline, amorphous and polycrystalline Silicon, 
(b) schematics of the laser annealing process, (c) schematics of the CMP process (top view) and (d) schematics 
of the CMP process (side view).



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17097  | https://doi.org/10.1038/s41598-022-21578-6

www.nature.com/scientificreports/

boundaries between the grains that disrupts the propagation of light via scattering. These grain boundaries are 
also responsible for the high surface roughness of untreated poly:Si, which dominates light propagation losses 
on poly:Si  platforms26. For this reason, dedicated CMOS compatible techniques have been developed to optimise 
the material roughness and grain size distribution, such Chemical–Mechanical Planarization (CMP) and laser 
annealing(27–30) respectively, which were utilised to prepare the poly:Si substrates for the photonics applications 
discussed in this work.

The schematics of the laser annealing and CMP processes are shown in Fig. 1b,c and d respectively. In this 
section, the fabrication of the poly:Si substrates for which the PhC cavities have been designed is discussed 
in detail. The fabrication of the substrates consisted in two different runs carried out at CEA-Leti (Grenoble, 
France), with the first run focusing on the optimization of the CMP processes on 300 mm wafers (first deposited 
with a:Si and then annealed into poly:Si—Fig. 2a), and the second focused on the fabrication of the substrates 
with laser annealed poly:Si on  SiO2 islands, nested into the bulk silicon (Fig. 2b), on which the actual photonic 
components are developed. The poly:Si islands were having different sizes ranging from 10 to 1000 µm2, therefore 
able to accommodate one or multiple photonic crystal cavities to be employed as wavelength selective mirrors 
in hybrid external cavity lasers (HECLs) in vertical coupling  configuration31,32. As the optical performances of 
poly:Si strongly depend on surface roughness, which dominates scattering losses, the CMP process had to be 
optimised to achieve the highest surface smoothness, ideally in the sub-nm range, for the photonic components to 
be able to have measured Q-factors at least in the  103 range (e.g., minimum values required to get a single-mode 
PhC-based lasers, as seen  in33). The substrate fabrication and optimization for optical applications started with 
the deposition of 2.1 µm of  SiO2 through means of Plasma Enhanced Physical Vapour Deposition (PECVD) on 
300 mm silicon wafers. Subsequently, a layer of amorphous silicon 450 nm thick has been deposited onto the 
wafers via low temperature ( T = 350

◦
C ) PECVD. The thickness of the deposited a:Si layer was higher than the 

final target of 220 nm as the CMP process removes a good portion of material while polishing the wafer.
The a:Si wafers deposited in the first run were thermally annealed to form poly:Si for and were used for the 

CMP process optimization, while the a:Si on  SiO2 islands deposited in the second run were treated with pulsed 
laser annealing while keeping the wafers at a T = 450

◦
C to promote poly:Si grain growth at Leti. The poly:Si 

obtained by these laser annealing steps exhibited grain sizes in the range from tens to hundreds of µm2. The 
growth of the grain sizes of the poly:Si after laser annealing transpires from the SEM images of Fig. 3. This grain 
size distribution is desirable as entire PhC cavities can be contained in one single grain, therefore avoiding optical 
interaction with multiple grain boundaries inside the PhC that would increase scattering losses.

The 300 mm wafers polished through CMP in the first run exhibited an average surface roughness of 
{Ra = 0.101nm,Rq = 0.049nm} with good surface uniformity (centre-edge variation <15 nm), and the final 
poly:Si layer thickness obtained was in the range of 250± 30 nm.

The fabrication workflow for the poly:Si islands (configuration in Fig. 2b) is more complex than the one for the 
substrates of Fig. 2a, as area-selective etch and deposition of material is required. The final photonic components 

Figure 2.  Schematics of the poly:Si substrates in the two configurations: (a) thermally annealed poly:Si 
deposited onto PECVD  SiO2 for the CMP process optimization and (b) poly:Si on  SiO2 islands nested into a 
bulk silicon wafer for the fabrication of poly:Si optical resonators.
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(DA and L3 PhC cavities) were then patterned onto the poly:Si islands and measured. The entire fabrication 
process workflow of the PhC cavities patterned poly:Si on  SiO2 islands is depicted in the schematics of Fig. 4.

