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Interference patterns in ionization 
of Kramers–Henneberger atom
I. A. Ivanov1,2*, A. S. Kheifets2 & Kyung Taec Kim3

We combine IR pump and XUV probe laser pulses to visualize the Kramers–Henneberger (KH) state of 
the potassium atom. We demonstrate that ionization of such an atom exhibits some molecular-like 
features such as low order interference maxima in photoelectron momentum spectra. The locations 
of these maxima allow to estimate spatial dimensions of the KH atom and can be used for accurate 
calibration of high intensity laser fields. At the same time, we show that an analogy between the KH 
atom and a homo-nuclear diatomic molecule cannot be extended too far. In particular, higher order 
interference maxima are very difficult to observe in the case of the KH state. We attribute this to a 
particular structure of the KH potential which does not confine electron motion to a well-defined 
potential well unlike in real diatomic molecules.

The formation of the Kramers–Henneberger (KH) state in an atom exposed to a strong laser field has been a 
subject of numerous investigations. In a seminal  work1 Henneberger showed that the ionic potential, viewed from 
the electron reference frame and averaged over its rapid oscillations, can actually bind the electron into a stable 
KH atom. This binding is thought to be behind the process of laser driven  stabilization2. Various techniques have 
been proposed to image the KH atom. One such imaging is offered by means of photoelectron  spectroscopy3. The 
bound states of the KH atom leave their distinct marks in the photoelectron momentum distribution (PMD). 
Even more remarkably, a bound state of the KH atom can be distorted into a dichotomic molecular-like  state2,4 
whose PMD displays a double-slit interference  pattern5. This pattern is suggested to serve as an unambiguous 
evidence of the KH states leading to adiabatic stabilization. In addition, the authors of the Ref.5 claim that dicho-
tomic hydrogen atom displays a number of other molecular peculiarities, such as charge-resonance enhanced 
ionization and electron spin flipping.

Inspired by these findings, we carry out a systematic investigation of the PMD of the KH atom. The point 
of departure from the earlier  work5 is our use of an infrared (IR) laser pump and an extreme ultraviolet (XUV) 
probe. These pump and probe pulses were reverted in the previous work. As the KH atom is driven more strongly 
by a low frequency field, the use of an IR pump is more efficient in comparison with an XUV one. While the 
hydrogen atom was used in the Ref.5, we use the potassium atom with a smaller ionization potential. Thus, the 
formation of the KH state is easier to observe. It can be achieved in weaker IR fields and probed by lower intensity 
XUV pulses. The probe process requires absorption of a single XUV photon and can be conveniently described 
within the lowest order perturbation theory (LOPT).

As in the previous  work5, our simulations reveal molecular-like structures in PMD of the KH atom such as 
low order interference maxima. The location of these maxima can be used to estimate a spatial dimension of the 
KH atom. However, an analogy between the KH atom and a homo-nuclear diatomic molecule is not complete. In 
particular, higher order interference maxima are missing in the PMD. These maxima should be amply present in 
a molecule with a comparable spatial extent. We attribute their absence in the KH atom to a particular structure 
of the KH potential which does not confine electron motion to a well-defined potential well.

Our paper is structured in the following way. In the “Theory” section we introduce the KH potential and 
present our numerical technique used to describe the KH state of the potassium atom. We further introduce the 
XUV probe and describe single-photon ionization of the KH state. In the “Results and discussion” section we 
show and analyze our numerical results for the PMD’s. The concept of the information theoretic Shannon entropy 
is used to characterize the sharpness of the KH state in the coordinate and momentum spaces. We demonstrate 
that there is a profound difference between the electron localization in the KH state and a diatomic molecule. 
We show that, despite this fact, we can still extract some information about spatial extent of the KH state from 
the interference patterns in the PMD’s. This information can be employed for an accurate calibration of the high 
intensity electromagnetic fields. We conclude in the “Conclusion” section by summarizing our major findings.

OPEN

1Center for Relativistic Laser Science, Institute for Basic Science, Gwangju 61005, Republic of Korea. 2Research 
School of Physics, Australian National University, Canberra, ACT  2601, Australia. 3Department of Physics and 
Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea. *email: 
igorivanov@ibs.re.kr

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-21549-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17048  | https://doi.org/10.1038/s41598-022-21549-x

www.nature.com/scientificreports/

Atomic units (a.u.) are used throughout the paper.

Theory
KH atom description. The formation of the KH atom is described in the  literature1,3,6. We follow these 
works and consider a one-electron atom with an effective atomic potential V(r) , and subject it to a monochro-
matic linearly polarized laser field E(t) = exE0 cosωt . We merge the origin of our reference frame with the 
atomic electron oscillating in the field. This is achieved by performing a canonical transformation generated by 
the operator

where A(t) = −
t

∫

0

E(τ ) dτ is the field vector potential. This way we transform the initial velocity gauge Ham-

iltonian to the so-called Kramers–Henneberger gauge, where the Hamiltonian of the system can be written as:

with a0 = E0ω
−2 being the excursion radius of an electron in the monochromatic field E0 cosωt . By expanding 

further this expression in a Fourier series and keeping only the constant  term3, we obtain the Hamiltonian ĤKH 
describing the KH atom:

