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Order recognition by Schubert 
polynomials generated 
by optical near‑field statistics 
via nanometre‑scale 
photochromism
Kazuharu Uchiyama1*, Sota Nakajima2, Hirotsugu Suzui2, Nicolas Chauvet2, Hayato Saigo3, 
Ryoichi Horisaki2, Kingo Uchida4, Makoto Naruse2* & Hirokazu Hori1

Irregular spatial distribution of photon transmission through a photochromic crystal photoisomerized 
by a local optical near-field excitation was previously reported, which manifested complex branching 
processes via the interplay of material deformation and near-field photon transfer therein. 
Furthermore, by combining such naturally constructed complex photon transmission with a simple 
photon detection protocol, Schubert polynomials, the foundation of versatile permutation operations 
in mathematics, have been generated. In this study, we demonstrated an order recognition algorithm 
inspired by Schubert calculus using optical near-field statistics via nanometre-scale photochromism. 
More specifically, by utilizing Schubert polynomials generated via optical near-field patterns, we 
showed that the order of slot machines with initially unknown reward probability was successfully 
recognized. We emphasized that, unlike conventional algorithms, the proposed principle does not 
estimate the reward probabilities but exploits the inversion relations contained in the Schubert 
polynomials. To quantitatively evaluate the impact of Schubert polynomials generated from an optical 
near-field pattern, order recognition performances were compared with uniformly distributed and 
spatially strongly skewed probability distributions, where the optical near-field pattern outperformed 
the others. We found that the number of singularities contained in Schubert polynomials and that 
of the given problem or considered environment exhibited a clear correspondence, indicating that 
superior order recognition is attained when the singularity of the given situations is presupposed. 
This study paves way for physical computing through the interplay of complex natural processes and 
mathematical insights gained by Schubert calculus.

Nanophotonics has been extensively studied not only for energy1, lighting2, or sensing3 applications but also in 
view of information physics and computing4–8 to benefit from light-matter interactions at the subwavelength 
scale. Optical near-field interactions play a crucial role in the field of nanoscale materials9. Indeed, nanoscale 
logic devices have been theoretically and experimentally demonstrated based on excitation transfer via optical 
near-field interactions10. Moreover, the examination of metamaterials for computing is actively discussed6. Fur-
thermore, higher-order intelligent functionalities, such as solving satisfiability problems11 and decision-making 
problems12, are investigated using optical near-field interactions.

In contrast, extremely high precision nano-fabrication technologies are indispensable to realizing such nano-
photonic devices13. However, to date, technical difficulties in terms of ultrafine individual control of the size and 
position of nanomaterials, such as quantum dots, are still difficult to resolve; this is one of the primary reasons 
for the development of self-assembly techniques14,15. Additionally, memory function is another critical factor in 
view of constructing computing functionality.
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Considering these issues, we focus our attention on photochromic materials16, which exhibit light-induced 
reversible transformations between transparent or colourless open-ring isomers (1,2-bis(2,4-dimethyl-5-phenyl-
3-thienyl)-3,3,4,4,5,5-hexafluoro-1-cyclopentene; 1o) and opaque or blue-coloured closed-ring isomers (1c) 
(Fig. 1a). Visible light irradiation induces the isomerization from 1c to 1o, whereas ultraviolet (UV) light dem-
onstrates an opposite effect. Photoisomerization assumes the role of information memorization. As shown in 
Fig. 1a, the absorption spectra of colourless and blue-coloured opaque states of the crystalline surface were 
measured through the diffuse reflection method using an integrating sphere.

Furthermore, it should be emphasized that the formation of an autonomous pattern has been realized in form-
ing a nanometre-scale ultrafine structure instead of pixel-wise addressing, as in conventional optical memory. 
To fully benefit from subwavelength-scale photonics, we utilized optical near-fields and locally induced photoi-
somerization of photochromic materials17,18. Indeed, in a previous study17, Nakagomi et al., demonstrated that 
a local optical near-field excitation on the surface of a photochromic crystal yields local photoisomerization on 
the scale of tens of nanometres. Initially, the entire material was in a coloured state (1c). Through an optical near-
field excitation with a visible wavelength that was fixed at a spatial position on the crystal surface, the material 
was locally isomerized into a transparent 1o state. The locally induced transparency guides the incoming optical 
near-field into a neighbouring area in the subwavelength regime. Consequently, the local photoisomerization 
of the transparent state causes a succeeding chain reaction of local transparency, including bifurcations, leading 
to the formation of a complex pattern of transmitted photons on the opposite surface of the crystal (Fig. 1b).

Once the nanoscale transparency paths are formed, an incoming near-field excitation is transferred to the 
opposite side and scattered by the probe tip located at a particular position (Fig. 1c). Figure 1d shows the 

Figure 1.   Nanoscale photochromism by near-field optics. (a) Transparent and coloured states of diarylethene 
and their absorption spectra. (b) Local near-field light excitation at the surface of the photochromic material to 
generate photoisomerization at the nanometre scale. Complex pathways are developed. (c) Once th pattern is 
formed, the local optical excitation travels through the generated path. (d) The output position of the photons 
was observed using scanning near-field optical microscopy. Adapted from Uchiyama et al.18, Sci. Rep. 10, 2710 
(2020). Copyright 2020 Author(s), licensed under a Creative Commons Attribution 4.0 License.
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experimentally observed photon count statistics in a 2 μm × 2 μm regime taken by a scanning near-field optical 
microscope (SNOM) with a spatial resolution of approximately 50 nm. We observed non-uniform distributions 
stemming from the complex structure formed in the photochromic materials17.

Although the photon count pattern appears complicated, internal photoisomerization is triggered by the 
local excitation from a single fixed position. Therefore, photon statistics are not random but comprise certain 
spatial correlations. The origin of the complexity stems from the interplay between local photoisomerization by 
an optical near-field and its subsequent anisotropic deformation of the molecular size, leading to anisotropic 
mechanical strain17. Such a structure is, metaphorically speaking, as if chaos provided complex profiles origi-
nating from simple common deterministic nonlinear dynamics. By exploiting these characteristics, Uchiyama 
et al.18 have successfully demonstrated the generation of Schubert polynomials using the photon count statistics 
combined with a simple photon detection protocol. Here, the experimentally observed optical near-field data 
was common for the previous studies17,18 and the present study.

