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A patchy theoretical model 
for the transmission dynamics 
of SARS‑Cov‑2 with optimal control
A. Mhlanga1 & T. V. Mupedza2*

Short‑term human movements play a major part in the transmission and control of COVID‑19, within 
and between countries. Such movements are necessary to be included in mathematical models 
that aim to assist in understanding the transmission dynamics of COVID‑19. A two‑patch basic 
mathematical model for COVID‑19 was developed and analyzed, incorporating short‑term human 
mobility. Here, we modeled the human mobility that depended on its epidemiological status, by the 
Lagrangian approach. A sharp threshold for disease dynamics known as the reproduction number was 
computed. Particularly, we portrayed that when the disease threshold is less than unity, the disease 
dies out and the disease persists when the reproduction number is greater than unity. Optimal control 
theory was also applied to the proposed model, with the aim of investigating the cost‑effectiveness 
strategy. The findings were further investigated through the usage of the results from the cost 
objective functional, the average cost‑effectiveness ratio (ACER), and then the infection averted ratio 
(IAR).

The recent outbreak of Coronavirus disease (COVID-19), a novel disease caused by severe acute respiratory 
coronavirus 2 (SARS-Cov-2), has resulted in a pandemic with an unmatched impact on societies all over the 
World. Several variants have been named by WHO and labelled as a variant of concern (VoC) or a variant of 
interest (VoI)1. The novel coronavirus can cause mild non-specific symptoms, including fever, dry cough, and 
fatigue (exhaustion). In more serious cases, it can develop into severe pneumonia, shivering (chills), pains, sore 
throat, difficulty breathing, headache, skin rashes, runny nose, taste loss, diarrhea, and fingers or toes  dislocation2. 
According to the Centers for Disease Control and Prevention (CDC), COVID-19 has an incubation rate of 
around 14 days. The mean time for the symptoms to appear in a newly infected individual is about five days after 
contact. Rarely, symptoms appear as soon as two days after  exposure3. COVID-19 is a highly infectious disease 
that can spread directly or indirectly from an infected individual to a healthy individual through the nose, eyes, 
and mouth by droplets created when an infectious individual produces respiratory droplets via coughing or 
 sneezing4,5. Some studies have reported that an infected person with no symptoms can also transmit the  virus6–8. 
Because of the many factors affecting the efficiency of environmental transmission, the relative risk of fomite 
transmission of SARS-CoV-2 is seen as compared with direct  contact9,10. However, it is not clear what proportion 
of SARS-CoV-2 infections are acquired through indirect transmission, but they do exist. Various medical and 
non-medical methods have been used to curb the spread and prevalence of COVID-19. Different ways have been 
implemented to reduce transmission, such as wearing masks, keeping rooms well ventilated, avoiding crowds, 
physical distancing, coughing into a bent elbow or tissue, and cleaning your  hands11. These various methods have 
been beneficial to some  extent12, although COVID-19 vaccines have brought up much hope.

COVID-19 vaccines have reached billions of people worldwide, and the evidence is immense no matter 
which one you take. The vaccines offer life-saving protection against a disease that has taken millions of lives. 
However, the pandemic is far from over, and vaccines are our best bet for staying safe. It is worth stating that 
there is currently no trusted and highly effective treatment against COVID-1913. The few treatments available 
are only available to a few countries. Concerning COVID-19, recovered people can become susceptible again 
after a specific time, in particular, because of the appearance of new variants. Furthermore, waning of immunity 
towards COVID-19 has been reported, and it  exists14.

While vaccine rates remain low, and COVID-19 continues to circulate in Africa. But the actual state of the 
pandemic is masked by a lack of testing. Although the continent accounts for nearly 17% of the world population, 
it accounts for around 1.8% of global tests. The pandemic is far from over in Africa, but there is also a funding 
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gap in preparing for endemic COVID-19, which will require long-term investment in healthcare  infrastructure15. 
A new challenge in the fight against COVID-19, which is a result of the implementation of intervention policies 
of governments, is hunger and poverty, especially in developing countries in sub-Saharan Africa like Zimbabwe, 
which lacks social security support.

Frequent visits between South Africa and Zimbabwe for trade and travel are a reality, including for individuals 
who want to support their  families16. South Africa, Africa’s second most industrialized  economy17, is Zimbabwe’s 
leading trade partner. Due to the socio-economic conditions in Zimbabwe, many people from Zimbabwe visit 
South Africa for shopping products which they resale back home for a living. Most recently, South Africans were 
flocking to Zimbabwe to access the vaccine, which they argued that Zimbabwe was rolling out  reliably18,19. Even 
though trade in services involving proximity between suppliers and consumers, services involving travel, and 
temporary movement of people have been barred by almost all governments, it is worth noting that people still 
find their way via irregular means. The electric triple fence of razor-wire that marks the national limit between 
Zimbabwe and South Africa is cut regularly by rutted and worn tracks weaving through it. Even with lockdowns 
and border controls, little can be done to reduce the number of migrants between Zimbabwe and South Africa, 
even during the COVID-19 pandemic. Thus, the frequent movements between the two countries, which we may 
consider to be patched, are predominantly characterized by visitation (short-stays) as opposed to permanent 
migration. The movement of the asymptomatic infected and the exposed individuals during the incubation 
period contributes significantly to promoting the rapid spread of COVID-19. Contacts between infected and 
susceptible populations are the principal means for COVID-19 transmission, and the movement of people plays 
a crucial role in promoting their  contacts5.