Here the KH potential VKH(r) is defined as a cycle average

with α(φ) = a0 cosφ . The Hamiltonian (3) of the KH atom is, therefore, obtained by neglecting all the harmon-
ics except the zero order one in the Fourier expansion of the Hamiltonian (2). Whether keeping the constant 
term and neglecting all the oscillatory terms provides a good description of the quantum dynamics depends 
on the particular laser and atomic system parameters. For higher driving laser frequencies in the UV and XUV 
ranges, such an approximation is reminiscent of the well-known fast oscillations averaging method in classical 
 mechanics7,8. The quantum-mechanical version of such a method can be justified on the similar  grounds9,10. It was 
found that the picture based on the KH Hamiltonian can also provide an accurate description of the laser–atom 
interaction even for low frequencies in the IR  range3,11,12. Below, we will use the same field parameters and target 
system as in Ref.3. We consider the potassium atom interacting with a strong monochromatic IR field with a 
frequency ω = 0.0577 a.u. corresponding to the wavelength of 800 nm. By its definition (4), the KH Hamiltonian 
depends only on the parameter a0 = E0/ω

2 . Therefore, our results will be applicable for other driving laser fields 
as long as this parameter has the same values.

To describe the field-free potassium atom, we use the model one-electron potential V(r) given in Ref.3. This 
potential is parametrized to reproduce accurately the bound energies of the 4–6s, 4–5p, 3–4d, 4f and 5g states. 
We compute VKH(r) by plugging V(r) into (4) and performing the Gaussian quadrature integration. Because of 
a singular nature of the integral (4), we use a high order quadrature with 1300 points over the interval (0, 2π) . 
With VKH(r) thus computed, we diagonalize the KH Hamiltonian (3) to find the ground state wave function 
φ0(r) and the corresponding energy ε0 . This diagonalization is performed using the basis set Rn(r)Yl0(r̂) , where 
Rn(r) = Nrane−ζnr are the Slater-type orbitals (STO) and Yl0(r̂) are the spherical harmonics. We use a set of the 
so-called split valence STO’s13 i.e. we employ the STO’s with different parameters in the exponential functions 
for each partial wave l. Such a split valence basis is known to produce accurate results for various  molecular13 
and  atomic14,15 Hamiltonians. Use of the different exponents ζn in the STO’s allows us to achieve two important 
goals. It helps us to cover a large portion of the configuration space, which is necessary if we wish to represent 
the molecular-like ground state wave-function of the KH atom with its considerable spatial extension. Such a 
choice also helps us to avoid potential numerical problems due to the near degeneracy of the STO’s, which is 
often encountered when STO’s with only single ζ-parameter are used for each partial wave. More specifically, for 
each angular momentum l we use a number Nl of the STO’s with an = l + n− 1 , ζn = 2/n for n = 1, 2, . . .Nl . 
The parameter Nl defines the basis size for each partial wave. In the calculations below we used Nl = 12 for each 
partial wave.

The calculation is straightforward, and we will not dwell on its numerical details. We choose the quantization 
direction along the x̂ axis. Again, because of a singular nature of the KH potential, the partial wave expansion 
converges rather slowly so that we take into account the harmonics of the order up to 120. We note that all the 
necessary convergence checks needed to ensure accuracy of the results that our calculation gives for the ground 
state eigenvalue of the Hamiltonian (3) have been performed. As an illustration of this statement we mention that 
if for the field strength of E0 = 0.0534 a.u. we use harmonics of ranks up to 80 to represent the wave-function and 
employ the values Nl = 10 for a number of the STO’s for each l we obtain the ground state energy of − 0.08214439 

(1)F̂ = exp

{

i

∫

A(τ ) · p̂ dτ

}

,

(2)Ĥ = p̂
2

2
+ Vatom(r + a0êx cosωt),

(3)ĤKH = p̂
2

2
+ VKH(r).

(4)VKH(r) =
1

2π

2π
∫

0

V [r + exα(φ)] dφ,
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a.u. If, instead, we include in the calculation spherical harmonics of ranks up to 70 with the same Nl’s, we obtain 
the ground state energy of − 0.08214438 a.u. Of a similar magnitude is the norm of the difference of the ground 
state wave-functions obtained in the two calculations. We have achieved, therefore, a convergence of the order 
of 10−8 a.u. with respect to the number of the partial waves included in the calculation. If, on the other hand, we 
include in the calculation spherical harmonics of ranks up to 70, using Nl = 12 for each l, we obtain the ground 
state energy of − 0.08214596 a.u., showing that we have achieved a convergence on the level of 10−6 a.u. with 
respect to the composition of the radial STO. We can adopt the latter figure as an estimate of the accuracy we 
may hope to have achieved in representing the ground state of the KH atom.

Figures 1 and 2 show, respectively, the ground state energies of the KH Hamiltonian (3) and the coordinate 
density of the ground state wave function in the (x, y)-plane for different field strengths of the driving IR field.