However, Uchiyama et al.18 only described the production of Schubert polynomials; its mathematical proper-
ties, formulated as Schubert calculus, were not fully utilized. Furthermore, quantitative comparisons with other 
random numbers, such as uniformly distributed pseudorandom numbers, were not performed. Therefore, in the 
present study, we demonstrated order recognition using Schubert polynomials generated by the experimentally 
observed optical near-field pattern.

Here, the issue of order recognition concerns the following situation: there are N slot machines whose reward 
probabilities are given by Pi (i = 1, …, N). The task of order recognition is to realize the ranking of all Pi in an 
ascending or descending order. In this study, we proposed an order recognition strategy based on Schubert cal-
culus. The primary advantage of the proposed strategy is that it never calculates the estimated reward probability 
P̂i while evaluating the order; instead, the proposed method highlights the relative relation between two choices, 
which is determined by an inverse relationship in a Schubert polynomial19–21. Furthermore, we quantitatively 
analyzed Schubert polynomials and their order recognition capabilities depending on the property of the source 
of the randomness. We showed that the number of singularities contained in the generated Schubert polynomials 
correlated with the order recognition capability.

In a general context, the contributions of the present study are based on Schubert calculus and complex opti-
cal near-field photon to physics-based computing from the following perspectives: the first contribution is the 
capability of producing versatile Schubert polynomials that inherit the correlation induced in the photochro-
mic material by local excitation. The number of possible Schubert polynomials reaches the order of Avogadro’s 
number (1023) or becomes extremely diverse when N reaches 24. Nevertheless, Schubert polynomials generated 
via the proposed physics-based protocol18 carry the spatial correlations formed in the subwavelength-scale 
material system.

Second is the newly designed ordering algorithm based on Schubert calculus, a solid theoretical foundation 
of an ordered structure19–21. As mentioned earlier, the proposed algorithm consists of repeating the revision of 
orders between two choices, which mathematically corresponds to the so-called divided difference operation in 
Schubert calculus19–21. The transformation of the divided difference operator into an order recognition strategy 
is the original contribution of the present study.

Third, through the analysis of the comparison among the spatially uniform, spatially highly skewed, and 
optical near-field patterns, we found that ordering performs well when the singularity in the given problem and 
that in the source patterns meet each other. In other words, excellent performance results are observed when the 
problem under study and the solver are in an adjoint relationship. Although much deeper insights are needed 
from future studies, these contributions of the present study shed light on the utilization of naturally constructed 
complex information inherent at the subwavelength scale for intelligent functions. Based on this fundamental 
nature, the proposed strategy may be extended to other applications in the future, not just for order recognition 
of slot machines or bandit problems examined in the present study.

The remainder of the paper is organized as follows: first, we review the optical near-field statistics observed 
using a double-probe optical near-field microscope17. We then review the generation of Schubert polynomi-
als based on near-field observation coupled with a simple photon detection protocol18. The order recognition 
strategy based on Schubert calculus is then introduced, including the demonstrations using the experimentally 
observed optical near-field pattern. We also quantitatively compare order recognition abilities with random 
number distributions, such as uniformly distributed random numbers.

Results
Preparation (1): observation of a complex optical near‑field transmission pattern on the pho‑
tochromic crystal.  We reviewed the results of previous studies in the present study. First, we summarized 
the complex photon path formation in photochromic materials17. As mentioned above, the material was a pho-
tochromic single crystal made of diarylethene, with the molecular structure shown in Fig. 1a22,23. Upon UV 
irradiation, the molecule was isomerized from a transparent isomer (1o) into a blue-coloured isomer (1c) while 
maintaining the crystal structure24,25. Upon visible light irradiation, the material was converted back into a col-
ourless or transparent isomer. The black and blue curves in Fig. 1a represent the absorption spectra of isomers 1o 
and 1c, respectively. The molecular lengths of the two carbon atoms at 4- and 4’’- positions in the phenyl rings of 
1c and 1o were 1.39 nm and 1.41 nm, respectively, and the thicknesses of the molecules 1c and 1o were 0.39 nm 
and 0.49 nm, respectively25, indicating that structural deformation accompanies photoisomerization.

The local optical excitation and its near-field optical transmission characterization were conducted using a 
double-probe scanning near-field optical microscope (Unisoku, USM-1300S), which has a metallic probe on 
one side and an apertured fibre-optic probe on the other side (Fig. 1c). With the sharpened gold-coated probe 
tip located near the surface of the diarylethene crystal with a thickness of 100 μm, local optical excitation was 
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induced using light with the wavelength of 532 nm17,18. Here, we utilized the local electric-field enhancement at 
the tip of the sharpened metallic probe17,26. The near-field transmission was measured using an optical fibre probe 
with a spatial resolution of approximately 50 nm, which was connected to a single photon counting apparatus. 
The two-dimensional scanning area was 2 μm × 2 μm with a resolution of 256 pixels × 256 pixels.

Figure 1d shows the observed near-field photon count distribution obtained after adopting a two-dimensional 
Gaussian filter with a standard deviation of 6 pixels (approximately 50 nm), corresponding to the resolution 
limit of the system. We observed complex subwavelength structures with a representative scale of 100–200 nm. 
In particular, the local excitation by the metallic tip did not uniformly propagate through the material. The 
generation of such a complex pattern was attributed to the balance between the mechanical deformation of the 
photochromic material and photoisomerization17,23. This suggests that local photoisomerization induces aniso-
tropic deformation of the molecular size, leading to anisotropic mechanical strain27,28, which causes subsequent 
photoisomerization in a non-uniform manner in the surrounding material.

In other words, a chain of spontaneous symmetry breakings was generated during local photoisomerization 
involving branching and selection; the near-field–excited diarylethene was locally modified to be transparent. 
The developed transparent area was accompanied by an anisotropic mechanical strain in the adjacent area, 
leading to a suppressed or enhanced photoisomerization of the subsequent photons. Therefore, an anisotropic 
strain field from the adjacent locally photoisomerized areas provided an anisotropic spatial distribution of the 
quantum yield of photoisomerization within the crystal17. Such chains of photoisomerization and strain-field 
formation led to nanometre-scale transparent paths, resulting in the generation of versatile patterns observed 
in Fig. 1d. After generating a transparent path, the two-dimensional near-field observation was conducted with 
the input light from the metallic tip at a single photon level, with photon energies lower than the limit to induce 
further photoisomerization. Diarylethene used in this study does not exhibit thermal isomerization from the 
closed- to open-ring isomer or vice versa29; therefore, the constructed nanometre-scale pattern was preserved 
until complete resetting via strong UV or visible light irradiation was observed.