Starting from a 300 mm bulk silicon wafer, a 60 nm thick hard mask of  Si3N4 is deposited through Plasma 
Enhanced Chemical Vapour Deposition (PECVD) and a 1 µm layer of S1813 photoresist is spin coated on it. A 
deep-UV lithographic step is performed to expose differently sized rectangular areas that will define the islands 
(Fig. 4a). A double reactive ion etch (RIE) step first in  SF6:CHF3 chemistry for the  Si3N4 mask and bulk Si to 
achieve an etch depth greater than 1 µm (Fig. 4b) in which a 1.4 µm thick layer on  SiO2 is deposited through 
PECVD (Fig. 4c). Planarization of the  SiO2 is then followed via standard oxide CMP (Fig. 4d) to achieve a flat 
oxide filled trenches to be filled with the deposited silicon. A low temperature (T=350 °C) PECVD step is used 
to deposit 450 nm of a:Si (Fig. 4e), which is then annealed into poly:Si via a pulsed excimer laser source while 
maintaining the substrate at T = 450

◦
C to promote grain growth up to tens of µm2 (Fig. 4f). The newly devel-

oped poly:Si CMP process is then performed to level and polish the poly:Si islands to the target thickness of 
260± 40 nm and sub-nm surface roughness (Fig. 4g). After inspection of the substrates through AFM and SEM 
to verify surface uniformity and final poly:Si thickness, a 500 nm thick layer of ZEP 520A resist was spin-coated 
onto the wafer and the specifically designed PhC cavities exposed on it (Fig. 4h) via electron beam lithography 
(EBL) with a 100 kV system (Elionix ELX100), making sure to align the photonic components to the poly:Si 
islands. Finally, the patterns were transferred onto the poly:Si via Inductively Coupled Plasma (ICP) etching in 
 N2:Cl2 chemistry (Fig. 4i). The final poly:Si layer properties and CMP process duration is detailed in Table 1.

CMP process P1: VP5000/FSL1531 and CMP process P3: IK2010H/PL6116 represent subsequent Chemi-
cal–Mechanical Planarization steps with different parameters: wafer chuck pressure, polishing pad speed, 
conditioning.

The deposition of  SiO2 in the bulk Si trenches and the subsequent deposited and annealed a:Si into poly:Si 
is shown in the SEM images of Fig. 5.

The top and cross section view of the deposited silica is depicted in Fig. 5a and b respectively, while the 
deposited a:Si is shown in side-view in Fig. 5c and the annealed a:Si into poly:Si is shown in Fig. 5d, just before 
the CMP steps. Of great importance is the  SiO2 thickness being greater than 1 µm, required to well confine the 
optical modes of the PhC cavities in the poly:Si photonic layer, avoiding evanescent coupling to the bulk Si.

The PhC cavities (DA and L3 designs) fabricated onto the polished poly:Si islands are instead shown in the 
SEM images of Fig. 6. The poly:Si on  SiO2 islands are visible in Fig. 6a, as shade of a different grey compared to 
the bulk Si (highlighted with the white dashed lines), while the PhC cavity sets are indicated with the pink dashed 
arrows. High magnifications of a PhC cavity in one of those sets are shown in Fig. 6b and c, while Fig. 6d shows 
the microcavity imaged at a 45◦ angle.

The next section will discuss the numerical optimization of the poly:Si cavities and their experimentally 
measured optical performances.

Poly:Si photonic crystal cavities numerical optimization
The PhC cavities fabricated on the poly:Si islands have been simulated and optimised for the final poly:Si layer 
thickness range from 240 to 270 nm (obtained after the CMP processing) via Finite-Difference Time-Domain 
(FDTD) method with the Ansys–Lumerical software. Hole diameter (d) and lattice period (a) parameters of the 
2D photonic crystal cavity design have been optimized for the thickness values of 240, 250, 260, 270 and 280 nm, 
in order to have designs with high optical performances spanning all the experimental layer thickness range. 
DA and L3 2D PhC cavity designs have been chosen for the numerical simulations. The central cavity holes 
shift of the fabricated devices have been optimised to achieve relatively high Q-factor while maintaining a good 
portion of light coupling in and out of the PhC cavity along its normal direction, as in the far field optimization 

Figure 3.  SEM images of the poly:Si substrate: (a) before laser annealing (a:Si), (b) after 4 laser shots with an 
energy of 700 mJ and (c) after 4 laser shots with an energy of 1100 mJ, highlighting the modification of the 
poly:Si surface due to the laser-annealing related grain growth.
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investigated  in22. Despite intrinsically lowering their Q-factors, the far field optimisation is required for these 
cavities in order to measure their response without the need of waveguides connected to them.