As the driving field strength grows, the binding energy |ε0| of the KH atom diminishes. At the same time, the 
coordinate densities in Fig. 2 acquire a distinct character with the two center separation growing approximately 
as 2a0 . This should entail certain molecular-like features such as a two-center interference pattern to be present 
in photoionization from a KH state. We present a study of these effects in the next section.

Single-photon ionization of KH state. We consider photoionization from the ground state of the KH 
Hamiltonian (3) by a probe laser pulse with the field E(t) described by the following expression:

Here T1 = 20T = 40π/� is the total pulse duration, � is the carrier frequency of the probe and 
E
probe
0 = 0.05 a.u. is its peak field strength. We consider a weak probe pulse so that the transition amplitude 

ap for ionization into a state with the momentum p can be found by using the well-known LOPT  expression16:

Here φ̃0(p) is the Fourier transform of the ground state wave-function and Ãprobe(x) is the Fourier transform 
of the probe field vector potential. It is assumed in (6) that the final ionized state of the KH Hamiltonian is 
approximated by a plane wave. Equation (6) also assumes that the velocity gauge is used to describe the interac-
tion of the KH atom and the probe field. We use, therefore, different gauges to describe the atomic interactions 
with the driving IR and the probe fields, as was done, e.g., in Ref.5. We obtain such a description by applying the 
KH canonical transformation (1) to the Hamiltonian ĤV(t) of the system comprising the field-free atom sub-
jected to the driving IR field and the probe field, where both fundamental field A(t) and the probe field Aprobe(t) 
are initially described using the velocity gauge:

with Hatom = p̂
2

2
+ V(r) being the field free atomic Hamiltonian and Ĥint(t) being the velocity gauge interaction 

Hamiltonian describing atom-field interaction:

The transformed Hamiltonian in the KH gauge is then (with operator F̂(t) given by the (1)):

(5)Eprobe(t) = êyE
probe
0 sin2

(

π t

T1

)

cos�t.

(6)ap = −i(ey · p)φ̃0(p)Ãprobe
(

p2/2− ε0
)

.

(7)ĤV(t) = Ĥatom + ĤV
int(t),

(8)ĤV
int(r, t) = p̂ ·

(

A(t)+ Aprobe(t)
)

.
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Figure 1.  Ground state energy of the KH Hamiltonian (3) for different strengths E0 of the IR driving field.
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where the first two terms give (for monochromatic field A(t) ) the Hamiltonian (2), and the part of the Hamil-
tonian describing atom-probe field interaction remains unchanged since it commutes with the operator F̂(t) in 
(1) generating the transformation.

Results and discussion
Photoelectron momentum distributions. In Figs. 3 and 4 we show the photoelectron momenta distri-
butions (PMD) projected on the (x, y) plane. These results are obtained using the LOPT expression (6) with the 
KH ground states wave functions prepared as described above. We present results for the two values of the probe 
field frequency � = 0.2 a.u. (Fig. 3) and 1 a.u. (Fig. 4) while varying the strengths of the IR field creating the KH 
state. As expected from the coordinate density plots of Fig. 2, both sets of PMD exhibit interference patterns, 
albeit not very pronounced. Thus we can attempt to extract some structural information about the KH state from 
these interference structures.

Tight binding model. The question that we would like to address first is why the interference patterns are 
pronounced so poorly even for the large field strengths E0 which correspond to large ‘internuclear’ distances. 
Indeed, at most, we can observe the main and two secondary interference maxima in Figs. 3 and 4. This is not 
what we would have expected had we dealt with the case of a genuine two-slit interference in a single photon 
ionization of a two-center molecule, as suggested by the tight-binding (TBM) or Heitler–London model. In this 
model (see e.g.17), the ground molecular state is represented by a Heitler–London wave function:

In the TBM, the overlap of the two terms is small and φ(r) is typically represented by a spherically sym-
metric atomic-like state. Than, for the Fourier transform of the Heitler–London wave-function (10) we have 

(9)i
∂F†(t)

∂t
F(t)+ F†(t)HVF(t) = p̂

2

2
+ Vatom



r −
t

�

0

A(τ ) dτ



+ p̂ · Aprobe(t),

(10)φ0(r) = [φ(r − R/2)+ φ(r + R/2)]/
√
2.

Figure 2.  Coordinate density of the ground state wave-function for different values of the IR field strength: 
E0 = 0.02387 a.u. (a), E0 = 0.04 a.u. (b), E0 = 0.0534 a.u. (c), E0 = 0.1 a.u. (d).
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φ̃0(p) =
√
2φ̃(p) cos(p · R/2) . This Fourier transform and the corresponding PMD are shown in Fig. 5 for the 

case where we place two hydrogen atoms in the ground 1s state at the distance R = 32.9 a.u. and the frequency 
of the probe pulse � = 1 a.u. The plot in Fig. 5b demonstrates that for a genuine Heitler–London molecule the 
dependence of the Fourier transform of the wave function on the momenta is dominated for large R by a rapidly 
oscillating cosine factor, leading to the fast oscillations in the PMD in Fig. 5a. The internuclear distance R we 
used in this example is twice the value of the parameter a0 = E0/ω

2 for E0 = 0.0534 a.u. and ω = 0.057 a.u. so, 
basing on the Heitler–London picture, we could expect to see similar PMD for the KH atom in the field range 
that we consider.