As reported by Nakagomi et al.17, the metal probe was illuminated using 532-nm laser light with an intensity of 
1 μm/cm2. The number of photons detected by the optical near-field fibre probe was in the range of 10 counts per 
second (cps) from approximately 100-nm order spatial area. Although the principal contribution of the present 
study was constructing an order recognition strategy, we briefly discussed the photon utilization efficiency of 
the experiment described in the study by Nakagomi et al.17, which was not discussed in previous studies. Future 
studies with a detailed experimental discussion are warranted.

For simplicity, assuming that the local excitation occupies an approximately 100-nm square area and the tip-
enhancement factor by the gold-coated probe is 100, the number of photons that are subjected to the nanometre-
scale transparent paths formed in the photochromic crystal per second is approximately 30,000 or the input 
photon rate is 30,000 cps. Furthermore, assuming that the input photons can travel in the 5-μm square area of the 
sample, the number of photons observed from a 100-nm square area is approximately 12 cps. Interestingly, this 
number is comparable to the experimentally observed photon counts by SNOM, meaning that, the intermediate 
loss is negligible. However, if the tip enhancement by the gold probe is estimated to be 1000, the output photon 
should be 120 cps, meaning that the loss is approximately 90%. As mentioned above, detailed characterization 
is warranted in future studies.

Preparation (2): generation of the Schubert matrix.  A single photon travels through the generated 
complex transparent paths and is finally transmitted from a particular position to the opposite side. The spatial 
position of the photon detection differs from photon to photon, and Fig. 1d represents its statistics. Uchiyama 
et al.18 reported that, although the spatial positions of the photon observations were versatile, it was constrained 
by the transparent paths formed in the diarylethene crystal, which were originally specified by a fixed local 
excitation from the metallic probe. To transform the spatial near-field photon statistics into versatile informa-
tion in a coherent manner, Uchiyama et al.18 incorporated the following simple photon detection protocol to 
generate Schubert polynomials, which were equivalent to what they called “Schubert matrices”, as introduced in 
the present study.

Schubert matrix.  In a Schubert matrix, there is only a single element of 1 for all rows and columns, while all the 
other elements are 0. In other words, a Schubert matrix represents a permutation. the Schubert matrix has a one-
to-one correspondence with the Schubert polynomial19. See the “Methods” section for details of the definition of 
Schubert polynomials. Schubert matrices of the size N × N were utilized for recognizing the order of N distinct 
slot machines. As given by Eqs. (3)–(5), a Schubert polynomial corresponding to an N × N Schubert matrix is a 
polynomial composed of the term x1, x2, . . . , xN−1.

Basic notions: diagram, inversion, Young tableau, and singularity.  Herein, we introduce a few basic notions to 
characterize Schubert matrices: diagram, inversion number, and singularity. An example of a Schubert matrix is 
a 4 × 4 matrix given by

which is illustrated in Fig. 2a with yellow and green elements denoting 1 s and 0 s, respectively. Herein, we 
marked the elements that are located on the right and lower sides of the yellow elements, which are marked by 

(1)S =







0 1 0 0

0 0 0 1

0 0 1 0

1 0 0 0






,
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thick black lines in Fig. 2b. Therein, the non-marked elements are called the diagram of the Schubert matrix, 
which in this case is given by

The number of ∗ s in the diagram is called the inversion number, which is 4 in the case of the present exam-
ple. An array of ∗ s located at the upper-left corner of the matrix is called Young tableau30. Furthermore, in the 
diagram, let us connect ∗ s into blocks if they are connected by any of their four neighbours: up, down, left, or 
right. We then count the number of blocks of connected ∗ s, which is 2 in the case of Eq. (2). Here, the number of 
singularities is defined by the number of such blocks without counting the Young tableau. In the case of Eq. (2), 
there are two blocks of ∗ , with one of them being the Young tableau. Therefore, the singularity is 1.

How to generate a Schubert matrix.  The generation of a Schubert matrix S is described in the study by Uchiy-
ama et al.18. Here, we introduced the procedure along with a case of generating a Schubert matrix with a size of 
4 × 4. As previously illustrated, a single photon was observed at a spatial position with the corresponding prob-
ability distribution (Fig. 3a). The details of the conversion from the experimentally observed photon statistics to 
selection probability are described in the previous study18.

1.	 The probability distribution specified by the near-field observation was rescaled or coarse-grained into an 
N × N grid. The probability at each point of the grid is denoted by Pi,j (i = 1,…, N, j = 1,…, N) hereafter, where 
N is a natural number. In the example, N is equal to 4 (Fig. 3a). In the physical system shown in Fig. 1c, when 
sending a single photon, we observed the photon at one of the grid points. In this study, by using uniformly 

(2)







∗ 0 0 0

∗ 0 ∗ 0

∗ 0 0 0

0 0 0 0






.

Figure 2.   Schematic of an example of the Schubert matrix. (a) The permutation of [2431] is represented by a 
matrix S in Eq. (2). (b) The diagram of the matrix S is illustrated. The upper-left block consisting of ∗ s (indicated 
by orange squares) is called the Young tableau, whereas isolated ∗ blocks are called singularities.

Figure 3.   Generation of Schubert polynomials based on optical near-field observation. (a) The detection area 
is divided into N × N elements. Here N = 4. The photon detection probability is spatially irregular. (b) When a 
photon is detected at an element (i, j), the (i, j)-element of the Schubert matrix is given by 1. Here, (i, j) = (3,3). 
(c) The sensitivities of all the elements in the third row and column are zero. The probabilities are renormalized. 
(d) The next element of the Schubert matrix is determined. (e–h) The process described in (c) and (d) is 
repeated. (h) is the finally obtained Schubert matrix in this example. Adapted from Uchiyama et al.18, Sci. Rep. 
10, 2710 (2020). Copyright 2020 Author(s), licensed under a Creative Commons Attribution 4.0 License.
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distributed pseudorandom numbers generated in a computer and pondered by the measured probabilities, 
we emulated the output photon observations.