The low-risk and high-risk places are differentiated by their nutrition, health infrastructure, income, and 
health status variation, implying that they will also vary in terms of outcomes corresponding with the same 
number of  cases20. In most high population density areas of Zimbabwe, poor working conditions and inadequate 
living space make social distancing very difficult as people in these high-risk areas migrate from one place to 
another in search of jobs and health care services in low-risk areas. People living in crowded places like Mbare 
often share water and sanitation services, making physical distancing and self-isolation difficult; this increases 
the risk of exposure to COVID-1921. Due to the strained economic conditions in Zimbabwe, most people in 
high-risk areas have few resources and are limited to bear the burden exerted by the  pandemic22. Individuals 
from the high-risk areas visit those in the low-risk areas every day. Those from the low-risk regions also visit the 
high-risk areas daily since their businesses and workplaces are located within them. In Zimbabwe, it was noted 
that the low-risk areas were the COVID-19  hotspots23. The scenario is the same for most developing countries. 
Thus, the role of short-term disposal on the dynamics of COVID-19 between the two idealized interconnected, 
highly distinct communities might fuel or reduce COVID-19 prevalence. To make matters worse, a large share 
of the high-risk population depends on self-employment or the informal sector. Some are laborers in low-risk 
areas, which makes them vulnerable as they cannot afford health or social  protection24. Many local and state 
governments turned to strict stay-at-home orders and shuttering businesses to defeat the virus transmission and 
save lives. However, there are long-term tremendous economic and social effects. In a quest to successfully control 
COVID-19, this has caused nations to vaccinate their populations while using non-pharmaceutical  strategies25. 
It is worth noting that enacting strict policy measures does not necessarily mean a reduction in mobility but 
rather depends on issues concerning compliance and enactment of policies.

At a worldwide level, the breakout of unexpected infectious diseases causes several impacts on the economic 
sector. For example, the first visible impact could be preventive and containment measures taken by govern-
ments using their restricted resources. New mathematical models for COVID-19 that can be used and have 
been used for simulations to flatten the curve, predict the future behavior of its spread, and make decisions to 
control the transmission of COVID-19 have been developed and analyzed, such  as26–34. There are models which 
have applied optimal control to understand the dynamics of COVID-19,  see35–45. Aldida et al.35 proposed an 
optimal control mathematical model in which they successfully showed how community awareness played a 
crucial role in determining the success of COVID-19 eradication. A data-driven optimal control approach that 
integrated the reported partial data with the epidemic dynamics for COVID-19 was presented by Liu, and  Tian36. 
In their work, they used the basic SEIR model to forecast the outbreak’s evolution over a relatively short period 
and provide scheduled controls of the epidemic. Silva et al.37 developed a mathematical model in which they 
applied optimal control theory to maximize the number of people returning to “normal life” while minimiz-
ing the number of active COVID-19 infected individuals with minimal economic costs while warranting a low 
level of hospitalizations. Gatyeni et al.38 formulated an optimal control problem in which they found out that 
joint implementation of effective mask usage, physical distancing, and active screening and testing are effective 
measures in the control of COVID-19. The effects of quarantine, isolation and public health education strategies 
using mathematical modeling and optimal control approach to ascertain their contributions to the dynamic 
transmission of COVID-19 were studied by Madubueze et al.40. Most recently, Arruda et al.39 derived optimal 
mitigation strategies over a prescribed time horizon under a more realistic framework that did not imply peren-
nial immunity and a single strain. This study is of great relevance as it seeks to find cost-effective ways of halting 
the spread of COVID-19 by providing minimal economic and social disruptions that may stop an impending 
catastrophic rapture. As we seek to understand the effectiveness of mobility and activity restrictions in contain-
ing the outbreak of COVID-19, we will also benefit as it will equip us better to face future disease outbreaks. The 
effectiveness of optimal control in epidemiology is familiar: while mathematical modeling of epidemic diseases 
has shown that combinations of isolation, quarantine, vaccination, and/or treatment are often necessary to sup-
press or mitigate an epidemic disease, optimal control theory can play a paramount role by informing us on how 
they should be managed, by giving the right times for intervention and the right  amounts46,47. Many researchers 
have successfully applied optimal control theory to proffer intervention measures that helped understand the 
dynamics of diseases such as Ebola, Zika, HIV, and TB using various mathematical models (see, e.g.48–50). In some 
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of these studies, optimal control techniques are developed and applied to understand how the spread of these 
diseases may be controlled, e.g., through education campaigns, vaccination, treatment, quarantine, or isolation, 
with optimal implementation costs.

A number of mathematical models have looked into mobility restrictions on the control of epidemics, 
 see20,51–57. The methods entail applying a Lagrangian approach, which uses a residence time matrix to track mobil-
ity between two communities. The importance of epidemiological frameworks that follow a Lagrangian approach 
is further explained  in51,58. Of all the manuscripts, only one paper looked into the impact of mobility restric-
tions on the transmission dynamics of COVID-1951. The paper focused on the impact of mobility restrictions 
between areas with different infection risk levels. The main result of the manuscript was that mobility restrictions 
between two patches (low and high-risk areas) do not always reduce the final epidemic size. They underlined the 
point that restrictions could sometimes provide negative results. The result obtained by Espinoza et al.51 is very 
much epidemiological in that it only focuses on the impact of mobility restrictions on the final population size 
of the epidemic, and it does not speak to the effects of the efficiency of mobility restrictions as a disease control 
measure. It is important to highlight that the disease dynamics are sensitive to the cost of the disease. Hence it is 
vital also to investigate the cost of the disease. Suppose we are not to scrutinize the economic costs of disease. In 
that case, that implies that mobility restrictions should increase until the global final epidemic size is reduced to 
a minimum. The low-income countries and communities within developed countries were the most affected in 
trying to control the disease. This was partly due to the poor state of their public health infrastructures.

Driven by the frequent movements of individuals between Zimbabwe and South Africa or within Zimbabwean 
communities, we develop a mathematical model to describe the impact of short-term human activities on the 
persistence of COVID-19. These movements can happen in any country or region; hence they are not unique to 
South Africa and Zimbabwe. Thus, the study applies to other places/countries. To the best of our knowledge as 
authors, no mathematical model has looked into the transmission dynamics of COVID-19, utilizing the Lagran-
gian approach to discussing the short-term time residences. Furthermore, being conscious of the costs incurred 
in the mitigation strategies used. It is against this background that our study finds relevance and motivation. 
Mobility restrictions, such as border closures, trade, travel bans, quarantines, and extreme cases cordon sanitaires, 
are some of the most applied control measures to curb the spread of infectious diseases. In this manuscript, we 
seek to develop a two-patch mathematical model in which the two distinct communities are connected through 
the movement of individuals. Time spent by the people within each respective community/patch is modeled 
and applied to understand COVID-19 transmission dynamics under multiple mobility regimes. For more on the 
applications and further reading on the dispersal of individuals via a Lagrangian approach,  see51,58. With the aid 
of optimal control theory, we investigate the impact of some control variables on the transmission dynamics of 
COVID-19. We also determine the cost-effectiveness analysis of these control variables using cost-effectiveness 
analysis. Our mathematical model is also based on a susceptible-exposed-infectious-recovered type of model, 
which also includes the aspect of the waning of the vaccine, which most COVID-19 models have not considered.