Figure 3.  Photoelectron momentum distributions in the (x, y) plane for various IR field strengths and 
frequency of the probe field � = 0.2 a.u. PMD is exponentiated ( P(px , py)1/3 is shown) for improving visibility 
of the patterns. IR field strengths are: E0 = 0.02387 a.u. (a), E0 = 0.04 a.u. (b), E0 = 0.0534 a.u. (c), E0 = 0.1 
a.u. (d), E0 = 0.125 a.u. (e), E0 = 0.15 a.u. (f). Lines show directions to low order maxima of the interference 
pattern.
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The ingredient of (6) which is solely responsible for the numerous interference maxima appearing in the 
PMD in Fig. 5b) is the Fourier transform φ̃0(p) of the ground state wave function which, in the case of the 
Heitler–London ground state (10) with a large R, is a rapidly oscillating function of the photoelectron momen-
tum. We must conclude, therefore, that for the KH atomic states this is not the case. This can be seen in Fig. 6 
where we show the Fourier transforms of the ground state wave functions of the KH atom for different IR field 
strengths. Figure 6 displays the real part of φ̃0(p) ). We observe from this figure that the oscillations in the Fou-
rier transforms φ̃0(p) are rapidly decaying in magnitude when we move away from the origin. Thus, in the case 
of the KH atom, φ̃0(p) is a function which is sharply peaked at the origin. It is this fact that makes only a few 
interference maxima visible in Figs. 3 and 4. Accordingly, the wave function in the reciprocal coordinate space 

Figure 4.  Photoelectron momentum distributions in the (x, y) plane for various IR field strengths and 
frequency of the probe field � = 1 a.u. PMD is exponentiated ( P(px , py)1/3 is shown) for improving visibility 
of the patterns. IR field strengths are: E0 = 0.02387 a.u. (a), E0 = 0.04 a.u. (b), E0 = 0.0534 a.u. (c), E0 = 0.1 
a.u. (d), E0 = 0.125 a.u. (e), E0 = 0.15 a.u. (f). Lines show directions to low order maxima of the interference 
pattern.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17048  | https://doi.org/10.1038/s41598-022-21549-x

www.nature.com/scientificreports/

must be much fuzzier than the Heitler–London wave-function (10) which is sharply peaked at the two centers. 
A useful measure allowing to characterize this fuzziness of the coordinate wave function and the sharply peaked 
character of the momentum space wave function is provided by the information theoretic Shannon  entropy18. 
The meaning of the entropy that we will use here is quite similar to that in the statistical mechanics. For a given 
distribution entropy provides a measure of the width of its support. In this respect its meaning is similar to the 
meaning of the distribution dispersion, but the notion of entropy is more informative since it can be applied for 
the characterization of distributions with several maxima, such as those displayed in Fig. 2, for which the notion 
of dispersion is meaningless.

Using the definition of the theoretic Shannon  entropy18, the respective entropies of the coordinate Sx(t) and 
momentum Sv(t) distributions can be determined as follows:

Here �(r) is the coordinate space wave function describing the system and �̃(p) is its Fourier transform. 
Both �(r) and �̃(p) are not dimensionless quantities. So the logarithms of these quantities and consequently the 
entropies in (11) are defined only up to arbitrary additive constant depending on the units of length we employ. 
The entropies in (11) share this property with the entropy in classical statistical  mechanics19), and it is not 
important as long as we are interested in the entropy change, when this arbitrary additive constant cancels out.

(11)
Sx(t) = −

∫

|�(r)|2 log |�(r)|2 dr ,

Sv(t) = −
∫

|�̃(p)|2 log |�̃(p)|2 dp.

Figure 5.  (a) The Fourier transform of the wave-function (atomic units are used) and (b) the corresponding 
PMD for the frequency of the probe pulse � = 1 a.u. for the Heitler-London wave function built form two 
hydrogen atoms in the ground 1s state placed at the distance R = 32.9 a.u.
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The entropies introduced in (11) are shown in Fig. 7. We observe in this figure that, up to the field strengths 
of ≈ 0.06 a.u., the coordinate distribution becomes progressively fuzzier, while the momentum distribution 
is getting sharper. These conditions are quite unfavorable to forming an interference pattern. For higher field 
strengths, these trends are reversed. The momentum distribution is becoming a little ‘wider’, thus enabling the 
formation of an interference pattern. We can draw the same conclusions from the figures above showing the 

Figure 6.  Real part ℜ(φ̃0(p)) of the Fourier transform of the ground state wave-functions of the KH atom. IR 
field strengths are: E0 = 0.02387 a.u. (a), E0 = 0.04 a.u. (b), E0 = 0.0534 a.u. (c), E0 = 0.1 a.u. (d). 
Dimensionless quantity 

(

ℜ(φ̃0(p))
max|ℜ(φ̃0(p))|

)1/3
 is shown for improving the visibility of the patterns.
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PMD’s. For the higher field strengths we do see the interference patterns staring to develop in the PMD’s. First 
and second order interference maxima are clearly seen, although they are not exactly at the places prescribed by 
the TBM. The cosine factor in the TBM positions the interference maxima at pxR = 2πn , with n = 0,±1 . . . . 
Since the electron energy is fixed by the energy conservation relation p2x + p2y = 2ε0 + 2� these two relations 
determine the position of interference maxima in the (px , py)-plane once R is known. In Figs. 3 and 4, we display 
the rays at the locations of the n = ±1 and n = ±2 interference maxima by choosing the value of R so that it gives 
us the exact direction to the first order maximum of the PMD. As one can see, the locations of the maxima with 
n = ±2 are not very well reproduced, so we are still not quite in the region of applicability of the TBM even for 
the two-center distances as large as 40 a.u. (the value we have in Fig. 2 for E0 = 0.1 a.u.).