2.	 We counted the number of photons detected at each grid element. Let the photon count at the grid point (i, 
j) be denoted by Ci,j (i = 1,…, N, j = 1,…, N). When the photon count at a certain position Cm,n reaches the 
threshold value denoted by PT, we determined that the (m, n)-element of the Schubert matrix is given by 1; 
Sm,n = 1. In the example shown in Fig. 3b, S3,3 = 1.

3.	 Accordingly, the photon detection probability distribution Pi,j was updated for the rest of the loop. First, 
photon detection at the m-th row and the n-th column was configured to be zero, which are denoted by x 
marks in Fig. 3c, i.e., P3,j = 0 (j = 1,…, 4) and Pi,3 = 0 (i = 1,…, 4). This reconfiguration was based on the defini-
tion of the Schubert matrix. Second, the probability distribution Pi,j was renormalized such that 

∑

i,j Pi,j = 1 
was maintained.

4.	 Similar to Step (2) described above, when Cm’,n’ reaches PT, we determined the (m’, n’)-element of the Schubert 
matrix to be 1, i.e., Sm’,n’ = 1. In the example shown in Fig. 3d, S2,4 = 1.

5.	 We repeat steps (2) and (3) for two times (Fig. 3e–h); S1,2 = 1 is determined as shown in Fig. 3f, followed by 
S4,1 = 1 in Fig. 3h.

The final determination of S1,2 = 1 is immediately given after the previous step because only a single grid point 
has a non-zero photon observation probability. The resultant Schubert polynomial is x21x2x3 + x1x

2
2x3 ; see the 

“Methods” section for information regarding Schubert polynomials19.
The total number of different Schubert matrices of size N × N is given by N!, meaning that the factorial order 

increase with the size of the observation elements. With N = 32, the total number is more than 1035. The ability 
to generate such an extremely diverse pattern from the same substrate via optical near-field processes was the 
primary topic investigated by Uchiyama et al.18.

The photon number threshold PT played an important role. A smaller PT value leads to diverse choices of 1 s 
in the generated Schubert matrix. Conversely, a larger PT value indicates that the element with the maximum 
photon detection probability most likely yields the value of 1 in the resulting Schubert matrix. In other words, 
the resultant Schubert matrices are more weakly and more strongly correlate with the source optical near-field 
pattern with smaller and larger PT values, respectively18. These are called soft and hard correspondences between 
the near-field patterns and Schubert matrices, as described previously by Uchiyama et al.18.

Order recognition.  In previous sections, we reviewed the background and fundamentals needed for the 
generation of Schubert matrices based on near-field photon statistics from a photochromic material. The pri-
mary focus of this study is to utilize these Schubert matrices for information processing; specifically, our main 
objective is to recognize the order or ranking of slot machines with an initially unknown reward probability.

Order recognition by the revision of the name and value.  The key is to exploit the inversion relation presented in 
a Schubert matrix; here, we introduce a 4 × 4 matrix, which is schematically illustrated in Fig. 4a. If the column 
number of the element with the value of 1 in the i-th row is smaller than that in the (i + 1)-th row, we define that 
these two elements are in a relation of inversion. Furthermore, this inversion is related to the concept of singular-
ity, as described above. The diagram of the Schubert matrix (Fig. 4a) is shown in Fig. 4b.

Conversely, when the Schubert matrix is represented by an anti-diagonal matrix (Fig. 4c), there are no inverse 
relations. The diagram of an anti-diagonal matrix is shown in Fig. 4d, where the upper triangular elements and 
the Young tableau only contribute to forming the inversion number. The inversion number is maximized, and 
there is no singularity. The Schubert polynomial is represented by a single term x31x

2
2x3.

As described above, inversion relations and singularities indicate characteristic properties. The idea of the 
proposed ordering strategy based on Schubert calculus begins with associating information to the vertical (row) 
and the horizontal (column) axis of Schubert matrices.

Let us assume that there are four slot machines (M1, M2, M3, M4) and their reward probabilities are given 
by (P1, P2, P3, P4) = (0.4, 0.2, 0.8, 0.6), which are unknown to us. In this case, the ground truth order of the slot 
machines’ reward probability is M3, M4, M1, and M2 in descending order. We want to recognize this ground truth 
order by playing the slot machines.

The first critical point of the proposed order recognition strategy is to associate the vertical (row) and horizon-
tal (column) axes of a matrix with the name and value, respectively. Specifically, the names of the slot machines 
are bound with the rows; the upper rows indicate a higher-ranked machine, while the lower rows indicate a 
lower-ranked machine. Meanwhile, the columns correspond to the reward probabilities, with the right column 
being the high reward probability. These associations are illustrated in Fig. 4e. In the pseudo-code shown below, 
these associations are represented by line 5.

A Schubert matrix proposes the relation between the name and value by the elements of 1. Assuming that 
the elements in the matrix along the name axis are perfectly arranged in the order of the ground truth, and the 
elements along the value axis are arranged in the order of the ground truth reward probabilities in the ascend-
ing order, then, the matrix results in an anti-diagonal matrix, as shown in Fig. 4c. Here, there are no inverse 
relations and no singularities, suggesting that, the matrix for the perfect order recognition is an anti-diagonal 
matrix. Therefore, transforming the initially unsure order regarding both the name and value axes to adapt the 
correlated Schubert matrices toward an anti-diagonal matrix corresponds to accomplishing the correct order 
recognition. The question now is how to realize such transformations.

We considered that Schubert matrices propose which machines should be checked to determine the correct 
order. In this study, two machines are selected for a single-slot machine play. This is similar to the multi-armed 
bandit (MAB) problem with multiple plays31, although the aim of solving MAB problems and that in the present 
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study are fundamentally different. The purpose of solving MAB problems is usually to minimize regret, whereas 
the objective of the present study is to recognize the order.

The machine selection was determined by the inverse relation in the Schubert matrix that provided the 
deviation from the anti-diagonal matrix. In the example shown in Fig. 4a, there is one inverse relation indicated 
by a solid blue arrow.