The paper is structured as follows. The COVID-19 mathematical model is formulated in “Formulation of the 
model” and analytical results of the model are presented in “Model analysis”. In “Formulation and analysis of 
the optimal control”, optimal control theory has been applied to the model formulated in “Formulation of the 
model”. Simulation results and projection profiles of COVID-19 are presented in “Numerical simulations”. Sec-
tion “Cost-effectiveness analysis”, we present the Cost-effectiveness analysis and the Summary and concluding 
remarks round up the paper.

Formulation of the model
A mathematical model is presented to understand the dynamics of COVID-19 within a domain characterized 
by two patches of heterogeneous risk. Precisely, it models the time spent by human beings in each community 
through a residency time matrix. Within a scenario of only two communities, it is assumed that time spent in 
one community is spent in the other. Individuals either spend their time in a single community or divide their 
time between two communities. Let Ni(t) be the total population of individuals in patch i at time t, i = 1, 2 . 
Assuming that individuals of patch i spend pij ∈ [0, 1] in patch j, with 

∑2
j=1 pij = 1 , for each i. Thus, on average 

individuals of patch 1 spends, the proportion p11 of their time of residency in patch 1 and the proportion p12 of 
their time in patch 2 such that p11 + p12 = 1 . The same applies to the individuals in patch 2. Individuals of patch 
2 spend the proportion p22 of their time in patch 2 and p21 = 1− p22 in patch 1. Thus, the effective population 
in patch 1 and patch 2 are given by

respectively.
The susceptible individuals of patch 1 (S1) could be infected through direct contact in patch 1 (if currently in 

patch 1, that is, p11S1 ) or in patch 2 (if currently in patch 2, that is, p12S1 ). It follows from the above discussion 
that the effective proportion of infectious individuals in patch 1 is

By the same, it follows that the effective proportion of infectious individuals in patch 2 is given by

The following system of ordinary differential equations (ODE’s) represents the two patch COVID-19 model:

p11N1 + p21N2 and p12N1 + p22N2

p11I1 + p21I2

p11N1 + p21N2
.

p12I1 + p22I2

p12N1 + p22N2
.
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where

The model partitions the human population at time t into the susceptible Si(t), exposed Ei(t), infectious Ii(t) 
and the recovered Ri(t) . The class Ii represents the infectious pre-symptomatic (Ipi ) , infectious asymptomatic 
(Iai ) and the infectious symptomatic (Isi ) . Thus, Ii = I

p
i + Iai + Isi  and we will make use of an S, E, I, R, S type of 

model. bi represents the recruitment rate of the individuals. µi represents the natural death rate, whereas the death 
due to COVID-19 is denoted by vi . βi denotes the disease transmission rate by the infected individuals, and Bi 
denotes the indirect infection from the COVID-19 virus in the environment to the susceptible individuals; ωi is 
the progression rate from the exposed class to the infectious class. The recovery rate of the infected individuals 
is at rate γi . Parameter ηi represents the rate of virus spread to the environment by the infected individuals. The 
death of pathogens in the environment is at a rate ri . The pathogen vector in the environment is denoted as Wi(t) 
whereas Ki is the number or quantity of pathogens present during the interaction of human beings at time t. We 
assume that there is no permanent immunity. Hence, the recovered individuals become susceptible again at rate 
κi . Hence for the human population, we have Ni(t) = Si(t)+ Ei(t)+ Ii(t)+ Ri(t) for i = 1, 2. The model flow 
diagram is depicted in Fig. 1.

Boundedness and positivity of solutions. It can be ascertained that the zone of biological interest

is attracting and positively invariant with respect to model (1).

Model analysis
The disease‑free equilibrium and basic reproduction number. System (1) has an apparent equilib-
rium E0 = (S01, 0, 0, 0, 0, S

0
2, 0, 0, 0, 0) when there is no disease, where

By utilizing the next generation approach, as outlined in Van den Driessche and  Watmough59, we derive the 
basic reproduction number, R0.  Following59, the non-negative matrix F and the non-singular matrix V for the 
new infection terms and the remaining transfer terms are respectively given at the disease-free equilibrium by

(1)



















S′i = bi −�iSi − µiSi + κiRi ,
E′i = �iSi − (µi + ωi)Ei ,
I ′i = ωiEi − (µi + γi + vi)Ii ,
R′
i = γiIi − (µi + κi)Ri ,

W ′
i = ηiIi − riWi , i = 1, 2,

�i = Bipii
Wi

Ki
+

2
∑

j=1

βjpij

∑2
k=1 pkjIk

∑2
k=1 pkjNk

.

(2)G =

{

(Si ,Ei , Ii ,Ri ,Wi) ∈ R
10
+ | Si + Ei + Ii + Ri ≤

bi

µi + vi
,Wi ≤

ηibi

ri(µi + vi)
, i = 1, 2

}

(3)















S01 =
b1
µ1

,

S02 =
b2
µ2

.

Figure 1.  Model flow diagram.
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The spectral radius of the next generation matrix FV−1, gives us the reproduction number R0 of system (1), 
given by

where

Following Theorem 2 in van den Driessche and  Watmough59, the following result is established.

Theorem 1 If R0 < 1, the disease free equilibrium (DFE) E0 is locally asymptotically stable and unstable otherwise.

Additionally, a robust outcome with regard to the global dynamics of the DFE can be confirmed. We make 
use of the Lyapunov functions  approach60–62 in analyzing the global asymptotic stability.