Peculiar features of the KH potential. To understand why even for such large two-center distances 
the TBM is still a poor approximation, we display in Fig. 8 the cuts of the KH potential U(x, y) for different y. 
One can see from this figure that electron tunneling from one center to another one along the two-center axis 
has a vanishingly small probability, the barrier being forbiddingly high. If, however, we move only very slightly 
away from the two-center axis, the barrier lowers dramatically or disappears altogether. This feature of the KH 
potential can be illustrated better yet if we plot the electron kinetic energy, i.e, the quantity T(x, y) = E − V(x, y) 
in the (x, y)-plane. This is done in Fig. 9a. The regions in the (x, y)-plane with T > 0 are classically allowed. 
This classically allowed area (CAA) in the (x, y)-plane is shown (in red) in Fig. 9b. One can observe that there 
is a broad CAA in the x, y-plane which connects both potential wells of the KH potential barrier situated at 
x = ± a0 . This connected character of the CAA makes it easy for the electron to travel out from the KH poten-
tial well, thus smearing the coordinate space wave function between the two wells. The notable exception is the 
high ridge along the two-center axis where the tunneling barrier is still very high. It is this feature of the KH 
potential, which is absent in real diatomic molecules, that ultimately makes the electron wave function so fuzzy 
in the coordinate space. That, in turn, makes the TBM a poor approximation even for very large two-center 
distances. The wave function in the reciprocal momentum space is sharply peaked near the origin exhibiting 
not too many oscillations leading, therefore, to the PMD’s with only low order interference peaks present. We 
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Figure 8.  Cuts of the KH potential U(x, y) for different y for the IR field strength E0 = 0.0534 a.u.

Figure 9.  (a) The electron kinetic energy T = E − V(x, y) (a.u.) in the KH atom for the IR field strength 
E0 = 0.0534 a.u. (b) Classically allowed area (in red) in the (x, y)-plane for E0 = 0.0534 a.u. (c) Classically 
allowed area (in red) in the (x, y)-plane for the same field parameters and atomic Coulomb potential.
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shall see, nevertheless, that even these low-order interference patterns can provide reliable information about 
the spatial structure of the KH state.

This discussion of the properties of the CAA of electron’s motion was based on the connected character of the 
CAA for a particular KH potential resulting from the potential function V(r) we employ in the present work. The 
general pattern of the CAA and hence our conclusions would not change had we used another potential function. 
As an illustration of this statement, we show in Fig. 9c the CAA for the KH potential arising from the Coulomb 
V(r) = −1/r potential for the same field parameters. As one can see from the figure, the CAA in the case of the 
Coulomb atomic potential is a singly connected region in the (x, y)-plane, while for the potential function V(r) 
we considered above, this is not the case, a ridge in the KH potential appears due to the strongly-repulsive feature 
present in the potential function V(r) introduced  in3 that we used above. This difference is not very important, 
however, essential point is that in the Coulomb case the CAA is also a connected region in the (x, y)-plane.

Analysis of the spatial structure of the KH states. In Fig. 10 we show estimates for the ’internuclear’ 
distance R we obtain from the interference structures in the PMD’s in Figs. 3 and 4. These structures are vis-
ible in Figs. 3 and 4 distinctly for the IR field strength of 0.0534 a.u. and higher. The estimates were obtained as 
described above by adjusting the ‘internuclear’ distance R so that the two-slit interference relation of the TBM 
and the energy conservation equation give us the correct locations of the first order maxima in the PMD. We 
compare results for R thus obtained with the naive estimate R = 2a0 and the estimate we obtain from the coor-
dinate density plots like the ones shown in Fig. 2. These “coordinate density” estimates for R are obtained simply 
as locations of the maxima of the coordinate density in the (x, y)-plane. As one can see from Fig. 10, we obtain 
pretty good (better than 10%) agreement between the two values of R if we use the probe pulse with � =1 a.u. 
for all the field strengths that we consider. For the probe frequency � = 0.2 a.u. the agreement is worse but still 
quite acceptable. More importantly, agreement between the values of R inferred from the interference pattern in 
the PMD’s and the value obtained by the analysis of the coordinate density of KH states improves with increas-
ing IR field strength. One may hope, therefore, that such estimates of the ‘internuclear’ distance R can be used 
for the purposes of accurate calibration of strong laser fields. This approach relies only on the atomic property 
and the laser intensity at the position of the atom. Thus, it would provide a more accurate way to calibrate the 
absolute intensity of the laser beam than the methods relying on the macroscopic property of the laser beam and 
ionization  models20,21.

