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A preliminary deep learning study 
on automatic segmentation 
of contrast‑enhanced bolus 
in videofluorography of swallowing
Yoshiko Ariji1,2, Masakazu Gotoh1, Motoki Fukuda1, Satoshi Watanabe3, Toru Nagao3, 
Akitoshi Katsumata4 & Eiichiro Ariji1*

Although videofluorography (VFG) is an effective tool for evaluating swallowing functions, its accurate 
evaluation requires considerable time and effort. This study aimed to create a deep learning model for 
automated bolus segmentation on VFG images of patients with healthy swallowing and dysphagia 
using the artificial intelligence deep learning segmentation method, and to assess the performance of 
the method. VFG images of 72 swallowing of 12 patients were continuously converted into 15 static 
images per second. In total, 3910 images were arbitrarily assigned to the training, validation, test 
1, and test 2 datasets. In the training and validation datasets, images of colored bolus areas were 
prepared, along with original images. Using a U‑Net neural network, a trained model was created after 
500 epochs of training. The test datasets were applied to the trained model, and the performances of 
automatic segmentation (Jaccard index, Sørensen–Dice coefficient, and sensitivity) were calculated. 
All performance values for the segmentation of the test 1 and 2 datasets were high, exceeding 0.9. 
Using an artificial intelligence deep learning segmentation method, we automatically segmented 
the bolus areas on VFG images; our method exhibited high performance. This model also allowed 
assessment of aspiration and laryngeal invasion.

Dysphagia is a frequently observed clinical sign in patients with stroke, head-neck cancer, and various other 
medical  conditions1. Dysphagia is defined as an impairment in swallowing function during eating and drinking, 
which causes subjective discomfort or objective difficulty in the formation or transportation of a bolus from 
the oral or pharyngeal cavities to the upper  esophagus1,2. These errant events during swallowing lead to the 
accumulation of pharyngeal residue. Thereafter, this accumulation may accidentally enter the respiratory tract 
(aspiration)1,2. Aspiration can cause airway obstruction and pneumonia, which are associated with increased 
 mortality1,2. Rapid and accurate assessment of swallowing function may reduce associated health  risks1.

Instrumental evaluation of swallowing has been widely studied for many  years3. Videofluorography (VFG) 
is a type of real-time X-ray video, which is regarded as the gold standard for assessing the oral and pharyngeal 
dynamics of  swallowing1,2. This approach allows clinicians to view and evaluate the structure and function of 
all stages of  swallowing1.

The quantitative evaluation of swallowing function using VFG has been  studied2. Studies thus far have 
involved the quantification of pharyngeal  residue3, laryngeal elevation and hyoid bone displacement during 
 swallowing3, movement of the posterior pharyngeal wall during  swallowing4, pharyngeal transit  time3, and 
pharyngeal swallowing reaction  time5. Clinicians must analyze swallowing videos in a frame-by-frame  manner2, 
which requires considerable time and effort.

In recent years, deep learning technology has made remarkable progress using the medical images of numer-
ous databases and deep convolutional neural  networks1,2,6. These studies have provided compelling results for 
disease detection, assessment, and  diagnosis2. There have also been some reports regarding swallowing. Zhang 
et al.1 focused on displacement of the hyoid bone during swallowing; they reported that the hyoid bone could 
be automatically detected in VFG images by using deep learning. Mao et al.6 proposed another approach to 
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tracking hyoid movement with neck sensor support. Caliskan et al.2 successfully performed automated bolus 
detection in VFG images using a deep neural network (Mask-R-CNN). They targeted 450 swallowing images 
of 30 patients, yielding a Jaccard index (JI) value of 0.71. We hypothesized that it might be possible to observe 
aspiration and pharyngeal residue in real time if the bolus area could be automatically segmented with high 
performance exceeding the JI of 0.9.

This study created a deep learning model for automated bolus segmentation in VFG images of patients with 
healthy swallowing and dysphagia using the neural network for semantic segmentation (U-Net), then investigated 
whether the model could automatically visualize aspiration and laryngeal invasion findings.

Results
Times required for training and inference processes. An interval of 15 h and 43 min was needed 
from 500-epoch training until the creation of a trained model. An interval of 42 s was needed from the applica-
tion of test dataset 1 to the trained model until evaluation of the model; for test dataset 2, an interval of 1 min 
and 27 s was needed.