In order to accurately simulate the fabricated poly-Si material, the refraction and absorption optical con-
stants n and k (refractive index and extinction coefficient, respectively) of the polished poly:Si wafers have been 
measured through optical ellipsometry (J.A. Wollam ellipsometer) over a broad range of wavelengths, from 600 

Figure 4.  Fabrication workflow of the poly:Si on  SiO2 islands nested into bulk Si wafers: (a) a hard mask of 
 Si3N4 is deposited and a Deep-UV lithographic step is used to expose rectangles to be used as islands, (b) 
plasma etch of the hard mask and bulk Si, (c) PECVD of  SiO2, (d) planarization of the  SiO2, (e) low temperature 
PECVD of the a:Si, (f) laser annealing into poly:Si, (g) CMP of the poly:Si, (h) Electron-Beam Lithography of 
the PhC cavities and (i) their dry etch.

Table 1.  CMP process times and final poly:Si surface properties. S1, S2, S3, S4, S5, S6 and S7 represent the 
seven different wafers processed with the different CMP regimes.

Wafer S1 S2 S3 S4 S5 S6 S7

CMP Process P1: VP5000/FSL1531 135 s 130 s 45 s + 90 s 129 s 135 s 135 s 160 s

CMP Process P3: IK2010H/PL6116 – – – 60 s 30 s – –

Thickness (Max) 273 nm 234 nm 244 nm 237 nm 246 nm 223 nm 221 nm

Thickness (Min) 264 nm 217 nm 228 nm 232 nm 217 nm 200 nm 200 nm

Thickness (Range) 8 nm 17 nm 16 nm 15 nm 20 nm 23 nm 21 nm

Poly:Si Uniformity 35 nm 14 nm 15 nm 14 nm 15 nm 15 nm 15 nm

Roughness  (Ra) 0.185 nm 0.154 nm 0.144 nm 0.132 nm 0.128 nm 0.133 nm 0.131 nm

RMS  (Rq) 0.084 nm 0.071 nm 0.070 nm 0.064 nm 0.063 nm 0.064 nm 0.062 nm



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17097  | https://doi.org/10.1038/s41598-022-21578-6

www.nature.com/scientificreports/

to 1600 nm, and the measured values have been imported into the Lumerical material archive, in order to take 
absorption losses into account for the calculations. The measured ellipsometry data of the poly:Si is shown in 
Fig. 7, in the range of interest (from 1500 to 1600 nm).

Due to the PhC hexagonal lattice, Lumerical simulations have all been performed with a mesh size of 
dx = a/25 and dy = a

(√
3/2

)

/25 and dz = t/10 , with t  representing the poly:Si thickness, in order to have an 
integer number of cells along each axis.

The calculated optical modes confined in a 270 nm thick poly:Si DA cavity are shown in Fig. 8, in which a 
colormap of the electric field intensity of the cavity modes is plotted in the xy plane. In the different panels of 
the figure the fundamental mode (Mode 1) is exhibiting the typical shape with a single intensity peak and no 
lobe, while the higher order modes (Mode 2, 3 and 4) are showing increasing number of peaks depending on 
their increasing mode order. Mode 1, 2, 3 and 4 exhibited simulated Q-factors of 5.2·106 at 1578.35 nm, 3.1·105 
at 1559.63 nm, 1.7·104 at 1568.90 nm and 6.1·103 at 1530.41 nm.

The simulations were repeated for L3 type PhC cavities for the different deposited Silicon thicknesses and 
Fig. 9 shows the first confined optical modes in such a cavity with 270 nm thickness. The fundamental mode 
(Mode 1) has a calculated Q-factor of 5.2·105 at 1538.08 nm while the higher order mode (Mode 2) a calculated 
Q-Factor of 4.1·104 at 1539.43 nm.

Measurement of the fabricated PhC cavities on poly:Si
The far-field optimized dispersion adapted (DA)34 and L3 PhC cavities patterned on the polished poly:Si on  SiO2 
islands nested into the bulk Si wafers through mean of EBL and Dry Etching have been optically characterized 
through Resonant Scattering  technique35 and the results are summarised in Fig. 10.