Preparation and observation of KH states. We have considered so far the idealized case of a KH state 
interacting with an XUV pulse, not touching upon the question of how such a state can be created and how (and 
if) the interference patterns we described above can be observed in the real experiment. This issue is somewhat 
tangential to the main topic of the manuscript, which was to illustrate the not quite molecular character of KH 
states. Nevertheless, this issue is, of course, of great importance, since without a possibility of an experimental 
observation the findings we reported above can have only a purely academic interest.

To elucidate this issue we performed a series of time-dependent Schrödiger equation (TDSE) calculations, 
solving the TDSE:

using the velocity gauge Hamiltonian (7) with interaction Hamiltonian given in (8). The form of the functions 
describing the vector potentials in (8) was chosen as follows:

(12)i
∂�(r, t)

∂t
= ĤV(t)�(r, t),
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Figure 10.  ‘Internuclear’ distances obtained from the interference patterns in Figs. 3 and 4.
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In (13) the total duration of the fundamental pulse was T1 = 25T where T = 2π/ω is an optical cycle cor-
responding to the fundamental pulse base frequency ω , tm = T1/2 is the midpoint of the fundamental pulse. 
The total duration of the probe pulse was twenty optical cycles: T2 = 40π/� , and for the envelope f(t) of the 

probe pulse we used an expression: f (t) = cos2
(

π(t − tm)

T2

)

 if |t − tm| ≤ T2/2 and f (t) = 0 otherwise.

IR fundamental field. We consider first the case of the IR fundamental field, with the fields parameters chosen 
as follows: E0 = 0.1 a.u., ω = 0.0577 a.u. for the fundamental field, and Eprobe0 = 1.5 a.u., � = 1.5 a.u for the 
probe field. Electric fields of the pulses are shown in Fig. 11. The TDSE (12) was solved numerically using the 
procedure we described in detail  elsewhere22,23. We will give, therefore, only its brief description. The solution 
to (12) is represented as:

where Ylm(θ ,φ) are spherical harmonics, radial functions flm(r, t) are defined on the points of a grid with the 
step-size δr = 0.1 a.u. in a box of the size Rmax . A system of the coupled equations for the radial functions flm(r, t) 
resulting from the substitution of the expansion (14) into the TDSE was propagated in time on the interval 
(0, 25T) (here T is the optical cycle of the fundamental field) using the matrix iteration  method24. The initial 
state for the time-propagation was the ground state of the potential V(r) we used above. As previously, we use 
the coordinate system with the quantization axis in the x-direction. Transitions caused by the fundamental field 
A(t) conserve then the magnetic quantum number m in the expansion (14). On the other hand, because of the 
well-known dipole selection rules, absorption or emission of a probe photon leads to a change of m by one unit. 
If we start with the m = 0 initial state, and we are interested in a single probe photon absorption or emission 
processes we can, therefore, restrict the sum in m in (14) to m = 0,± 1 . As for the parameter l in this expansion 
it was restricted to the range l ≤ lmax . The values of the parameters lmax and the parameter Rmax defining the 
radial box-size were chosen after the convergence checks as: lmax = 60 , Rmax = 4000 a.u. As an illustration of 
the level of convergence we achieve, we mention that choosing the parameters lmax = 60 and Rmax = 4000 we 
obtain total ionization probability of 0.867092 after the end of the fundamental pulse. Repeating the calculation 
with lmax = 50 changes this value to 0.867096.

We compute ionization amplitude by projecting the wave-function at the end of the fundamental pulse on 
the set of the (ingoing) scattering states of the potential V(r): a(p) = �φ−

p |�(T1)� . The PMD thus obtained is 
shown in Fig. 12a. It presents a very complex picture. IR field plays the dominant role in the ionization process 
which makes it difficult to single out the effects of the XUV field ionization which we are looking for. A ‘filtering’ 
procedure allowing to separate combined IR and XUV field effects is needed. The procedure employed in Ref.5, 
based on the energy separation of the two contributions to the PMD does not work in the present case. We can 
apply, instead, the following two-step filtering procedure. As we mentioned above, for the geometry we employ, 
with perpendicular polarization directions of the two fields, absorption of an IR photon leaves the angular 
momentum projection on the x- axis unchanged, while absorption of an XUV photon changes this projection 
by one unit. If, therefore, in the expression for the wave-function (14) at the end of the pulse, we leave only terms 

(13)
A(t) =− êx

E0

ω
sin2

(

π t

T1

)

sinωt,

Aprobe(t) =− f (t)êy
E
probe
0

�
sin�(t − tm).

