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Study of bearing strength 
for injection molded GFRPP 
composites under dry and wet 
conditions
A. A. Megahed1*, M. M. Osama2, A. I. Selmy1 & Ayman M. M. Abdelhaleem1

Thermoplastics and fiber-reinforced thermoplastics represent great deals in nowadays industries and 
applications where some of these applications are projected to wet environment. The present study 
investigates the effect of water moisture on the bearing strength (BS) of Polypropylene (PP) and glass 
fiber (GF) reinforced Polypropylene (GFRPP) composites. PP and GFRPP are produced by injection 
molding using different GF weight fractions (wt%), 10, 20, and 30 wt%, and two different initial fiber 
lengths 12 and 24 mm. A burnout test indicated that produced specimens with 12 mm long fibers have 
higher final fiber lengths than those made of 24 mm long fibers. More water was absorbed for higher 
GF weight fractions. The results of the dry bearing test showed higher bearing strengths for specimens 
with higher GF wt% and longer fibers. The same observation was obtained from wet tests, while, 
wet-tested specimens of all compositions have higher strengths than their dry counterparts. Strain-at-
break seemed to be significantly reduced by water absorption for all specimens. Specimens tested in 
wet conditions have different fracture morphology than dry ones due to the change in the mechanical 
behavior of the materials after water immersion.

Thermoplastics and their composites have a huge importance in several engineering fields according to their 
unique characteristics. Recyclability, relatively low weights, nontoxicity, and cost-effectiveness are major advan-
tages of these materials that make them one of the best candidates in aircraft, medical and marine applications. 
As they have several marine applications, they are directly subjected to water which may ingress into the material 
causing a change in the material’s mechanical  characteristics1. The water uptake and its effect on mechanical 
properties and tribological properties of the polymeric matrix composites have been discussed in numerous stud-
ies. Guo and  Kethineni2 found that the tensile strength of injection molded PP reinforced by 20% GF composite 
decreased insignificantly after water immersion for 24 h. Also, less water sorption for GF reinforced/PP than 
pure PP was observed. The same results were obtained by Guo et al.3 on High-density Polyethylene (HDPE) after 
water immersion for 48 h. while a slight decrease occurred for HDPE/Carbon fibers (CF) due to interfacial bond 
weakening between the matrix and the fibers as a result of water diffusion. More water absorption was observed 
as CF percentages increased. Deng et al.4 noticed that glass mat (GMT) reinforced PP absorbed water more than 
Isotropic PP. A negligible reduction in tensile strength and Young’s modulus as a result of water absorption was 
noticed for PP and GMT composite laminates.

Arif et al.5 studied a twin-screw-extruded and injection molded Polyamide 66 (PA66) / 30 wt% short glass 
fiber composite under 0%, 50%, and 100% relative humidity (RH). Stiffness and flexural strength of the com-
posite decreased with increased RH due to damage and plasticization effect while strain to failure was higher on 
higher RHs. Carrascal et al.6 hinted that as the fiber content of Polyamide (PA)/GF increased the water absorp-
tion decreased, while the tensile strength decreased as humidity increased. Bergeret et al.7 in their study of water 
sorption on 30 wt% GF reinforced thermoplastics (PA66, Polybutylene terephthalate (PBT), and Polyethylene 
terephthalate (PET) ) under high temperatures (90–135 °C) found a significant drop in mechanical properties 
(tensile and Impact strengths). Bergeret et al.8 obtained ultimate tensile and impact strengths on oxygen-free-
water-immersed short GF reinforced thermoplastics (PET + 45 wt% GF, PA66 + 30 wt% GF, and PBT + 15 wt% 
GF) under different aging conditions (Pressure and Temperature). 50–90% reduction in ultimate stress of PET, 

OPEN

1Mechanical Design and Production Engineering Department, Faculty of Engineering, Zagazig University, P.O. Box: 
44519, Zagazig, Al-Sharqia, Egypt. 2Mechanical Engineering Department, Higher Technological Institute, Tenth of 
Ramadan City, Al-Sharqia, Egypt. *email: awafa971@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-21539-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17551  | https://doi.org/10.1038/s41598-022-21539-z

www.nature.com/scientificreports/

PA66, and PBT composites respectively after 50–200 h while a slight increase in impact strength of PET was 
noticed at early times of aging.