Theorem 2 If R0 ≤ 1 , the DFE is globally asymptotically stable in G . If R0 > 1 , the system is uniformly persistent.

Proof of Theorem 2 is outlined in Online Appendix A. The result established in Theorem 2 portrays that 
R0 = 1 is an acute threshold for disease dynamics: the disease dies out when R0 ≤ 1, persists when R0 > 1. 
Biologically if a system is uniformly persistent, it means that the disease persists for a long period. We now explore 
uniform persistence, and we assert the following theorem.

Theorem 3 If R0 > 1, system (1) is uniformly persistent, namely, there exists a constant ξ > 0 such that

for any initial conditions satisfying

The proof for Theorem 3 is presented in Online Appendix B.

Analysis of the reproduction number. Table 1 outlines a summary of the model parameters and their 
baseline values. Due to the complexity of the model, fitting the model to data was a challenge because of the 
short-time residences. Furthermore, models such as this require tuning of the parameters since connecting 
empirical observations to parameters is complex. Therefore, some parameters are assumed inside the realistic 
ranges for illustrative purposes. Finally, the parameter values align with the historical lineage at the beginning 
of the COVID-19 pandemic.

To understand the impact of short-term human mobility on the production of new infections, we calculate 
the values of R0 using the residence-time matrix in Table 2.

The residence-time matrix organization includes the mobility patterns and the coupling intensity. The values 
in Table 2 have been taken  from57, and in Table 1, only the upper bound for the recovery rate was taken  from74. 
In this case, the weak coupling means that most individuals reside in their patch, while strong coupling means 
that some individuals temporarily go to the other patch. Mobility patterns constitute the symmetry of human 
movement between the two patches. For instance, we say it is symmetric if the proportion of humans moving 
from patch i to patch j is the same as for patch j to patch i. If the time spent for each proportion becomes more 
asymmetric, it becomes asymmetric mobility.

(4)F =















0 M1 M2 0 M3 0
0 0 0 0 0 0
0 0 0 0 0 0
0 M4 0 0 M5 M6

0 0 0 0 0 0
0 0 0 0 0 0















and V =















a1 0 0 0 0 0
−ω1 φ1 0 0 0 0
0 − η1 r1 0 0 0
0 0 0 a2 0 0
0 0 0 − ω2 φ2 0
0 0 0 0 − η2 r2















.

(5)

R0 =
1

2

























(M1r1 +M2η1)ω1

a1r1φ1
+

(M5r2 +M6η2)ω2

a2r2φ2
+
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ω2M4
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,

(6)

M1 =
p211β1N1

p11N1 + p21N2
+

p212β2N1

p12N1 + p22N2
, M2 = B1p11

N1

K1
, M3 =

p11p21β1N1

p11N1 + p12N2
+

p12p22β2N1

p12N1 + p22N2
,

M4 =
p11p21β1N2

p11N1 + p12N2
+

p12p22β2N2

p12N1 + p22N2
, M5 =

p221β1N2

p11N1 + p21N2
+

p222β2N2

p12N1 + p22N2
, M6 = B2p22

N2

K2
,

a1 =µ1 + ω1, a2 = µ2 + ω2, φ1 = µ1 + v1 + γ1, φ2 = µ2 + v2 + γ2.

lim
t→∞

inf Si(t) > ξ , lim
t→∞

inf Ei(t) > ξ , lim
t→∞

inf Ii(t) > ξ , lim
t→∞

inf Ri(t) > ξ , lim
t→∞

inf Wi(t) > ξ

Si(0) ≥ 0, Ei(0) ≥ 0, Ii(0) ≥ 0, Ri(0) ≥ 0, Wi(0) ≥ 0.
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Using the values defined in Tables 1 and 2, we computed the reproduction numbers for Patch 1 and 2 with-
out human mobility. We obtained R01 = 1.2069 and R02 = 0.42138 . We can see that Table 2 suggests that the 
basic reproduction number is always high when the coupling intensity is weak. That is when most individuals 
stay in their patch. Additionally, we observe that the highest value of the reproduction number happens when 
there is symmetric mobility. Furthermore, we can observe that whenever there is human mobility, the human 
transmission risk increases globally instead of locally; for instance, in the absence of human mobility, we expect 
COVID-19 to die off in Patch 1. We note that the reproduction number is also a bit lower under the strong 
asymmetric coupling, that is when residents of patch 1 (high risk) spend large amounts of time in patch 2 (low 
risk); this makes sense as it exposes them to a more favorable, R0 . We can see that the results in Table 2 show 
that when human mobility increases, the basic reproduction number decreases. Nevertheless, it will never drop 
below 1 for all cases illustrated in Table 2. Hence, under our assumption, we can conclude that effective human 
COVID-19 control will always be difficult to attain whenever there is human movement.

Endemic equilibrium point. To examine the endemic equilibrium point’s local stability, we will use the 
Centre Manifold Theory, and the following result is established.

Theorem 4 The endemic equilibrium point E∗ is locally asymptotically stable for R0 > 1 and sufficiently close to 1.

Proof of Theorem 4 is presented in Online Appendix C.

Formulation and analysis of the optimal control
In this section, we construct an optimal control problem to implement effective patch-precise control measures 
considering different coupling intensities. The two-patch COVID-19 model is adjusted by integrating the patch-
specific control functions (1− ui(t)) into the forces of infection for both patches 1 and 2 in model system (1). 
The control effort ui(t) models optimal educational campaigns. The educational campaigns are disseminated 
through all the available platforms, including social media. In this case, educational campaigns encourage those 
not infected to have some protective behaviors. Under COVID-19 preventive measures, the control efforts may 
include increasing public confidence in COVID-19 vaccines while reinforcing basic prevention measures, includ-
ing mask-wearing and social distancing. It is vital to note that the infection risk will be reduced if the educational 
campaigns are strengthened with higher efficacy. Simultaneously, we wish to minimize the costs in attaining 
this. During the COVID-19 pandemic, much concern has been conveyed about the economic costs of disease 
control within the respective nations and the world. Hence, disease control and the associated costs are vital to 
recognizing an optimal public health response. Thus, in this section and “Numerical simulations”, we will focus 
on the state in which mobility restrictions may be efficient in minimizing the complete number of secondary 
infections within the two patches at minimum costs. Making use of the same variables and parameter names as 
presented before, our model system with the time-dependent controls is now given by

Table 1.  Model parameters and their baseline values. The time unit is a day.