We now focus our attention on the inverse relation. In the example shown in Fig. 4a, the inversion denotes the 
first and the second rows. Let us assume that the names of the first and second rows are machine A and machine 
B, respectively. Based on the definition of the vertical and horizontal axes of the matrix shown in Fig. 4e, the rela-
tion between machines A and B is contradictory (Fig. 4f). According to the name axis (vertical), machine A was 
considered a higher reward machine. However, the value axis (horizontal) indicated that the value of machine 
B was greater than that of machine A, suggesting that the relationship is contradictory.

To resolve such a contradiction, we selected these two machines and checked the betting results.

[CASE 1]	�  When the reward dispensed by machine A is greater than that of machine B:

	� The order of the name axis is correct; machine A is above machine B. In contrast, the value axis is 
wrong; the value of machine A should be on the right-hand side of machine B. Therefore, we swapped 
the allocation of the values, leading to a situation depicted in Fig. 4g.

[CASE 2]	�  When the reward dispensed by machine B is greater than that of machine A:

Figure 4.   Order recognition principle based on Schubert polynomials. (a) Inversion relation (marked by a 
blue arrow) inherent in the Schubert matrix. (b) Young tableau (orange colour) and a singularity (red colour). 
(c) Illustration of an anti-diagonal matrix and (d) its diagram consists of a Young tableau with the maximum 
inversion number. (e) In the proposed ordering strategy, a matrix is characterized by the name and value 
axes, which correspond to the vertical and horizontal directions, respectively. In the name axis, the upper 
row indicates a high rank and in the value axis, the right column indicates a high value. (f) Our decision of 
machine selection is suggested by the Schubert matrix. We paid attention to the inversion relation of the given 
matrix, which is the first and the second row in (f). Let us assume that the names of the first and second rows 
be machines A and B, respectively. The inversion relation suggests a contrary situation between the name and 
value axes. (g) If the reward dispensed by machine B is greater than that by machine A, the association of the 
name axis is inaccurate; hence, the allocation of the names is swapped. (h) If the reward by machine A is larger 
than that by machine B, the association of the value axis is inaccurate; therefore, the allocation of the values is 
swapped.
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	� The order of the value axis is correct; the value of machine B is on the right-hand side of machine A. 
Conversely, the name axis is wrong; machine B should be above machine A. Therefore, we swapped 
the allocation of the names, leading to a situation depicted in Fig. 4h.

The resulting arrangement is the same as shown in Fig. 4g and h for both cases; however, the reconfiguration 
of the axes is contrasting.

After finishing the reconfiguration using the current Schubert matrix, we continued the process by using 
the next Schubert matrix, which is shown in line 5 in the pseudo-code below (S← Schubert matrix). 
Furthermore, the row and column of the new Schubert matrix were transformed by the name and value axes to 
date, which is represented by line 5 in the pseudo-code (S← S[name,value]).

The above-described principle is summarized as a pseudo-code by the following algorithm: variable t is 
incremented after a single loop is completed, as shown by line 18 in the pseudo-code. A single Schubert matrix 
is used in a single loop given by line 5.

Algorithm: Order recognition

1  name  1,…, N

2  value  1,…, N

3  t  0

4  loop
5 S  Schubert matrix

6    S S[name,value]

7    for i in the rows of S, do
8       ci, ci+1 = the columns where elements are 1 in the rows i, i + 1, respectively

9 if ci < ci+1 then          % find the inverse relation 

10         RA = pull(name[i])    % RA is the reward from the machine name[i]

11        RB = pull(name[i + 1])  % RB is the reward from the machine name[i + 1]

12        if RA > RB then
13           swap(name[i],name[i + 1])

14        else
15           swap(value[ci],value[ci+1])

16        end if
17    end for
18    t t + 1

19  end loop

Demonstration.  We demonstrated the order recognition with 16 slot machines (M1–M16) with the ground 
truth reward probability setting of (P1–P16), as shown by the bar graph in Fig. 5a(i). The true order of the reward 
probability in the descending order is given by M9, M14, M8, M11, M2, M6, M3, M13, M1, M4, M12, M7, M5, M10, M16, 
and M15, as shown in Fig. 5a(ii).

Initially, the association of the name axis starts with the linear order corresponding to the index of the 
machines, i.e., M1–M16. We used a total of 10,000 Schubert matrices consecutively. This whole procedure was 
repeated for R = 100 trials. As the reward dispensed by each machine was probabilistic, a varying win–lose event 
occurred among R-times trials.

The images in Fig. 5b demonstrate how order recognition evolves as time elapses. Specifically, the horizontal 
axis indicates the number of Schubert matrices used, which is equal to the elapsed number of loops and is denoted 
by t using the notations shown in lines 3 and 18 of the Algorithm.

Here, the order of machine Mi at time t was evaluated by calculating how often the machine Mi is associated 
with the row number of the Schubert matrices. Meanwhile, we computed how the value of Mi was evaluated at 
time t by analyzing how its value was ranked in the horizontal direction.

The two-dimensional images in Fig. 5b show how the order recognition evolves by counting the accumulated 
incidences of the matrix (ranking and value), referred to as the ranking-and-value matrix hereafter, at t = 1, 50, 
100, 200, 500, and 1000. If the order recognition is completed to perfection, the top-ranked machine owns the 
highest value, whereas the worst-ranked machine has the minimum value. Therefore, the ranking-and-value 
matrix exhibits higher incidences along the anti-diagonal elements.
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As time elapses, the high incidence elements were gradually localized along the anti-diagonal axis, indicating 
successful order recognition. Immediately after the first round of the loop (t = 1), the ranking-and-value matrix 
was in an anti-diagonal arrangement (Fig. 5b(i)). This is because there was only a single incidence regarding both 
ranking and value axes at t = 1. As shown in Fig. 5b(ii), the ranking-and-value matrix shows a diverse incidence 
pattern at t = 50.

Figure 5c visualizes the results in another manner, where the vertical axis represents the estimated order, 
while the horizontal axis shows the number of Schubert matrices used or the time dimension. Precisely, the 
estimated order of machine Mi at time t was calculated by the average of the estimated ranking of Mi by the time 
t. Furthermore, such an estimated order is averaged over 100 different trials. The 16 curves therein, shown with 
different colours, represent the time evolution of how machine Mi was ranked. We observed that the estimated 
order was drastically reconfigured during the first approximately 500 steps. When the time step was around 2000, 
the order recognition was accomplished.