Several studies have been made on the influence of GF addition to PP/Natural fiber composites where a notice-
able decrease in water absorption was noticed as GF was introduced to those composites at room  temperature9–16. 
Also, a reduction in strength properties was observed after water  sorption15 and long-term water  aging13,17. Thwe 
and  Liao13 noticed a decrease in flexural strength and stiffness for Bamboo fiber/PP and Bamboo fibers/GF/
PP composites after water aging at 25–75 °C depending on the time and temperature of aging. While Mohebby 
et al.18 concluded that water absorption of hybrid wood-flour/GF reinforced PP composites elevated as more 
GF was introduced to the composite without the coupling agent. When the coupling agent was applied to the 
composite this observation was opposed. Shakeri and  Raghimi19 observed a decrease in water absorption as GF 
content increased for GF Recycled-Newspaper PP hybrid composite.

Materials inevitably weakened at joining  points20 which require holes as bolts are considered to be a major 
joining  technique20–26. Water uptake by the material could affect material bearing strength and this effect should 
be studied where it is a good representation of joint strength under a wet environment. According to our literature 
review, there is no systematic study has been made on the effect of water absorption on the bearing strength 
of GF reinforced thermoplastic composites. Moreover, previous studies were restricted mostly to the effect on 
tensile, flexural, and impact strengths. The current work will focus on studying the bearing strength at dry and 
wet conditions for PP and GFRPP composites with different GF weight fractions.

Materials and experimental work
Materials. The matrix was made of Copolymer polypropylene (PP) pellets (413MNK45) supplied by 
SABIC®—Egypt and made especially for injection molding with a density of 0.905 g/cm3. A melt flow rate of PP 
was 70 g/10 min at 230 °C and 2.16 kg. 13 µm diameter E-glass chopped strands (GF) supplied by JUSHI® were 
used as reinforcements with 2.55 g/cm3 density. Two chop lengths were used for GF, 12 and 24 mm.

Composite preparation. Bearing test specimens were manufactured using HAITIAN PL1200 injection 
molding machine with a maximum clamping force of 1200 kN, the injection parameters are shown in Table 1. 
The mold was designed, manufactured, and examined several times to check its suitability for producing test 
specimens. In this mold, the same direction of the flow for the plastic is considered for each specimen to avoid 
the probability of weld lines formation which prevents cracks creation. A core pin was inserted inside the mold 
cavity to produce a specimen with a ready Φ6 mm hole (Fig. 1).

Table 1.  Injection parameters. a Injection speed percentage of the maximum injection speed.

Parameter

Stages

1 2 3 4 5

Barrel temperature (°C) 140 160 180 220 224

Injection  speeda 8% 10% 12% 8% 10%

Injection pressure (bar) 55 55 55 60 60

Charging pressure (bar) 100 100 100 – –

Back pressure (bar) 3 3 3 – –

Figure 1.  Bearing mold.
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The manufacturing process was conducted as follows; neat PP bearing specimens were injected firstly then 
PP pellets were mechanically blended with GF with different weight fractions of 10, 20, and 30 wt% and differ-
ent feedstocks 12 mm and 24 mm. The mixing process was performed in the hopper of the injection molding 
machine in the solid state where no pre-manufactured GFRPP pellets were used. The mixture was first fed to the 
extruder of the injection molding machine to produce pre-samples. Pre-samples with their sprue and runners 
were crushed in a crusher forming small granules, the specifications of the crusher are tabulated in Table 2. The 
granules sizes were captured using an optical scanner as shown in Fig. 2 and then analyzed using Fiji ImageJ 
application. The average size of the small granules was found to be 66.3  mm2. The small particles were re-injected 
once again to obtain the final test specimens. The main purpose of these stages is to gain a better distribution of 
the GF into the  PP27,28. The same injection molding conditions and parameters were used for the two injection 
molding processes. The codes and designations of specimens manufactured for dry and wet bearing tests are 
illustrated in Table 3.