Parameter Definition Baseline values References

β1 Rate of transmission due to the infected individuals 0.0115 74

B1 Rate of transmission due to the environment 0.00414 74

β2 Rate of transmission due to the infected individuals αβ1 Assumed

B2 Rate of transmission due to the environment αB1 Assumed

α Modification factor, for high risk community α > 1 Assumed

bi Birth rate of the human population 0.00018 74

µi Natural death rate 4.563 × 10−5 74

vi Death due to COVID-19 0.0018 74

ωi Progression rate from E to I class 0.09 74

ηi Shedding rate by the infected individuals 0.075 74

ri Life expectancy of the pathogens in the environment 0.7124 74

γi Recovery rate (0.0169607 - 0.061) 74

Table 2.  Parameter values in a residence-time matrix.

Coupling intensity Weak coupling Strong coupling

Symmetric coupling
p11 = 0.99, p12 = 0.01, p21 = 0.01, p11 = 0.7, p12 = 0.3, p21 = 0.3,

p22 = 0.99 (R0 = 3.96) p22 = 0.7 (R0 = 2.82)

Asymmetric coupling
p11 = 0.9, p12 = 0.1, p21 = 0.001, p11 = 0.7, p12 = 0.3, p21 = 0.001,

p22 = 0.999 (R0 = 3.84) p22 = 0.999 (R0 = 3.79)
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Our aim is to minimize the numbers of clinically infected individuals over a finite time horizon [0, T] at 
minimal costs in each respective patch. Mathematically, we formulate an objective functional J (u(t)) as follows:

subject to the system (7), where T denotes the final time. This performance specification involves the infectious 
individuals from both patches and the educational campaign’s cost. Ai and Di, i = 1, 2 are balancing coefficients 
(positive) transferring the integral into monetary quantity over a finite period. Note that the control efforts are 
assumed to be non-linear due to several advantages associated with the non-linear functions of the control. One 
of the advantages is that a non-linear control lets the Hamiltonian achieve its minimum over the control set at a 
distinct point. Furthermore, a quadratic structure in control has mathematical advantages. We seek an optimal 
control pair (u∗1 , u

∗
2) ∈ U such that

subject to the state system given by (7), for the admissible set

In the next subsection, we now derive the optimality system.

Characterization of optimal controls. Utilizing the Pontryagin’s Maximum  Principle63, the necessary 
conditions that an optimal control and corresponding states must fulfil are derived. The principle transforms (7) 
and (8) into a problem of minimizing pointwise a Hamiltonian H, regarding (u1(t), u2(t)) :

where �i , i = 1, 2, . . . , 10, are the adjoint variables. We now present the adjoint system and control characteriza-
tion in the following Theorem.

Theorem 5 Given an optimal control pair (u∗1 , u
∗
2) and corresponding state solutions Si , Ei , Ii , Ri , Wi , i = 1, 2 of 

the corresponding state system (7) that minimizes J (u1, u2) over U , there exists adjoint variables (functions), �i(t), 
for i = 1, 2, . . . , 10, satisfying

with terminal conditions

(7)



















S′i = bi − (1− ui)�iSi − µiSi + κiRi ,
E′i = (1− ui)�iSi − (µi + ωi)Ei ,
I ′i = ωiEi − (µi + γi + vi)Ii ,
R′
i = γiIi − (µi + κi)Ri ,

W ′
i = ηiIi − riWi , i = 1, 2.

(8)J (u1(t), u2(t)) =

∫ T

0
[A1I1 + A2I2 + D1u

2
1 + D2u

2
2] dt,

J (u∗1, u
∗
2) = inf

(u1,u2)∈U
J (u1, u2),

(9)U = {(u1, u2) ∈ (L∞(0,T))2 : 0 ≤ ui ≤ ai; ai ∈ R
+, i = 1, 2}.

H = [A1I1 + A2I2 + D1u
2
1 + D2u

2
2]

+ �1

[

b1 − (1− u1)�1S1 − µ1S1 + κ1R1

]

+ �2

[

(1− u1)�1S1 − (µ1 + ω1)E1

]

+ �3[ω1E1 − (µ1 + γ1 + v1)I1]

+ �4[γ1I1 − (µ1 + κ1)R1] + �5[η1I1 − r1W1] + �6

[

b2 − (1− u2)�2S2 − µ2S2 + κ2R2

]

+ �7

[

(1− u2)�2S2 − (µ2 + ω2)E2

]

+ �8[ω2E2 − (µ2 + γ2 + v2)I2] + �9[γ2I2 − (µ2 + κ2)R2] + �10[η2I2 − r2W2],

(10)



























































































































�
′
1(t) = (1− u1)�1(�1 − �2)+ µ1�1,
�
′
2(t) = ω1(�2 − �3)+ µ1�2,

�
′
3(t) = − A1 + S1(1− u1)

�

p211β1

N1p11 + N2p21
+

p212β2

N1p12 + N2p22

�

(�1 − �2)+ γ1(�3 − �4)− η1�5

+ S2(1− u2)

�

p11p21β1

N1p11 + N2p21
+

p12p22β2

N1p12 + N2p22

�

(�6 − �7)+ �3(µ1 + υ1),

�
′
4(t) = µ1�4 + κ1(�4 − �1),

�
′
5(t) = B1p11

S1(1− u1)

K1
(�1 − �2)+ r1�5,

�
′
6(t) = (1− u2)�2(�6 − �7)+ µ2�6,
�
′
7(t) = ω2(�7 − �8)+ µ2�7,

�
′
8(t) = − A2 + S1(1− u1)

�

p11p21β1

N1p11 + N2p21
+

p12p22β2

N1p12 + N2p22

�

(�1 − �2)+ γ2(�8 − �9)− η2�10

+ S2(1− u2)