(14)�(r, t) =
lmax
∑

l,m

flm(r, t)Ylm(θ ,φ),

Figure 11.  x− component of the fundamental IR field (a) and y−component of the XUV field (b) used in the 
TDSE calculation. IR field parameters: E0 = 0.1 a.u., ω = 0.0577 a.u. XUV field parameters: Eprobe0 = 1.5 a.u., 
� = 1.5 a.u.
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with m = ± 1 , we effectively single out from the wave-function the component describing processes in which 
one XUV photon and any number of IR photons have been absorbed or emitted. This procedure can be alterna-
tively regarded as a PMD measurement accompanied by an additional requirement that in addition to the 
electron’s momentum, we measure at the detector x-projection of the electron’s angular momentum in the final 
state and require it to be m = ± 1 . Note, that, though operators p̂ and l̂x do not commute, such a measurement 
is possible in principle. Indeed, the well-known quantum-mechanical relation for the uncertainties which non-
commuting variables lx and pi (where i may stand for x, y, or z) represented by operators l̂x and p̂i have in a state 

|�(T1)�  reads25: �lx�pi ≥
1

2

∣

∣

∣

∣

〈

�(T1)|[l̂x , p̂i]|�(T1)

〉∣

∣

∣

∣

 , where �lx and �pi are the uncertainties (dispersions) of 

the variables lx and pi in the state |�(T1)� . If, as we do, we measure electron’s momentum in the (x, y)-plane, then 
[l̂x , p̂x] = 0 and ��(T1)|[l̂x , p̂y]|�(T1)� = i��(T1)|p̂z |�(T1)� = 0 (because of the symmetry of the fields 
configuration).

The PMD Pfilter(px , py) thus filtered is shown in Fig. 12b. It presents still a rather complex picture. The second 
stage of the filtering procedure we use consists in computing radially integrated distribution which, after intro-
ducing polar coordinates p,φ in the (px , py)-plane can be computed as an integral Q(φ) =

∫

Pfilter(px , py)dp . 
This radially integrated distribution is shown in Fig. 13. Dotted lines in the figure are the rays pointing at the 
interference maxima in the px , py-plane. As above, we define these rays using the interference formula pxR = 2πn 
and the energy conservation relation p2x + p2y = 2ε0 + 2� , where we use the same value ε0 = − 0.05434 a.u. that 
we obtained above for the ground state energy of the KH-state at E0 = 0.1 a.u. The dotted lines in the Fig. 12 are 
obtained by using the value R = 42 a.u. in the interference relation. We see that for this value of the ‘internuclear’ 
distance R the maxima of the radially integrated probability in Fig. 12 reproduce satisfactorily the low order 

Figure 12.  Unfiltered (a) and filtered (b) PMD in the (x, y) plane. PMD is exponentiated ( P(px , py)1/3 is 
shown) for improving visibility of the patterns. IR field parameters: E0 = 0.1 a.u., ω = 0.0577 a.u. XUV field 
parameters: Eprobe0 = 1.5 a.u., � = 1.5 a.u.
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interference maxima. This value of R is quite close to the values of R for E0 = 0.1 a.u. shown in Fig. 10 we obtained 
above by analyzing perturbatively photo-ionization of the KH states. We see, thus, that the result we obtain from 
the TDSE calculation describing realistic experimental setup, where atom is driven by the fundamental IR field 
and the XUV field, and the result we obtain by studying ‘ideal’ situation of a one-photon ionization of the ground 
state of the KH potential, give similar results.

XUV fundamental field. The PMD we obtained above from the TDSE solution are rather complex, so we had to 
rely on a rather elaborate procedure to extract information from the spectra. A much simpler picture is obtained 
if the fundamental field is also in the XUV domain. As we mentioned above, the energies and the wave-functions 
of the KH states depend only on the combination a0 = E0/ω

2 of the fundamental field. If, therefore, we use 
larger ω for the fundamental field and scale up the field amplitude E0 so that the parameter a0 has the same value 
as for the KH LOPT calculations presented in Fig. 4, we could directly compare the results of the TDSE and the 
KH LOPT calculations.

For the TDSE calculations we use the following fields parameters: ω = 0.5 a.u. for the fundamental field, 
E
probe
0 = 0.05 a.u., � = 1 a.u for the probe field. Pulse shapes and durations (expressed in units of an optical cycle 

corresponding to the base frequency) are the same as in the TDSE calculation for the IR fundamental field we 
described above and are given by the (13). TDSE was solved using the same numerical procedure we described 
in the previous section. We report below results for three values of the fundamental field peak field strength: 
E0 = 1.84 a.u., E0 = 3.07 a.u., and E0 = 4.11 a.u. Parameter a0 for these peak field strengths has the same values 
as for the field strengths of 0.02387 a.u., 0.04 a.u., 0.0534 a.u., and base frequency ω = 0.057 a.u., thus enabling 
comparing of the results with the results shown in Fig. 4.

The filtered PMD’s for these field parameters are shown in Fig. 14. We used the same filtering procedure we 
described above, i.e. we projected out of the wave-function the component which describes processes with par-
ticipation of only one probe photon. The filtered spectra look much neater that in the case of the IR fundamental 
field, and we can extract some information from them without the necessity of using supplementary procedures, 
such as the radial integration we used above in the case of the IR fundamental field. We see a distinct set of rings, 
which correspond to absorption of additional photons form the fundamental field. The rings with smallest radii, 
as one can see by comparing PMD in Figs. 4 and 14, are the ones which are of interest to us. Just as we did in 
Fig. 4, we draw lines through the interference maxima and determine the ‘internuclear’ distances from the two 
relations we used above: the interference criteria, and the energy conservation formula, where we use � = 1 a.u., 
and values for the ground state energies of the KH states for the corresponding value of the parameter a0 . Results 
for the ‘internuclear’ distances we obtain in this way are shown in the Table 1 below.