Evaluation of trained model. Following the application of test dataset 1 of healthy swallowing to a trained 
model, the JI, DSC, and sensitivity were 0.90 ± 0.06, 0.94 ± 0.05, 0.95 ± 0.06, respectively (Table 1). Examples of 
contrast bolus segmentation using artificial intelligence deep learning are shown in Fig. 1. As demonstrated in 
Fig. 1A, the trained model was able to accurately predict the contrast bolus. In Fig. 1B, the trained model could 
not accurately predict the contrast bolus; this may have been caused by false-positive detection of the metals and 
chin area.

Following the application of test dataset 2 of aspiration/laryngeal invasion to the trained model, the JI, DSC, 
and sensitivity were 0.92 ± 0.05, 0.96 ± 0.03, 0.95 ± 0.05, respectively (Table 1). As shown in Fig. 1C, the trained 
model was able to accurately predict the contrast bolus, including the area involved in aspiration swallowing. 
Figure 1D shows that the retention of contrast medium in the pyriform sinus was well-visualized.

Discussion
In this study, we proposed a model for automatic bolus segmentation on swallowing VFG using a U-Net neural 
network for semantic  segmentation7,8. The performance of the model was greater than 0.9. In addition, aspiration, 
and residual contrast medium in the piriform sinus were well-visualized. The development of a quantitative and 
qualified computer-assisted system can help clinicians to efficiently and rapidly assess swallowing videos in a 
busy clinical  setting1,2. An integrated algorithm for VFG diagnosis will be feasible in the near  future5.

Our model can clearly segment and visualize a bolus when there are no structures with similar density in 
VFG  images3. Falsely segmented structures included the mandible, cartilage, and metals for tooth restoration 
(Fig. 1B)2. A contrast along the posterior wall of the pharynx without bolus formation was occasionally visible.

Various deep learning convolutional neural networks (CNNs) on swallowing have been reported. There are 
three main approaches. The first is reports that identifies the pharyngeal phase from swallowing records, includ-
ing reports by Lee et al.5 and Bandini et al.9. The second is reports that detects the movement of the hyoid bone 
on VFG images, including report by Zhang et al.1. The third is reports that segments the bolus contour during 
swallowing, including report by Caliskan et al.2 and this study.

Lee et al.5 predicted the delay in response time of pharyngeal swallowing reflex using Inception-V1 (Google 
Net) CNN for classification. Bandini et al.9 compared the accuracy in predicting pharyngeal phase using vari-
ous original CNNs architectures and input frames. As a result, it was reported that 2D-CNN using 3 frames as 
input had the highest accuracy.

Zhang et al.1 detected the hyoid bone using three types of object detection CNNs: that is, faster region 
based convolutional neural networks (Faster-RCNN), you look only onse (YOLO), and the single shot multibox 
detector (SSD). As a result, use of SSD produced highest performance with the mean average precision of 89.1. 
However, object detection CNNs seems unsuitable for tracking contrast-enhanced bolus because the results are 
displayed in squares.

This study used a U-Net neural network for semantic segmentation, which provides the area of each class 
on a pixel-by-pixel basis without the use of bounding  boxes7,8. Multiple types of objects are segmented but cat-
egorized in a single class. A U-Net categorizes objects based on information regarding pixels and surrounding 
pixels, then finds the object areas by performing continuous local  processing7,8. Because the target area of this 
study was limited to the bolus of contrast medium, there was no requirement for consideration of multiple classes.

Caliskan et al.2 segmented boluses using Mask R-CNN, a neural network for instance segmentation. Instance 
segmentation identifies each class area in a pixel-by-pixel manner and distinguishes different objects. Mask 
R-CNN provides an object area in a two-stage configuration by creating a bounding box and performing seg-
mentation for each detection area. Our study revealed higher values than the values reported by Caliskan et al.2.

Table 1.  Segmentation results. JI Jaccard index, DSC Sørensen–Dice coefficient.

Used test datasets JI DSC Sensitivity

Test dataset 1 0.90 ± 0.06 0.94 ± 0.05 0.95 ± 0.06

Test dataset 2 0.92 ± 0.07 0.96 ± 0.03 0.95 ± 0.05
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Regarding the difference in CNNs of segmentation, Kromp et al.10 compared the clinical segmentation perfor-
mance in nuclear medicine images using multiple neural networks, including U-Nets and Mask R-CNNs. They 
found that U-Nets achieved higher mean Dice scores, whereas the neural networks for instance segmentation 
were better in complex images. Further analyses are expected to use instance segmentation neural networks, 
including Mask R-CNN, depending on the targets.

The difference in frame rates has not yet been clarified. In our study, the frame rate is low (15 frames/sec; 
FPS), but in other reports it is 30  FPS1,2. In the future, use of 30FPS or ideally 60FPS data will further improve 
performance and expect clinical application.