�

p221β1

N1p11 + N2p21
+

p222β2

N1p12 + N2p22

�

(�6 − �7)+ �8(µ2 + υ2),

�
′
9(t) = µ2�9 + κ2(�9 − �6),

�
′
10(t) = B2p22

S2(1− u2)

K2
(�6 − �7)+ r2�10,
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Furthermore, the optimal controls u∗1 and u∗2 are represented by

Proof The existence of the optimal control emanates from Corollary 4.1  of64 since the integrand of J  is a convex 
function of (u1, u2) and the state system satisfies the Lipshitz property concerning the state variables. From the 
Pontryagin’s Maximum  Principle63, the following can be derived

with �i(T) = 0 for i = 1, 2, . . . , 10 worked out at the optimal controls and accompanying states, which results in 
the adjoint system (10). H is minimized with respect to the controls at the optimal controls, so we differentiate 
H concerning u1 and u2 on the set U , respectively, producing the following optimality conditions

Hence, we obtain

Reckoning the bounds on the controls, we obtain the required characterizations.   �

Remark 1 The uniqueness of the optimal control for a small time (T) was obtained, because of the a priori 
boundedness of the adjoint and state functions and the occurring Lipschitz structure of the ODEs. From the 
uniqueness of the optimality system, which is composed of Eqs. (7), (10) and (11) with characterization Eq. 
(12), the uniqueness of the optimal control pair (u∗1 , u

∗
2) follows. The limitation on the length of the time gap is 

to guarantee the uniqueness of the optimality system, the minute size in the length of time is due to the opposite 
time orientations of Eqs. (7), (10) and (11); the adjoint problem has final values and the state problem has initial 
values. The limitation is prevalent in control problems  (see65–72)

Numerical simulations
Utilizing the parameters in Table 1 and the forward-backward sweep method (implemented in Matlab), we work 
out the numerical solutions to the optimality system consisting of adjoint equation (13), state equation (7), cor-
responding initial/final conditions and control characterizations. The algorithm is initialized with a guess for the 
optimal controls, and the state variables are then worked forward in time using the Runge Kutta fourth-order 
method. Employing the backward Runge Kutta of the fourth-order, the initial control guess, and the state vari-
ables are used to solve the adjoint equations (13) backward in time with given final conditions. The controls u1 
and u2 are then updated and used to solve the state and the adjoint system. When the current state, adjoint, and 
control values converge  sufficiently73, this iterative process terminates.

In this section we utilize numerical simulations to support the analytic results previously established, and to 
provide examples about the dynamics of COVID-19. We use the following initial conditions:

We made use of the Parameters in Table 1, that have been extracted from the work done  in74, which reflect 
the historic lineage. Our main aim is to explore the effects of optimal preventive measures on the transmission 
dynamics of COVID-19 with different coupling intensities under the following cases: 

(a) Case 1 : Less efficient preventative measures in the high risk patch, that is patch 1, and efficient preventative 
measures in the low risk patch, that is patch 2. Thus, u1 = 0.45 and u2 = 0.80.

(b) Case 2 : Efficient preventative measures in the high risk patch, that is patch 1, and efficient preventative 
measures in the low risk patch, that is patch 2. Thus, u1 = 0.80 and u2 = 0.80.

Figures 1, 2, 3, 4 and 5 depicts the impact of coupling intensities on the two patches under Case 1, over a 
period of 100 days. Particularly, Figs. 1, 2, 3, 4 and 5 illustrates the number of infected individuals per patch, 
with and without optimal control under weak symmetric coupling, strong symmetric coupling, weak asymmet-
ric coupling and strong asymmetric coupling, respectively. Whenever the coupling is weak, we can see that the 

(11)�i(t) = 0, i = 1, 2, . . . , 10.

(12)















u∗1(t) = max

�

0, min

�

a1,
(�2 − �1)�1S1

2D1

��

,

u∗2(t) = max

�

0, min

�

a2,
(�7 − �6)�2S2

2D2

��

.

(13)�
′
1 = −

∂H

∂S1
, �′2 = −

∂H

∂E1
, . . . , �′10 = −

∂H

∂W2
,

(14)











∂H

∂u1
= (�1 − �2)�1S1 + 2D1u1 = 0,

∂H

∂u2
= (�6 − �7)�2S2 + 2D2u2 = 0.

(15)











u∗1(t) =
(�2 − �1)�1S1

2D1
,

u∗2(t) =
(�7 − �6)�2S2

2D2
.

Si(0) = 0.7, Ei(0) = 0.25, Ii(0) = 0.05, Ri(0) = 0.0.
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optimal control policy does not have a significant impact and not effective for the whole 100 days as compared 
to patch 2 in which the infections reduce with time. However, when the coupling intensity is strong, the number 
of the infected individuals in both patches reduce with time but with more impact being observed in patch 2 
where there are effective control measures.

Figure 6 represents the controls u1 and u2. The patch 1 control u1 is at the upper bound b1 for approximately 
100 days and has a sharp drop until it reaches the lower bound. The patch 2 control u2 is also at the upper bound 
for approximately 100 days and has a sharp drop until it reaches the lower bound. These results suggest that more 
effort can be devoted to both controls.

Figures 6, 7, 8, 9 and 10 illustrates the impact of effective control measures for both patches, which represents 
case 2. We can see that the total number of of the infected individuals for both patches decreases as a result of 
the optimal policy.
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Figure 2.  Simulation outcomes for the presented two patch COVID-19 mathematical model for case 1 under 
symmetric weak coupling (a) the number of infected humans in patch 1 (b) the number of infected humans in 
patch 2. In both figures, the red curves and blue curves are for the infected population, with optimal control and 
no optimal control respectively.
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Figure 3.  Simulation outcomes for the presented two patch COVID-19 mathematical model for case 1 under 
symmetric strong coupling (a) the number of infected humans in patch 1 (b) the number of infected humans in 
patch 2. In both figures, the red curves and blue curves are for the infected population, with optimal control and 
no optimal control respectively.
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Figure 11 depicts the impact of the controls u1 and u2. The patch 1 control u1 is at the upper bound b1 for 
approximately 100 days and has a sharp drop until it reaches the lower bound. The patch 2 control u2 is also at 
the upper bound for approximately 100 days and has a sharp drop until it reaches the lower bound. We conclude 
that both controls are important in controlling COVID-19.