One can see that the numbers in the second column of the Table 1, representing the KH LOPT calculations 
(Fig. 4), and the third column of the Table, showing the results of the TDSE with XUV fundamental field calcula-
tions (Fig. 14) agree reasonably well for the same values of the parameter a0.

Conclusion
We conduct a systematic investigation of a Kramers–Henneberger state of the potassium atom subjected to an 
IR dressing field and probed by an XUV pulse. The KH atom thus formed displays a characteristic two-center 
charge density pattern in the coordinate state which resembles that of a diatomic homo-nuclear molecule. Single-
photon ionization of such a state with an XUV probe produces the photoelectron momentum distribution with 
characteristic two-center interference maxima. Surprisingly, only lowest order interference maxima can be seen 
in the PMD of the KH atom that differentiates it strongly from a diatomic molecule of a comparable spatial 
extent. We explain this phenomenon by analyzing the electron localization in the KH atom in the coordinate 
and reciprocal momentum spaces. Except for the two-center axis where the KH potential well is rather sharp, 
the electrons can travel easily from their localization centers thus making the coordinate space wave function 
of the KH atom rather fuzzy. The respective momentum space wave function peaks very sharply near the origin 
which hardens formation of interference maxima in the PMD. These findings place certain restrictions on the 
direct analogy between the KH atomic state and a homo-nuclear diatomic molecule that was suggested earlier 
in Ref.5. We show, that the low order interference pattern which can be observed in the PMD’s can be used to 
retrieve accurate information about spatial dimension of the KH state. This information can be employed, in 
principle, for an accurate calibration of the high intensity electromagnetic fields. As the results from Fig. 7 
show, the momentum entropy slowly increases with the IR electric field strength. Accordingly, the support of 
the momentum space wave function grows, and it becomes less sharply concentrated near the origin, making 
conditions for the observation of the interference maxima progressively more favorable for higher field strengths. 
We see, of course, the same tendency in the PMD’s shown in Figs. 3 and 4. The field calibration procedure based 
on the determination of R as a function of the field strength may prove, therefore, progressively more accurate 
with increasing electric field.

Table 1.  ‘Internuclear distance’ R (a.u.) from KH LOPT and TDSE with XUV fundamental field calculations.

a0 (a.u.) KH LOPT TDSE with XUV fundamental

7.35 9.5 8.8

12.31 11 12.8

16.44 24 28.2
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Figure 14.  Filtered photoelectron momentum distributions in the (x, y) plane for various field strengths E0 and 
frequency ω = 0.5 a.u. of the fundamental field. Fundamental field strengths are: E0 = 1.84 a.u. (a), E0 = 3.07 
a.u. (b), E0 = 4.11 a.u. (c). Probe field parameters: Eprobe = 0.05 a.u., � = 1 a.u. Lines show directions to low 
order maxima of the interference pattern.
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For this procedure to become a realistic tool of measuring field intensities, a number of obstacles are to be 
overcome. KH states have been observed in the experiment. Perhaps the most direct and striking manifestation 
of the role of the KH states is the process of the laser driven  stabilization2. Experimental evidence for this process 
was presented decades ago in Ref.26. Another experimental confirmation of the role played by KH states in laser-
matter interactions came from the experiments on acceleration of neutral atoms in strong  fields27. A thorough 
 analysis9 of the experimental data shows that much better fit to the experimental data is obtained if accelerated 
atoms are assumed to be excited into the KH and not into the Rydberg atomic states. On the other hand, finding 
in the experiment a signature of the KH states in the PMD’s may not be an easy task. We saw an illustration of the 
difficulty above. In the case of the IR fundamental field, that is important in practice, the PMD’s are dominated 
by the ionization induced by the IR field, which makes it difficult to separate effects of the IR and XUV fields. We 
devised a rather elaborate theoretical procedure based on the simultaneous detection of electron’s momentum 
and projection of the angular momentum. As we noted, for the fields geometry we employ such a measurement 
is possible in principle, though it not yet clear how to realize it experimentally. It could, perhaps, be implemented 
by using magnetic field to separate different angular momentum projections. Another obstacle, which is, however, 
easier to overcome is the symmetry breaking of Kramers-Henneberger atoms by the ponderomotive force. As we 
noted above, KH atoms in a linearly polarized homogeneous electric field exhibit the structure of “dichotomy”. 
In an experimental situation, where a focused laser beam is used, electrons experience the ponderomotive force 
which breaks the symmetry of the KH  states28. For the intensity range we consider in the manuscript this effect 
can be controlled in practice by using not too small beam size. For example, for the intensity of 3.5× 1014 W/
cm2 , pulse FWHM of 10 fs and beam size of 20 µ m, an electron’s coordinate shift due to the ponderomotive 
force is of the order of 0.1 a.u. of length, which is much smaller than the ‘internuclear’ distance at this intensity, 
which is of the order of 50 a.u.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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