Water uptake. A group of bearing test specimens were weighted and then immersed for 100 days in dis-
tilled water at room temperature according to ASTM D5229/D5229M. Before immersion, the specimens were 
kept in a dry condition away from humid climates. Surface moisture was carefully removed after the specimens 
were picked up from the water to be weighed periodically to examine the material water sorption. Surface mois-
ture was removed using clean, dry, and dustless tissues. An accurate four-digit balance (Mettler AE200), with 

Table 2.  The crusher specifications.

Parameter Value

Crusher type Shrouded

Number of knives 3 pairs

Screen hole size 8 mm

Rotational grinding speed of knives 460 R.P.M

Figure 2.  The granules after the crushing process.

Table 3.  Specimens’ codes.

Specimen code

PP, wt% GF, wt% Feedstock Fiber length (mm)Dry condition Wet condition

DB00 WB00 100 0 –

DB1012 WB1012 90 10

12DB2012 WB2012 80 20

DB3012 WB3012 70 30

DB1024 WB1024 90 10

24DB2024 WB2024 80 20

DB3024 WB3024 70 30
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0.0001 g resolution, was used in the weighting process. The percentage of water absorbed (WS%) was calculated 
for each specimen according to the following  equation28–30:

where, W0 is the initial specimen weight and Wt is the specimen weight after a period (t). Introducing materials to 
a wet environment or immersing them in water leads to water sorption by material and the percentages of water 
sorption vary between different materials. Obeying Fickian diffusion law waters were assumed to penetrate inside 
materials where the mass of absorbed water increases with the square root of time in a linear manner. According 
to the type of material, the water absorption slows down until saturation is reached where approximately no 
more water penetrates the material. The Fickian model express’s diffusion of water using the following equation;

where D is the coefficient of diffusion, M∞ is the weight of the water absorbed at saturation, h is the thickness 
of the specimen,M1 and M2 are the moisture contents at times t1 and t2 , respectively. The chosen times could be 
selected at the linear stages of water sorption.

FTIR observation. Fourier transform infrared spectroscopy (FTIR) was performed to study the changes in 
the chemical composition of PP and GFRPP after being immersed in distilled water. These observations were to 
determine the potential degradation of neat PP and the PP matrix, fibers and interface of the GFRPP as an effect 
of water absorption. The aim was to correlate these observations with possible changes in bearing strength, bear-
ing strain and chemical composition of PP and GFRPP after immersion. The test was also made on dried speci-
mens after water immersion to investigate whether the effect of water immersion is temporary or permanent.

Bearing strength test. A series of pin-bearing ASTM D5961 tests were conducted on both dry and wet 
conditions for all specimens using a universal testing machine (Testometric 200 kN) at room temperature. Stand-
ard test specimens were used to obtain bearing failure mode rather than net tension or shear-out modes that had 
lower loads associated with catastrophic fracture as recommended by previous  studies31,32. The dimensions of 
the standard test specimen are illustrated in Fig. 3a where w/d = 6 and e/d = 6. The test fixture was manufactured 
from steel according to the geometry illustrated in Fig. 3b. Wet bearing tests were conducted immediately after 
specimens were picked up from water and surface moisture removal.