Cost‑effectiveness analysis
To show to be just with the costs associated with the control strategies, the educational campaigns as preventive 
measures, the incorporated benefits are normally evaluated using the cost-effectiveness analysis. We shall borrow 
the same ideas from the cost-effectiveness analysis, and in attaining this, we will have to compare the differences 
between the health outcomes and the costs of the respective coupling intensities. Thus, we will make use of two 
approaches, namely the average cost-effectiveness ratio (ACER) and the infection averted ratio (IAR).
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Figure 4.  Simulation outcomes of the presented two patch COVID-19 mathematical model for case 1 under 
asymmetric weak coupling (a) the number of infected humans in patch 1 (b) the number of infected humans in 
patch 2. In both figures, the red curves and blue curves represent the infected population, with optimal control 
and no optimal control respectively.
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Figure 5.  Simulation outcomes for the presented two patch COVID-19 mathematical model for case 1 under 
asymmetric strong coupling (a) the number of infected humans in patch 1 (b) the number of infected humans 
in patch 2. In both figures, the red curves and blue curves are for the infected population, with optimal control 
and no optimal control respectively.
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Before we investigate the IAR and the ACER, we shall first determine the infections averted and the costs 
associated with each coupling intensity under our control strategy.

The number of infections averted is computed as the difference between the total infectious individuals 
without control and the total infectious individuals with the control. In Table 3, we notice that most infections 
are averted under strong symmetric coupling. It is worth noting that for both cases, case 1 and case 2, more 
infections are averted under symmetric coupling. This clearly portrays that increased mobility between the two 
risk communities reduces the overall epidemic size.

Table 4 illustrates that, employing the control policy in trying to curtail the spread of COVID-19 it is more 
expensive under the weak symmetric coupling. Thus, if those within the low risk patch and those in the high 
risk patch stay within their respective patches, the disease becomes expensive to control. We observe that the 
lowest cost of controlling the disease is under strong asymmetric coupling, that is when more people from the 
low risk move to the high risk patch.
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Figure 6.  The control profile for case 1: (a) Patch 1; and (b) Patch 2.
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Figure 7.  Simulation outcomes for the presented two patch COVID-19 mathematical model for case 2 under 
symmetric weak coupling (a) the number of infected humans in patch 1 (b) the number of infected humans in 
patch 2. In both figures, the red curves and blue curves are for the infected population, with optimal control and 
no optimal control respectively.
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From Tables 3 and 4, an interesting result is discovered, we noticed that more infections are averted under 
strong symmetric coupling yet to implement our strategies, the cheapest way would be under strong asymmetric 
coupling. Hence, to further understand this phenomenon we then employ the IAR and the ACER.

Infection averted ratio (IAR). The infection averted ratio is defined as

(16)
{

IAR =
Number of infections averted

Number of recovered
.
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Figure 8.  Simulation outcomes of the presented two patch COVID-19 mathematical model for case 2 under 
symmetric strong coupling (a) the number of infected humans in patch 1 (b) the number of infected humans in 
patch 2. In both figures, the red curves and blue curves represent the infected population, with optimal control 
and no optimal control respectively.
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Figure 9.  Simulation outcomes for the presented two patch COVID-19 mathematical model for case 2 under 
asymmetric weak coupling (a) the number of infected humans in patch 1 (b) the number of infected humans in 
patch 2. In both figures, the red curves and blue curves are for the infected population, with optimal control and 
no optimal control respectively.
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The number of infections averted is defined as the difference between the total infectious individuals without 
the control and the total infectious individuals with the control. The most effective strategy is the one with the 
highest IAR.

Average cost‑effectiveness ratio (ACER). The average cost-effectiveness ratio deals with a single inter-
vention, evaluating it against the zero intervention baseline option. It is defined as

The most cost-effective strategy, is the one with the lowest ACER.
After doing the necessary computations and also making use of Matlab programming in calculating the 

respective values, we present the following figures. A representing weak symmetric coupling (R0 = 3.96) , B 
representing strong symmetric coupling (R0 = 2.82) , C representing weak asymmetric coupling (R0 = 3.84) 
and D representing strong asymmetric coupling (R0 = 3.79).

From Fig. 12, we see that the infection averted ratio is highest under strong symmetric coupling. Thus, imple-
menting our control policy under strong symmetric coupling would be the most ideal, since more lives would be 
saved. Practically, use of cordon sanitaires or community lockdowns are not always the best methods of reducing 
pandemics. Furthermore, the IAR would be highest under case 2 when both control strategies would be efficient 
at 80% . An interesting result is noted in that the IAR for the strong asymmetric coupling under case 1, is almost 
equal to the IAR for weak symmetric coupling, weak asymmetric coupling and strong strong asymmetric coupling 
under case 2. Thus, implementing educational campaigns bears more fruits under strong symmetric coupling.

Figure 13 depicts ACER for both case 1 and case 2. On comparing case 1 and case 2, we can see that we have 
our lowest ACER under case 1, when both intervention strategies would be implemented with high efficiency. 
Implementing our strategy would be the most ideal under strong symmetric coupling, for both cases.

Discussion
We have proposed and studied a model to understand the impact of short-term human movement on trans-
mission and the control of COVID-19 within a heterogeneous population. The suggested mathematical model 
consists of two patches and human movement modeled through a Lagrangian approach. This study applies 
within and between countries where two communities differ by risk (high risk and low risk) and are under strict 
lockdown. Furthermore, it applies to the country’s borders, where two countries differ economically, such as 
in the case of Zimbabwe and South Africa. The heterogeneity in human movement contacts may significantly 
contribute to the transmission and control of COVID-19.