Furthermore, Fig. 5d summarizes the number of correct order-recognized machines as a function of time, 
which equals 16 when the perfect order recognition is achieved. Indeed, after t = 2298, the estimated order agreed 
with the ground truth ranking. We also observed that the order of most machines (14 out of 16) was recognized 
at t = 626. Therefore, the order recognition was almost completed at t = 626, although the perfect recognition 
was accomplished at t = 2298.

The error bars of Fig. 5c indicate the standard deviation of the estimated order; when the ground truth reward 
probability difference between the slot machines was minute, the error bars of associated machines overlapped 
with each other. We observed such a situation regarding M15 and M16, where the reward probability difference 
was only approximately 0.02.

However, we can automatically grasp such uncertainty by the ranking-and-value matrix. Indeed, we observed 
a high incidence square area or a block matrix in the lower-left corner of the matrix shown in Fig. 5b(iv), meaning 
that the ranking of the 15th and 16th machines are comparable. This is a remarkable attribute of the proposed 
strategy in which the strong correlations inherent in the problem under study are automatically detected.

Furthermore, as mentioned above, the proposed order recognition strategy relies only on the two choices spec-
ified by Schubert matrices and their resulting outputs. As opposed to the former order recognition principles32, 
the present study did not involve the notions of expected probabilities and confidence intervals.

Figure 5.   Demonstration of order recognition in 16 slot machine environments. (a) (i) Reward probability 
arrangement and (ii) its sorted representation. (b) The accumulated incidence pattern of the ranking-and-value 
matrix after the loop of (i) 1, (ii) 50, (iii) 100, (iv) 200, (v) 500, and (vi) 1000. (c) The time evolution of the 
estimated ranking of each slot machine. (d) The number of correctly ordered machines over time.
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Discussion
Comparison.  Here, we discuss the differences in Schubert matrices and their order recognition perfor-
mances among various random number generators, especially, in a spatially uniform probability distribution 
called “uniform” (Fig. 6a) and a spatially strongly skewed probability pattern called “centre” (Fig. 6b). The latter 
has a more significant probability in the square area located at the centre. The detailed setting of the “centre” is 
described in the “Methods” section. The near-field photon observation pattern (Fig. 1d) is simply referred to as 
“near-field” hereafter.

The motivation behind the comparison among the near-field, uniform, and centre patterns is described as fol-
lows: the spatial inhomogeneity of the optical near-field observed from the locally excited photochromic crystal 
is one of the most significant characteristics, as shown in Fig. 1d, which was examined in detail in a previous 
study18. A contrasting counterpart is a spatially completely uniform distribution, from which we examined the 
difference between the uniform and near-field patterns.

The near-field pattern was not too spatially skewed, and a high-incident photon count area was spatially 
distributed. Based on these observations, we examined the case where the photon counts were strongly concen-
trated in a particular spatial area. By comparing such spatially extremely skewed cases and near-field patterns, we 
could examine the dependencies on spatial skewness. The centre pattern is an example of such a spatially skewed 
distribution. The size of the high-incident area and its position were also considered. We primarily focused on 
the centre pattern as a representative case in the present study.

Schubert matrix statistics.  We generated Schubert matrices based on the near-field, uniform, and centre pat-
terns with a PT value of 1. Figure 6c shows the statistics of the inversion number when N is equal to 8. Herein, we 
generated 2 × 106 Schubert matrices for each of the near-field, uniform, and centre patterns, for which inversion 
number statistics were depicted by the blue, green, and red curves in Fig. 6c, respectively. Both the near-field 
and uniform patterns exhibited symmetric incidences with a peak value having an inversion number of 14. The 
centre pattern showed a local minimum incidence when the inversion number was 14 and exhibited fluctuations 
as a function of the inversion number. The fluctuation is discussed later.

Although the centre pattern deviated from the near-field and uniform patterns, the average, median, and 
standard deviation exhibited almost the same value, as demonstrated in Fig. 6d, when N is equal to 8. Therefore, 
there are no evident differences from the viewpoint of such statistical perspectives.

Furthermore, we examined the statistics of Schubert matrices with large sizes of up to N = 24. The square, x, 
and circular marks in Fig. 6d(i) represent the average value of the inversion number of the generated Schubert 
matrices from the near-field, uniform, and centre patterns, respectively, as a function of the size of the matrix (N). 
The detailed setting of the generation of a Schubert matrix is described in the “Methods” section. Figures 6d(ii) 
and 6d(iii) summarize the median and standard deviation of the inversion number. To summarize, we did not 
observe significant source-signal dependencies in these basic statistics for the inversion number from Fig. 6d.

Similarly, we examined the average (Fig. 6e(i)), median (Fig. 6e(ii)), and standard deviation (Fig. 6e(iii)) of 
the singularity of the generated Schubert matrices from the near-field, uniform, and centre patterns, respectively. 
There were no explicit source-signal dependencies for singularity.

In contrast, evident source-signal dependencies were observed when the uniqueness of Schubert matrices was 
considered. The blue, green, and red curves in Fig. 6f(i) represent the frequency of Schubert matrices divided by 
the unique number of Schubert matrices as a function of their inversion number in the near-field, uniform, and 
centre patterns, respectively, when N was equal to 8. However, the uniform pattern yielded an almost identical 
frequency, regardless of the inversion number; the near-field pattern showed a peak frequency around the inver-
sion number of 10. Similar trends were observed when N was equal to 9 and 10, as demonstrated in Fig. 6f(ii) 
and f(iii), respectively.

Similarly, the frequency of Schubert matrices divided by the unique number of Schubert matrices exhibited 
a similar tendency with respect to the number of singularities, as shown in Fig. 6g(i) (N = 8), Fig. 6g(ii) (N = 9), 
and Fig. 6g(iii) (N = 10). Although the uniform pattern displayed identical values for all singularities, the near-
field pattern provided a more significant frequency as the singularity increased. The statistics were highly similar 
among these three source patterns. Therefore, the observation in Fig. 6g suggests that versatile Schubert matrices 
are generated through small singularities via the near-field pattern. Regarding the centre pattern, the generated 
Schubert matrices were mostly similar to each other when the number of singularities was small.