Measurement of fiber length. Fiber’s length measurements were conducted after complete matrix burn-
out at 570 °C for 4 h on a muffle furnace leaving only fibers behind. The burn-out process was conducted for both 
FFSL (Fiber Feedstock lengths) of 12 and 24 mm. Then fibers were captured using optical scanners and analyzed 
using Fiji ImageJ application to determine the fiber lengths. As previous  studies33,34 proposed, number average 
and weighted average lengths were used to indicate the average fiber lengths in the composite. The relations are 
expressed as follows;

and

where Li is the length of the fiber i in the sample and Fi is the frequency of fiber length Li . The weighted aver-
age fiber length Lw is affected by the presence of longer fibers. While the number average fiber length Ln is 
strongly affected by the fibers and fragments repetition. Mostly, Ln is smaller than Lw33,34. Figure 4 represents 
both weighted and number average lengths of GF after the burn-out process.

Results and discussion
Weighted average and number-average fiber lengths. The results of this analysis, in Fig. 4, proved 
clearly that the fiber lengths decreased dramatically after the injection molding  process33–41. The friction of the 
composite material with both the barrel and the screw generates dragging flow that produces a compound series 
of compressive forces, shearing, and differential motion of liquid polymer to the solid counterpart during the 
solid to melt transition. The combined effect causes severe damage to  GFs42.

The reduction in the average fiber length of the glass fibers occurs in three stages. The first stage was through 
the first injection process as the screw extruder severely damages the fiber during the injection process resulting 
in a huge reduction in average fiber  length37. The second stage was the crushing process which also plays a big 
role in reducing the lengths of the fibers along with composite smashing. The final stage happened in the second 
injection process while the smashed composite crumbs face the screw extruder once  again40,41.

It is also noticed from Fig. 4 that, as fiber weight fraction increases a slight decrease in both weighted and 
number average fiber lengths is observed. This result is obtained also by Refs.34–38,42. The weighted and number 
average fiber lengths decrease with increased FFSL (Fiber Feedstock Lengths). The severe damage to the fiber 
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Figure 3.  Bearing test; (a) specimen and (b) fixture.

Figure 4.  Weighted (Lw) and number (Ln) average lengths after burn-out of composites with different fiber 
feedstock lengths (FFSLs).
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lengths is majorly linked to high interaction that occurred between fibers at higher percentages of the fibers in the 
composite as concluded by Kumar et al.34. They reported that, when FFSL increases, both Ln and  Lw increase for 
FFSL up to 9 mm, while for FFSL more than 9 mm both Ln and  Lw decrease. More details including histograms 
for each weight fraction and FFSL was provided in previous  study43. Throughout this work, based on the above 
results, FFSL of 12 mm and 24 mm will be referred to as “long fiber/Polypropylene (LFRPP)” and “short fiber/
Polypropylene (SFRPP)”, respectively.

Water absorption. The water uptake of PP and GFRPP specimens with different fiber lengths was calcu-
lated as described in “Water uptake” from time to time and then plotted as shown in Fig. 5. Where the relation 
between water uptakes of the different specimens could be observed.

As could be noticed from Fig. 5, the percentage of the water sorption for all specimens is increasing as the 
specimens were immersed for longer periods. The water absorption seems to be increasing by introducing GF to 
PP and further increase occurs for higher fiber weight percentages. Interfaces between fibers and matrix induce 
capillary action penetrating the moisture through the composite which increases as more interfaces are  present44. 
Also, gaps generated between fibers and matrix ascribing to a poor fiber-matrix interface in the absence of a 
coupling agent as explained by Mohebby et al.18, Valente et al.45, and Hernández‐Díaz et al.46. Mohebby et al.18 
concluded that the addition of maleic anhydride-polypropylene to GF/Wood fibers reinforced PP hybrid com-
posite decreases water absorption  significantly47. Moreover, as Athijayamani et al.48 explained, the increased 
chance of microcracks existence in specimens containing more fiber content exemplifies increased water uptake 
on those composites. Also, the increased probability of impurities presence at higher fiber contents may increase 
the percentages of water  absorption28, where PP and GF have hydrophobic  natures4. Figure 6 represents scanning 

Figure 5.  Water absorption of PP and GFRPP with different fiber lengths.