Interobserver variability in qualitative assessment of swallowing function on VFG images has been  reported1,5. 
Therefore, in this study, the presence or absence of dysphagia was decided after discussion. The results of seg-
mentation are expected to fluctuate depending on the annotation quality. In this study, one radiologist artificially 
colored the bolus area, while another radiologist confirmed them. The discrepancy at annotation was less than 
0.5% of the total images.

This study investigated the VFG images at command swallowing of barium liquid. There may be the discrep-
ancy in results between normal feeding and command swallowing. To minimize this discrepancy, the examina-
tion of spontaneously chewing and swallowing using semi-solid material kneaded with barium should be added.

The distribution of patient dysfunction varies among studies, which can influence the results. The small 
number of patients thus comprised a limitation in this study. Furthermore, this study only analyzed data from a 
single institution. Multicenter studies are needed to confirm our findings. Differences among VFG devices may 
lead to variations in image quality or  inconsistency1,2. Furthermore, image quality depends on each clinician’s 
ability to control the radiation dose administered to  patients1. It is also difficult to standardize patient position 
among  studies4. Although our institution’s protocol involves sitting in a chair and swallowing to help maintain a 
consistent position, there were some static movements in patients who were unable to swallow well. Bolus seg-
mentation was achieved in this study, but it may be necessary to introduce a time axis for assessment of overall 
swallowing function.

Figure 1.  Examples of contrast bolus segmentation using deep learning (A) The contrast bolus was accurately 
predicted. (B) The contrast bolus was not accurately predicted. This may have been caused by false-positive 
detection of the metals and chin area. (C) The contrast bolus, including area showing aspiration swallowing, was 
accurately predicted. (D) The retention of contrast medium in the pyriform sinus was well-visualized.
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In conclusion, this study generated a promising deep learning model for semantic segmentation of bolus on 
VFG images to assess swallowing function. This study has three potentials that will contribute to clinical practice 
in the future. First, the system of this study provides color images segmented the bolus areas from raw VFG 
images. Second, the results will assist the diagnosis of clinicians, especially those unfamiliar with VFG imaging, 
by observing the movement of the bolus areas and anatomical structures. Third, they may be useful in determin-
ing rehabilitation strategies for patients with dysphagia or in post-treatment evaluation.

Methods
Ethical considerations. This study was conducted with approval of Ethics Committee of Aichi Gakuin 
University School of Dentistry, (No 586) and in accordance with the Declaration of Helsinki. This study is a non-
invasive observational study using only existing anonymized video data. By using opt-out, subjects were given 
the opportunity to refuse to participate in the study. The Ethics committee of Aichi Gakuin University School of 
Dentistry has waived the requirement for the informed consent from all participants.

Participants. The participants were 12 patients (seven men and five women; mean age, 58.4 ± 23.3 years; age 
range, 20–89 years) who visited the swallowing outpatient clinic at our hospital between November 2018 and 
January 2020; all underwent videofluorography (VFG) for examination of swallowing function.

Videofluorography. The patients sat on a chair for VFG (MK-102, Tomomi-koubou, Shimane, Japan) in 
a normal eating position without head fixation; they were examined with a fluorographic machine (DCW-30A, 
Canon Medical Systems, Tokyo, Japan).

The contrast sample was made with 50 mL of 50% w/v barium sulfate (Baritogen Deluxe, Fushimi Labora-
tory, Kagawa, Japan) mixed with thickener (Throsoft Liquid 12 g/pack, Kissei Pharmaceutical Co. Ltd, Nagano, 
Japan). The concentration of this barium is much thinner than that (200w/v% − 240w/v%) usually used for the 
upper gastrointestinal tract. This might contribute to avoid the adhesion of barium to the mucosa of the oral 
and pharyngeal cavities and to provide sufficiently qualified images. The examiner placed a spoonful of sample 
(approximately 5 mL) into the patient’s mouth, and the patient began to swallow it at the examiner’s signal. The 
swallowing examinations with this sample were performed three times, and moving images were recorded.

Subsequently, examinations were performed using a 50-mL sample of 50% w/v barium sulfate (Baritogen 
Deluxe). The patient was instructed to put a sample of a paper-cup (about 5 mL) in into his/her mouth, and began 
to swallow it at the examiner’s signal. The swallowing examinations with this sample were performed three times, 
and moving images were recorded. Consequently, six swallowing examinations were performed for each patient.