The near-field pattern was based on the experimentally observed photon statistics provided by Uchiyama 
et al.18, as demonstrated in Fig. 1d. The original data were obtained with the size of 256 × 256 pixels, which was 
rescaled to form N × N blocks when the size of the Schubert matrix was specified by N × N. When the original 
size of 256 pixels was not indivisible by N, the photon counts on the boundary were divided proportionally.

The underlying mechanism of the oscillatory behaviour of the inversion number generated in the centre 
pattern observed in Fig. 6c and f is not understood yet. However, we considered that the following properties 
may be involved: The centre pattern induces a high probability of generating non-zero elements in the centre 
area. Therefore, based on the construction protocol of the Schubert matrix, it is highly unlikely to have non-zero 
elements in the centre area’s north, south, west, and east sides. Hence, the resultant generated Schubert matrix 
inherits such a spatially highly skewed nature of the centre pattern.

Comparison of order recognition performances.  We examined the order recognition performances depending 
on the source patterns regarding eight slot machine (M1–M8) environments. While the demonstrations showed 
so far suppose a probabilistic reward environment, here we assume the deterministic, different-valued rewards 
among (0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9). The correspondence between M1 to M8 and the rewards are ran-
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Figure 6.   Characterization of Schubert polynomials generated by the near-field pattern compared with the (a) 
uniformly distributed and (b) spatially strongly skewed (centred) patterns. (c) Inversion number distribution 
when N = 8 by the near-field, uniform, and centre patterns. (d, e) Basic statistical analysis of the (d) inversion 
number and (e) singularity number as a function of the size of the matrix (N). (i) Average, (ii) median, and (iii) 
standard deviations are examined and no evident differences among the sources are observed. (f, g) When the 
incidence is normalized by the number of unique matrices, evident source dependencies are observed in both 
the (f) inversion number and (g) singularity number.
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domly configured; we evaluated K = 8! = 40,320 types of unique correspondences between the machines and the 
rewards.

For a given reward environment, consecutive 250-time slot machine plays were conducted. Such plays were 
repeated for K-types of different reward environments. The correct order recognition rate (COR) at the time 
step t was defined by the number of times when the order of the reward was correctly recognized at the time 
step t among K-types of different reward environments divided by K. The blue, green, and red curves in Fig. 7a 
represent the time evolution of COR. We observed that the near-field pattern most promptly achieved a higher 
COR than others. On the contrary, the centre pattern could not conduct correct order recognition for certain 
reward environments because COR does not converge to unity.

We then examined the order recognition ability as a function of the photon threshold PT. Figure 7b character-
izes the number of steps when COR exceeds the value of 0.9 as a function of photon threshold PT. The near-field 
pattern, denoted by the blue curve, achieved smaller steps than others. The uniform and centre patterns, marked 
by the green and red curves, respectively, did not show evident PT dependencies, which was understood from 
the fact that the uniform and centre patterns do not provide different spatial inhomogeneity by changing PT. The 
near-field pattern, marked by the blue curve, showed the minimum steps when PT = 8. However, the difference 
in the time steps by changing PT was not evident in this study, even in the case of a near-field pattern.

Finally, we examined order recognition from the viewpoint of singularities. There are a total of K = 40,320 
assignments of the rewards to the eight slot machines. Each assignment can be represented by a Schubert matrix. 
Therefore, we can derive the singularities of the given assignment. Figure 7c shows the number of assignments, 

Figure 7.   Order recognition performance evaluations with different source randomness using eight slot 
machine environments. (a) Time evolution of the COR rate for the near-field, uniform, and centre patterns. 
(b) The time steps exceed the COR value of 0.9 as a function of the photon number threshold (PT). (c) The 
breakdown of all permutations of N = 8 by the number of singularities. (d) Comparison of order recognition 
performances with the problem settings having the same singularity value. When the singularity number is 
small than 2, the near-field pattern outperforms other sources, whereas, with the largest singularity, the centre 
pattern exhibits the promptest responses.
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with the number being annotated with the bar graph, as a function of the number of singularities ranging from 
0 to 6.

We evaluated the COR depending on the singularity number of the assignments, ranging from 0 to 5, as shown 
in Fig. 7d. When the singularity number was smaller than or equal to 2, the near-field pattern accomplished 
the fastest adaptation to COR = 1 or the perfect order recognition, whereas the COR by the centre pattern was 
limited below unity. Conversely, beyond the singularity number of 3, COR exhibited comparable performance 
irrelevant to the source-signal patterns. However, with the singularity number of 5, the centre pattern outper-
formed the others.

Interestingly, such a trend was contravariant to the trend of the frequency of the unique Schubert matrix 
analyzed in Fig. 6f. Therefore, the near-field pattern yields versatile Schubert matrices when there are few singu-
larities and provides superior ordering performances for slot machine assignments with small singularities. With 
the centre pattern, on the other hand, the versatility of Schubert matrices is low when there are few singularities, 
and the order recognition ability is inferior when the singularity number of the problem is small. Overall, as 
shown in Fig. 7c, the dominant parts of all arrangements consisted of fewer singularity configurations; thus, on 
average, COR by near-field pattern predominantly exhibits higher values than the centre and uniform patterns, 
as summarized in Fig. 7a. Furthermore, the time step exceeding the COR of 0.9 by the near-field pattern was 
smaller than that in the uniform and centre patterns, as shown in Fig. 7b.

However, detailed insights into this phenomenon are warranted in future studies. For example, the time at 
which COR reached unity appears to be almost the same between the uniform and near-field patterns. Addi-
tionally, in the initial time, where the time was shorter than approximately 50, the centre pattern slightly out-
performed the other two patterns.

Moreover, a deeper understanding of the underlying mechanism behind the relationship between the sin-
gularities of the source Schubert matrices and the order recognition is an exciting topic for future studies. For 
now, we believe that the abovementioned results demonstrate that the matching of the versatility of Schubert 
matrices with the number of singularities of the given problem plays a key role. Presumably, by subjecting a 
variety of different Schubert matrices matched with the singularity number of the given situation, the revision 
of the ordering proceeds efficiently. If a limited type of Schubert matrices is used, the order cannot be accurately 
recognized owing to insufficient comparisons. In a similar context, Okada et al., demonstrated that negative 
autocorrelation contained in a chaotic time series accelerates solving the two-armed bandit problems33, and this 
mechanism was recently evaluated based on correlated random walks34, which manifests the benefits gained by 
correlated randomness.