Figure 6.  SEM of a fractured 30 wt% GFRPP specimen out of bearing strength test.
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electron microscopy (SEM) of a fractured specimen illustrating the poor interaction gaps and fiber pullout in 
GFRPP composite. A jump in percentages of water absorption was observed for SFRPP specimens compared to 
neat PP and LFRPP specimens. SFRPP composites have a larger number of fibers than LFRPP composites for the 
same wt% as they have shorter fibers, where a larger amount of fibers is required to achieve the same wt%. Due to 
this fact, more fiber-matrix interactions are imposed with more generated gaps which may accept more moisture.

The calculated values of the Fickian diffusion coefficient, according to Eq. (2), for PP and GFRPP are shown 
in Table 4. The specimens with all compositions seemed to be following the Fickian diffusion where the rate of 
water sorption increased linearly as specimens were introduced to distilled water. Then, a nonlinear increase 
occurred as the specimens were kept for longer periods followed by a little increase approaching saturation points. 
The Fickian’s diffusion could also be noticed in Fig. 5 for all types of specimens.

Bearing test results. Bearing strength. The bearing strengths obtained from the bearing tests in both 
dry and wet conditions were illustrated in Fig. 7. The addition of GF to PP increases the bearing strength of the 
material and as fiber wt% increases the bearing strength increases furthermore. An improvement of 9% could 
be noticed for DB3012 specimen above DB00 while only 3% improvement was obtained for DB3024 specimen 
above neat PP. Based on the obtained results the longer fibers, Fig. 7a, enhance the bearing strength more ef-
ficiently than short fibers, Fig. 7b. This result agrees with the results found in previous  studies33,34. Subramanian 
et al.33 and Kumar et al.34 concluded that the strength of composite increases as the mean fiber length increases. 
Kumar et al.34 noticed that the strength of composite depends mostly on the fiber length over fiber content, and 
the reduced strength of the composite caused by decreased mean fiber length almost offsets the increased com-
posite strength caused by higher fiber content. A similar result was obtained by Subramanian and  Senthilvelan49 
where the BS of leaf spring made from GFRPP was higher than that which made of pure PP and more increase 
in the bearing strength was obtained using GFRPP with longer fibers. Moreover,  Asi50 showed that the bear-
ing strength of glass fiber reinforced epoxy firstly increased as linear densities of woven fabric increased then 
decreased with an extra increase in woven fabric linear densities as a result of elevated void content and crimp 
levels of the obtained composite.

The same behavior was noticed for wet tested specimens where the bearing strength increases with increasing 
fiber wt%, also the longer fibers showed more enhancement in the bearing strength than shorter ones, Fig. 7b.

By comparing the bearing strengths of dry and wet tested specimens in Fig. 7, an obvious jump in the material 
bearing strengths in the wet condition is obtained as compared to dry ones applied for all types of specimens. 
This jump in the wet environment even exceeds the enhancements due to GF addition in the dry condition 
where the strength of WB00 is 5% and 12% higher than DB3012 and DB3024, respectively. This behavior may be 
attributed to the existence of an incompressible liquid (water) penetrated into the material which increases the 

Table 4.  Fickian diffusion coefficient values of PP and GFRPP with different fiber contents and lengths.

Specimen Fickian diffusion coefficient  (mm2/s)

PP 2.93E−06

WB1012 3.25E−06

WB2012 3.50E−06

WB2024 3.80E−06

WB3012 4.81E−06

WB1024 4.95E−06

WB3024 5.56E−06

Figure 7.  Bearing strengths in both dry and wet conditions for; (a) LFPP and (b) SFPP.
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material resistance to the bearing load in the compressive portion of the bearing load subjected by the inserted 
pin. Ghasemzadeh-Barvarz et al.51 showed an increase in the tensile strength and modulus of neat PP and hybrid 
flax-fibers/GF/PP composite after 42 days of immersion in distilled water. Also, Bergeret et al.8 noticed an 
increase in impact strength of PA66/GF composite at early times of aging. Hassan et al.52 observed an increment 
in the flexural strength of PA66/GF for wet specimens (50% RH) than the dry condition.