We computed and analyzed the threshold quantity known as the reproduction number R0 , for our proposed 
mathematical model. We noted that the reproduction number is a function of various factors such as the propor-
tion of the time that individuals of each patch spend in their patch and the other patch, rates of transmission, 
life expectancy of the pathogens in the environment, death due to COVID-19, natural death rate, etc. We also 
noted that the reproduction number R0 , depends on the characteristics of both patches. But, without human 
mobility we realized that each patch has its own reproduction number, R01 and R02 for patch one and patch two, 

(17)
{

ACER =
Total cost produced by the intervention

Total number of infection averted
.
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Figure 10.  Simulation outcomes for the presented two patch COVID-19 mathematical model for case 2 under 
asymmetric strong coupling (a) the number of infected humans in patch 1 (b) the number of infected humans 
in patch 2. In both figures, the red curves and blue curves are for the infected population, with optimal control 
and no optimal control respectively.
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respectively. It is worth stating that each patch depends on the characteristics of each respective patch. Numeri-
cally, we managed to show that in the absence of human mobility R01 = 1.20690 and R02 = 0.42138 , which 
means that COVID-19 dies out in the low-risk patch and persists in the high-risk patch. We noted that in the 
presence of human mobility, the reproduction number would always be greater than 2, meaning that mobility 
increases the spread of the disease in the community. Hence, lockdowns are justified in reducing COVID-19 
prevalence. We noted that the reproduction number would be the highest when the mobility pattern is sym-
metric and the coupling intensity is weak, at R0 = 1 . We then employed some analytic methods to show that 
when R0 ≤ 1 , COVID-19 dies out within the community. When R0 > 1 , an endemic equilibrium point that is 
unique exists, and the disease persists.

We then used the optimal control theory to determine the optimal strategy for reducing COVID-19. The 
strategy implemented was educational campaigns within each respective patch. We investigated two cases that 
mimic COVID-19 strategies in developing countries. Case 1, it represents the environment in which there would 
be less efficient measures in the high risk patch (taking u1 = 0.45 ) and efficient preventive measures in patch 
(taking u1 = 0.80 ). This is the scenario in which there is insufficient information in the real world and no means 
of reaching out efficiently to those at high risk of contracting COVID-19. Case 2, we have efficient preventive 
measures in both patches, that is we set u1 = 0.80 and u2 = 0.80 for both cases. Under Case 1, we noted that the 
controls are more effective under weak symmetric coupling. Furthermore, under Case 2, we also noted that the 
controls are effective under strong symmetric coupling. The numerical results provide important evidence that 
having effective controls on both patches is the best way forward. Our results show that human mobility plays 
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Figure 11.  The control profile for case 1: (a) Patch 1; and (b) Patch 2.

Table 3.  The total number of infections averted over a 100 day period.

Cases Case 1 Case 2 R0

Weak symmetric coupling 7.825620 22.91336 3.96

Strong symmetric coupling 17.09808 29.12621 2.82

Weak asymmetric coupling 7.923208 22.42164 3.84

Strong asymmetric coupling 8.845054 21.45402 3.79

Table 4.  The total cost with respect to the control policy, over a 100 day period.

Cases Case 1 Case 2 R0

Weak symmetric coupling 4.70407 × 105 3.19530 × 105 3.96

Strong symmetric coupling 4.34942 × 105 3.14661 × 105 2.82

Weak asymmetric coupling 4.59452 × 105 3.14468 × 105 3.84

Strong asymmetric coupling 4.30111 × 105 3.04021 × 105 3.79
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a vital role in directing the long-term dynamics of COVID-19, which later impacts the design of its optimal 
control strategies.

We employed the cost-effectiveness analysis to understand the costs associated with the control strategies. 
More infections are averted under strong symmetric coupling, which its low reproduction number may justify. 
Additionally, for both cases, we noted that it is expensive to control COVID-19 under weak symmetric coupling, 
the cheapest being strong asymmetric coupling. To fully understand the costs associated with our control strate-
gies, we calculated the infection averted ratio (IAR) and the average cost-effectiveness ratio (ACER). The highest 
AIR was attained under strong symmetric coupling for both cases. The lowest ACER was observed under strong 
symmetric coupling. Thus, it is beneficial and cost-effective for both cases to carry out the controls under strong 
symmetric coupling to curtail the disease faster. Lastly, the best way would be to control the disease without 
movement.
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Figure 12.  Graphs of (a) showing the infection averted ratio (IAR) for case 1 and (b) showing the infection 
averted ratio (IAR) for case 2.
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Figure 13.  Graphs of (a) showing the average cost-effectiveness ratio (ACER) for case 1 and (b) showing the 
average cost effectiveness ratio (ACER) for case 2.
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Limitations. Our study consists of some limitations. Limited data exist on COVID-19 regarding short-term 
dispersal, particularly not much mathematical modeling has been done concerning short-term dispersal. There-
fore, some of our numerical estimates remain uncertain. Thus, we had to utilize data published in the literature, 
to base our numerical results. More data sets and experimental studies are needed to include more natural 
biological processes in the models of short-term human movements. Our constant Ki , which represents the 
number or quantity of pathogens present during human interaction, is independent of time. Lastly, we did not 
include the age structure, which is also a variable in the mode of transmission of COVID-19. It was shown that 
the susceptibility profile among children is much less than the elderly population, but for our main aim, this was 
not very essential.

Future perspectives. However, just like any other model, we cannot say the model is complete. Hence the 
following improvements can be included in the model in the future. It is well known that pre-symptomatic indi-
viduals play an essential role in the spread of COVID-19. Hence the pre symptomatic, symptomatic and asymp-
tomatic individuals can be treated as separate classes. The paper is theoretical and does not include empirical 
data. It would be essential to calibrate the model with real empirical data. Lastly, the manuscript investigated 
the infected averted ratio (IAR) and the average cost-effectiveness ratio (ACER). It would be necessary also to 
include the incremental cost-effectiveness ratio (ICER). The ICER is the additional cost per additional health 
outcome and we assume that the costs of the various control interventions are directly proportional to the num-
ber of controls deployed.

Data availability
The data used to support the findings of this study are included within the article and cited accordingly.
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