If one can know the singularity of the given problem as prior knowledge, the acceleration of the order recog-
nition will be possible by engineering the source pattern that comprises appropriate singularities. For example, 
if the singularity number of the given problem is 5 or 6 only, the usage of the centre pattern is beneficial rather 
than the use of near-field or the uniform patterns. A clear understanding of related issues may be another inter-
esting topic for future studies.

Conclusion
We demonstrate an order recognition algorithm based on Schubert polynomials generated via irregular spatial 
distribution of photon transmission through a photochromic crystal photoisomerized by a local optical near-
field excitation. The proposed strategy exploits the inversion relations and the singularities inherent in Schubert 
polynomials. A successful order recognition is demonstrated for 16 different reward probability slot machines. 
Furthermore, the performance of order recognition is quantitatively compared among the source Schubert 
matrices generated via near-field, spatially uniform, and strongly skewed patterns. We found that the singularity 
number contained in Schubert matrices and that of the given problems exhibit a clear correlation, suggesting that 
the order recognition will accelerate if the singularity number of the considered environment is presupposed. 
This study paves the way toward nanophotonic intelligent devices and systems by the interplay of complex natural 
processes and mathematical insights gained by Schubert calculus.

Methods
Definition of Schubert polynomials.  The Schubert polynomial {Sω} = {Sω(x)} = {Sω(x1, . . . , xN−1)}
19–21,30 in the symmetric group SN is defined through the divided difference operator ∂xy given by

Let the polynomial of the permutation with the maximum inversion number be given by

For a general permutation ω , the polynomial is defined by

In the case of the four-dimensional symmetric group S4 , the permutation with the largest inversion number 
is ω0 = [4321] , which is represented by the anti-diagonal matrix shown in Fig. 4c. Its inversion number is 6, as 
shown in Fig. 4d. The corresponding Schubert polynomial is Sω0

= S4321 = x31x
2
2x

1
3.

The Schubert polynomial of the permutation [4231] is given by the divided difference operation on Sω0
 regard-

ing x2 and x3, which corresponds to the interchange of the second and third rows in the Schubert matrix. Hence, 

(3)∂xyf =
f (x, y)− f (y, x)

x − y
.

(4)Sω0
= xN−1

1 xN−2
2 . . . xN−1.

(5)Sω = ∂ω−1ω0
Sω0

.
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S4231 =
(

x31x
2
2x

1
3 − x31x

2
3x

1
2

)/

(x2 − x3) = x31x2x3 is obtained. Similarly, the Schubert polynomial of [2431] is 
given by the divided difference of S4231 with respect to x1 and x2, which corresponds to the interchange of the first 
and second rows in the Schubert matrix. Therefore, S2431 =

(

x31x2x3 − x32x1x3
)/

(x1 − x2) = x21x2x3 + x1x
2
2x3 is 

obtained, which is the Schubert polynomial corresponding to the Schubert matrix shown in Fig. 4a. All Schubert 
polynomials, inversion numbers, and singularities of S4 are summarized in Table 1.

Simulation details.  In the performance comparison of the order recognition, we generated Schubert 
matrices from a spatially strongly skewed probability distribution called “centre”. Herein, we describe the details 
of this pattern. When the size of the matrix under study is N × N, the area of the centre is the set of elements (i, j) 
assuming the integer numbers of ⌈7N/16⌉ ≤ i ≤ ⌈9N/16⌉ and ⌈7N/16⌉ ≤ j ≤ ⌈9N/16⌉ , where ⌈∗⌉ denotes the 
nearest integer greater than or equal to *. The detection probability of a pixel belonging to the centre was 100 
times larger than that of the pixel outside the centre area.

We examined the statistics of the Schubert matrices regarding N = 8, 9, 10, 11, 12, 16, 20, and 24. The number 
of generated Schubert matrices for each case is summarized in Table 2. As the total number of different Schubert 
matrices is N!, the number of generated matrices should be sufficiently high to investigate the statistical charac-
teristics. However, the computational demands are too high, especially when N is larger than 11 in the present 

Table 1.   Schubert polynomials of S4 and the corresponding inversion and singularity numbers.

Inversion number
l(ω)

Permutation
ω Singularity number

Schubert polynomial
Sω = ∂ω−1ω0

Sω0

0 1234 0 1

1

2134 0 x1

1324 1 x1 + x2

1243 1 x1 + x2 + x3

2

3124 0 x
2
1

2314 0 x1x2

2143 1 x
2
1 + x1x2 + x1x3

1423 1 x
2
1 + x1x2 + x

2
2

1342 1 x1x2 + x1x3 + x2x3

3

4123 0 x
3
1

3214 0 x
2
1x2

3142 1 x
2
1x2 + x

2
1x3

2413 1 x
2
1x2 + x1x

2
2

1432 1 x
2
1x2 + x

2
1x3 + x1x

2
2 + x1x2x3 + x

2
2x3

2341 0 x1x2x3

4

4213 0 x
3
1x2

4132 1 x
3
1x2 + x

3
1x3

3412 0 x
2
1x

2
2

3241 0 x
2
1x2x3

2431 1 x
2
1x2x3 + x1x

2
2x3

5

4312 0 x
3
1x

2
2

4231 0 x
3
1x2x3

3421 0 x
2
1x

2
2x3

6 4321 0 x
3
1x

2
2x3

Table 2.   The number of generated matrices.

N Number of generated matrices N!

8 2 × 106 4.03 × 104

9 2 × 107 3.63 × 105

10 2 × 108 3.63 × 106

11 2 × 109 3.99 × 107

12 2 × 109 4.79 × 108

16 2 × 109 2.09 × 1013

20 2 × 109 2.43 × 1018

24 2 × 109 6.20 × 1023
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computing environment. For these reasons, the number of the generated matrices was limited to 2 × 109 when 
N is larger than or equal to 11.

The computing environment was a workstation comprised of HPC Systems (CPU: Xeon Gold 6249R (20 
cores, 3.1 GHz), RAM: 384 GB, OS: Ubuntu), and Matlab was the utilized software platform.

Data availability
The datasets used and/or analyzed in the current study are available from the corresponding author upon rea-
sonable request.
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