Figure 9a depicts the measured optical spectrum of an L3 PhC cavity patterned on a polished 270 nm thick 
poly:Si island, in which the confined optical modes manifest as intensity peaks spiking out of the source base-
line signal as expected with Resonant Scattering technique. A close-up of the measured fundamental mode is 
shown in Fig. 9b and fitted with a Lorentzian curve with a FWHM of 0.216 nm and peak central wavelength of 
1548.31 nm, which leads to a measured Q-factor of 7141. The plot of measured Q-factors of the same L3 PhC 
cavity design with increasing lattice constant ( a ) is shown in Fig. 9c, in which the lattice constant increases with 
a step of 2 nm. All the measured Q-factors fall in the range 103 − 104 In Fig. 9d, the measured resonance wave-
lengths of the different cavity modes of the L3 PhC cavity design are plotted against increasing lattice constant 
(parameter swept with a 2 nm increment in the fabricated devices), showing a very linear behaviour for all the 

Figure 5.  SEM images of: (a) deposited SiO2 in the bulk Si trenches (top view), (b) deposited  SiO2 (cross 
section), (c) deposited a:Si (side view) and (d) annealed a:Si into poly:Si (cross section).
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measured optical modes and leading to the possibility of a fairly accurate control of the resonance wavelength 
through lithographic tuning.

These results demonstrate the possibility to have relatively high-quality optical resonators patterned onto 3D 
integrated island of poly:Si on  SiO2 embedded on bulk Si wafers for next generation optical interconnects. The 
photonic crystal resonator located in the silicon islanded may be connected to other components via a wave-
guiding layer position vertically above. A variety of components have been demonstrated in vertically coupled 

Figure 6.  SEM images of the PhC cavities patterned on the deposited poly:Si islands at different magnifications: 
(a) 28x, the PhCs are highlighted by the pink ellipses and dashed arrows and the poly:Si islands are delimited 
by the white dashed lines, (b) Far Field optimized L3 PhC cavity at 9740x, (c) same cavity at 25000x, with SEM 
measurements of hole radius and PhC periodicity and (d) PhC cavity imaged at 45°.

Figure 7.  Plot of the real (n) and imaginary (k) refractive index parts of a polished poly:Si wafer against 
wavelength, measured with the ellipsometer and fitted with a Cauchy model.
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Figure 8.  Electric field intensity plot in the xy plane of the first four optical modes confined in a 270 nm thick 
poly:Si DA PhC cavity. (a) Mode 1 (the fundamental mode) and higher order modes (b) Mode 2, (c) Mode 3 
and (d) Mode 4.

Figure 9.  Electric field intensity plot in the xy plane of the first four optical modes confined in a 270 nm thick 
poly:Si L3 PhC cavity. (a) Mode 1 (the fundamental mode) and (b) higher order mode (Mode 2).
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configuration such as  photodetectors36  modulators37 and  lasers32. Such a configuration is ideally suited to this 
application as the interconnecting waveguides do not reduce the area available for transistors.

The processing steps used in this work are all standard process in CMOS (e.g., shallow trench isolation can 
provide the  SiO2 layer). Following the fabrication of polysilicon islands, CMOS processes can be used to fabrica-
tion electronic components and the subsequent layers. Our approach is fully CMOS compatible as subsequent 
CMOS steps will have no effect on the “photonic islands” This approach thus provides frontend integration of 
electronics and photonics with minimal disruption to the process flow.

Conclusions
In this work, the development of a fabrication process for the optimization of optical performances of deposited 
poly:Si is presented through means of Chemical–Mechanical Planarization and Laser Annealing, achieving 
surface roughness values in the sub-nanometre scale. Fabrication of thin poly:Si on 2 µm thick  SiO2 islands is 
achieved on bulk Si wafers, which could operate as photonic layers integrated on the bulk Si electronic layer in 
photonic-electronic integrated architectures. Moreover, relatively high-Q optical resonators in the form of 2D 
PhC cavities (DA and L3 designs) have been developed for such poly:Si islands and their optical performances 
have been measured, with Q-factor values very compatible with the requirements for operation as wavelength 
selective resonant mirrors in external cavity lasers. This unlocks the possibility to employ deposited poly:Si opti-
cal resonators in novel 3D integrated photonic-electronic components for next generation optical interconnects.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request. The authors declare no conflict of interest.

Figure 10.  (a) Optical spectrum of an L3 PhC measured through resonant scattering technique, (b) Spectrum 
of the measured fundamental mode of (a) in which the red curve represents a Lorentzian fit of the resonance, (c) 
Measured Q-factors of L3 cavities with lattice constant increasing with a 2 nm step, (d) Resonance wavelength 
of the optical modes of the L3 PhC cavity versus lattice constant, in which different colours represent different 
measured resonances.
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