Bearing strain (strain at break). On the contrary, the strain-at-break between wet and dry conditions showed 
the opposite behavior. Where Fig. 8 represents the difference in the strain at break of the specimens tested in bear-
ing between wet and dry conditions. It could be clearly observed from Fig. 8 that, the strain at break dramatically 
decreases when specimens are subjected to water immersion. The same behavior was observed for all specimens. 
The penetrated water fills the microcracks in the material which accelerates the crack  propagation28,53. Abdel-
haleem et al.28 noticed an accelerated crack propagation for wet specimens than dry ones when studying the 
fatigue behavior of PP and GFRPP composites with different GF content. Meng et al.53 found that water ingress 
occurs as an effect of capillary and the mass of water conserved during the loading cycle forbidding cracks from 
closing after load removal which in turn accelerates the crack propagation. The absorbed water chemically reacts 
with the GF in the composites. Chemical elements vanished as an effect of this reaction and were replaced with 
micro-flaws which are the seeds of fiber  fractures28. Also, Ghasemzadeh-Barvarz et al.51 observed a decrease in 
both elongation-at-break and strain-at-yield of PP and GFRPP after being water aged for 1000 h.

FTIR spectroscopy. Results of FTIR spectroscopy of PP and GFRPP specimens before and after water 
immersion are shown in Figs. 9 and 10, respectively. Two merged peaks of Methylene (–CH2) exist at 2916 and 

Figure 8.  Strain-at-break for dry and wet specimens tested in bearing.

Figure 9.  Result of FTIR test for PP specimen.
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2846  cm−1 with asymmetrical stretching and symmetrical stretching of hydrogen atoms respectively as could 
be noticed in the diagnostic region of PP and  GFRPP54,55. However, two adjacent peaks exist at the fingerprint 
region, between 400 and 1500  cm−1, of Methyl (–CH3) at 1454 and 1373  cm−1 with asymmetrical bending and 
symmetrical bending  respectively54–58. All four mentioned peaks appeared in PP and GFRPP under dry, wet, 
and dried conditions. A group of peaks appeared in the region 2000–2300  cm–1, It is known that the existence of 
those peaks is attributed to the stretching vibrations of triple carbon–carbon bonds (C≡C)59. For PP the peaks 
seemed to have higher marginal values in dry condition and lower values appeared for dried specimens while 
the lowest marginal value owed to wet specimens. It is likely that the absorption of water leads to a gradual 
decrease in the intensity of radiation passing through the  sample59. Compared to neat PP, the peaks’ marginal 
values of dry, wet, and dried specimens in GFRPP are much closer to each other. The OH peaks which represent 
the exitance of moisture are not noticed in any sample. This may be occurred due to the removal of the surface 
moisture before the  tests60–63.

The effect of water absorption on the chemical composition of PP or GFRPP specimens could not be clearly 
detected from the FTIR spectroscopy tests. The peaks that appeared in all specimens’ conditions (dry, wet, and 
dried) could not be specifically distinguished from one another and hence the change in the chemical composi-
tion due to water immersion for different specimens’ conditions was not occurred.

Stress–strain curves. Stress–strain curves of PP and GFRPP specimens with different weight fractions and 
fiber lengths are illustrated in Fig. 11, for both dry and wet bearing tests. These curves accumulate the multiple 
effects of moisture on both bearing strength and bearing strain. As could be noticed, a recognizable increase in 
specimens’ strength for all wet-tested specimens over dry ones; accompanied by a drop in the materials’ strains. 
This behavior is definitely an indication of the different responses of the materials between dry and wet bearing 
tests.

Figure 10.  Result of FTIR test for GFRPP specimen.