Diagnoses of swallowing function based on VFG images were made by the mutual consent of two radiolo-
gists and one oral surgeon with more than 20 years of experience. The presence or absence of residual contrast-
enhanced bolus and aspiration/penetration events were assessed on VFG images. The severity of dysphagia was 
based on the penetration-aspiration  scale11: seven patients in this study had healthy swallowing function, while 
5 patients showed aspiration or laryngeal invasion.

Image preparation. The VFG images (oral to pharyngeal phases) were continuously converted into 15 
static images per second. The static images were standardized to a size of 256 × 256 pixels by cutting off extra 
space at the top and front of the images, then saved in JPEG format (Fig. 2).

Figure 2.  Image preparation. (A) A static image converted from videofluorography video images. The image 
size is 720 × 480 pixels. (B) The image was standardized to a size of 256 × 256 pixels by cutting off extra space at 
the top and front of the original image, then converted to JPEG format.
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Allocation to training, validation, and test datasets. Images were arbitrarily assigned to training, 
validation, and test datasets (Table 2). For the training dataset, 1845 static images were used, including 1005 
static images of 18 swallows in three patients with healthy swallowing, and 840 static images of 12 swallows in 
two patients with aspiration or laryngeal invasion. For the validation dataset, 155 static images of six swallows 
in one patient with healthy swallowing were used. As test dataset 1, 510 static images of 18 swallows in three 
patients with healthy swallowing were used. As test dataset 2, 1400 static images of 18 swallows in three patients 
with aspiration or laryngeal invasion were used.

Deep learning system. The deep learning system was built on a Windows PC with an 11 GB GPU of 
NVIDIA GeForce (NVIDIA, Santa Clara, CA, USA) and 128 GB of memory. The deep learning segmentation 
procedure was performed using a U-Net created on the neural network Console (Sony, Tokyo, Japan). U net is 
a neural network for fast and precise segmentation of images, and composed of encoder-decoder format sym-
metry structure, as shown in Fig. 3.

Annotation. For the training and verification datasets, images were created in which the contrast-enhanced 
bolus areas were segmented and colored using Photoshop (Adobe, Tokyo, Japan); these were used in addition to 
the original images (Fig. 4). In the annotation work, one radiologist with over 30 years of experience performed 
the segmentation of the contrast-enhanced bolus areas. Another radiologist with over 20 years of experience 
confirmed them. The bolus of the still images had very strong contrast and was easy to grasp. If the latter deter-
mined that the annotations were incorrect, the two radiologists discussed and corrected them. The number of 
revisions was less than 0.5% of the total images.

Training process. The training process was performed with a U-Net neural network using training and 
validation datasets paired with the original and colored images (Fig. 5). U-net is a convolutional neural network 
for performing semantic segmentation of lesions or tissues on images, and has an almost symmetrical struc-
ture of the encoder-decoder  module7,8. The encoder module progressively downsamples the image and reduces 
feature map resolution to capture high-level details of the image. The decoder module consists of a set of layers 
that upsamples the feature map of encoder to recover spatial information. Learning continued until the training 
loss was sufficiently small on the learning curve, and finally 500 epochs of learning were conducted. Thereafter, 
a trained model was created.

Inference process. In the inference process, test dataset 1 or 2 was applied to the trained model to evaluate 
the model (Fig. 5). Prior to evaluation, the ground-truth of the contrast-enhanced bolus areas were identified 
on the test images by a radiologist. For evaluation of the model, Jaccard index (JI), Sørensen–Dice coefficient 
(DSC), and sensitivity were calculated according to the following  equations12:

where S(P) was the colored bolus area on images predicted by the learning model, and S(G) was the ground-truth 
bolus area. S(P ∩ G) was the overlapped area of P and G, and S(P ∪ G) was the combined area. The ground-truth 
images and the predicted images by the deep learning model were superimposed, and the number of pixels in 
the above areas were calculated using Photoshop.

JI = S(P ∩ G)/S(P ∪ G)

DSC2× S(P ∩ G)/(S(P)+ S(G))

SensitivityS(P ∩ G)/S(G)

Table 2.  Allocation to training, validation, and test datasets.

No. of patients No of swallowing No. of still images

Training dataset 3 patients with healthy swallowing 18 1005

2 patients with aspiration/delayed swallowing 12 840

Total 5 patients 30 1845

Validation dataset 1 patient with healthy swallowing 6 155

Test dataset 1 3 patients with healthy swallowing 18 510

Test dataset 2 3 patients with aspiration/delayed swallowing 18 1400
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Figure 3.  The U-Net neural network used for this study.
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Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to not permitted 
by the current ethical approval, but are available from the corresponding author on reasonable request.
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