Figure 11.  Stress–Strain curves of Polypropylene and Glass fiber reinforced Polypropylene in both dry and wet 
conditions for; (a) LFRPP and (b) SFRPP.
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Analysis of specimen’s failure due to bearing test. There are basically four failure modes of the mate-
rials under bearing load noticed out of bearing strength test; bearing, net-tension, shear out, and cleavage failure 
modes. The most ideal failure mode is bearing failure however other failure modes are considerably recom-
mended for materials under bearing  loads20,64,65. Damages that occurred to fiber-reinforced composites could be 
related to fracture of fibers, matrix cracking, fiber-matrix interfacial bonding failure, and/or their  combinations66. 
Investigation of the failed surfaces of the composites in this study clarifies the failure modes, where the failure 
morphology out of dry and wet bearing tests are shown in Figs. 12 and 13, respectively.

A pure bearing failure mode was noticed for neat PP specimens (DB00), Fig. 12a, while a combined bearing 
and net-tension failure modes were observed for GFRPP composite specimens, Fig. 12b–g. Almost the same 
failure modes between different fiber lengths are noticed. A decrease in the bearing capacity was observed as 
the fiber wt% increased. Therefore, for DB3012 and DB3024, Fig. 12f,g, specimens bearing failure has barely 
occurred, while impressive bearing capacity is obtained by neat PP as indicated in Fig. 12a.

However, observed failure modes for wet tested specimens in Fig. 13 differ from those of dry specimens in 
Fig. 12. Wet neat PP specimens failed in mixed mode failure, Fig. 13a, while the wet GFRPP specimens failed 
almost under net-tension with a little bearing deformation, Fig. 13b–g. The change in the failure mode of neat PP 
specimens from pure bearing in dry conditions to mixed failure in wet conditions might be related to accelerated 
crack propagation and the presence of fiber flaws due to moisture, as explained in “Bearing test results”, that led 
to the reduction in the strain-at-break as shown in Fig. 8.

Figure 12.  Failure morphologies of specimens tested in bearing in dry condition; (a) DB00, (b) DB1012, (c) 
DB1024, (d) DB2012, (e) DB2024, (f) DB3012, and (g) DB3024.

Figure 13.  Failure morphologies of specimens tested in bearing in wet condition; (a) WB00, (b) WB1012, (c) 
WB1024, (d) WB2012, (e) WB2024, (f) WB3012, and (g) WB3024.
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Conclusions
The present work investigated the bearing strength at dry and wet conditions for PP and GFRPP composites with 
different GF weight fractions. The results revealed the following:

• Longer initial fibers in the injection molding process do not guarantee longer fibers in the produced com-
posites. Specimens having longer FFSL (24 mm) have much smaller fibers in the resulting composites than 
specimens with smaller FFSL (12 mm).

• GFRPP composites absorb water more than neat PP as an effect of gaps presence at fiber-matrix interfaces and 
increased levels of contaminations. Moreover, more water was absorbed in specimens with higher contents 
of fibers due to more fiber-matrix interfaces at higher fiber weight fractions.

• A jump in water absorption was observed for SFRPP than LFRPP for the same fiber weight fraction, where 
more fibers exist with more fiber-matrix interfaces that accept more moisture at the same weight percentage.

• For both dry and wet bearing tests, the bearing strength increased with the increase in fiber weight fractions 
and for longer fiber length.

• The values of bearing strengths of wet tested specimens were higher than dry tested specimens, while strain-
at-break had lower values for wet specimens.

• The results of FTIR spectroscopy test indicated that, the effect of water absorption on the chemical com-
position of PP or GFRPP specimens could not be clearly detected, and hence the change in the chemical 
composition due to water immersion for different specimens’ conditions was not occurred.

• The fracture morphologies of dry and wet specimens were not the same, where dry neat PP failed under 
pure bearing, and wet neat PP failed under mixed failure mode (net tension and bearing). The dry GFRPP 
specimens showed mixed-mode failure while wet GFRPP almost showed net tension failure.

Data availability
All data generated or analyzed during this study are included in this published article.
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