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Differentiation of patients 
with mild cognitive impairment 
and healthy controls based 
on computer assisted 
hand movement analysis: 
a proof‑of‑concept study
Andras Attila Horvath1,2*, Dalida Borbala Berente2,3, Balazs Vertes4, David Farkas4,5, 
Gabor Csukly2,6, Tom Werber2, Janos Andras Zsuffa2,7, Mate Kiss8 & Anita Kamondi2,9

Mild cognitive impairment (MCI) is the prodromal phase of dementia, and it is highly underdiagnosed 
in the community. We aimed to develop an automated, rapid (< 5 min), electronic screening tool for 
the recognition of MCI based on hand movement analysis. Sixty‑eight individuals participated in our 
study, 46 healthy controls and 22 patients with clinically defined MCI. All participants underwent a 
detailed medical assessment including neuropsychology and brain MRI. Significant differences were 
found between controls and MCI groups in mouse movement characteristics. Patients showed higher 
level of entropy for both the left (F = 5.24; p = 0.001) and the right hand (F = 8.46; p < 0.001). Longer 
time was required in MCI to perform the fine motor task (p < 0.005). Furthermore, we also found 
significant correlations between mouse movement parameters and neuropsychological test scores. 
Correlation was the strongest between motor parameters and Clinical Dementia Rating scale (CDR) 
score (average r: − 0.36, all p’s < 0.001). Importantly, motor parameters were not influenced by age, 
gender, or anxiety effect (all p’s > 0.05). Our study draws attention to the utility of hand movement 
analysis, especially to the estimation of entropy in the early recognition of MCI. It also suggests that 
our system might provide a promising tool for the cognitive screening of large populations.

Cognitive impairment due to major neurocognitive disorders (NCDs) such as Alzheimer’s disease is a growing 
public health concern. According to estimations, NCDs are going to represent the first cause of mortality and 
morbidity among the elderly by  20501. Evidence from neuropathological and neuroimaging studies suggests that 
structural and functional changes of the nervous system precede the appearance of the first cognitive symptoms 
by  decades2,3. It has also been accepted, that during this prodromal phase various non-cognitive symptoms, like 
sleep disorders, depression, behavioral and personality changes, sensory and motor deficits might be  identified4. 
Early identification of prodromal phases could provide possibility for timely counseling for patients and caregiv-
ers about early non-pharmacological interventions and potential treatment  options5. Missed or delayed recog-
nition of the early phase of cognitive decline may compromise the diagnosis of reversible forms of dementias 
and the diagnosis of treatable comorbidities. Dementia in the disease continuum is preceded by mild cognitive 
impairment (MCI). Individuals with MCI are still able to maintain independent social functioning and carry 
out everyday  activities6. Interventional studies propose that lifestyle improvements together with proper drug 
therapies might reduce the risk of further cognitive impairment in patients with  MCI7.
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Despite the key importance of early identification of MCI, there are substantial obstacles to its timely diagno-
sis. This is mostly due to the limited time of practitioners for screening and because the value of MCI’s early detec-
tion is not completely clarified among the  clinicians8,9. Moreover, many of the affected people believe that their 
early symptoms are due to aging, and they only visit their doctors once symptoms are getting worse. It has been 
reported that MCI and mild dementia is undiagnosed in half of the cases in the United States and in  Europe10,11. 
A possible reason for this is the limited availability of screening procedures. While there are numerous paper-
and-pencil tools suitable for screening (e.g., clock drawing test, Mini-cog, 6-item Cognitive Impairment Test)12–14 
and for the diagnostic support of MCI (e.g., Montreal Cognitive Assessment, Saint Louise University Mental 
Status)15,16 they require trained staff for their administration and evaluation as well as the physical presence of 
the evaluated patient. Digital healthcare solutions might provide broader access to medical screening tools for 
larger  populations17. Recently there has been a remarkable growth in the number of electronic cognitive tools 
with different acquisition settings for clinical or at-home use (e.g., E-MoCA, CogState)18,19. While these solutions 
provide ability for screening and repeated measurements, the use of these complex cognitive test batteries by 
elderly populations could be challenging due to lack of familiarity with digital  technologies20. Intrinsic cultural 
bias, practice and ceiling effect and rater dependency could also compromise the validity of cognitive  tests21. 
Another problem could be the relative nonadherence of the older adults within home care settings due to tech-
nical (e.g., different hardware background for various tests), logistical (e.g., exhaustive, time-consuming tests), 
physiological (e.g., vision problems) and cognitive (e.g., complicated test regime)  issues22,23. Thus, a design of 
an automated, self-administered test battery consisting of simple tasks and targeting few cognitive subdomains 
only might represent an important direction for regular screening of large populations.

Visuo-motor (VM) abilities could be ideal candidates for these developments, since growing number of 
reports suggest impairment of VM performance already in early  MCI24,25. VM skills are crucial human integra-
tive cognitive processes that allow us to react to visual stimuli with a motor action. Writing, drawing, copying, 
walking is all VM tasks. Some of them involve large muscle groups, others are related to complex activation of 
small muscles generating fine movements. It has been proposed that fine VM ability-based computerized tasks 
could identify subtle cognitive impairment in visuomotor coordination that would otherwise not be  detected26. 
Furthermore, detectable VM impairments (e.g., slowing in the required task time, decreased speed and velocity 
of motor actions) are present even in individuals at increased risk for AD before any objective clinical symp-
toms of  dementia26,27. This finding suggests that VM ability-based tasks could be used to signalize early signs of 
cognitive decline before it becomes apparent on standardized neuropsychological  tests27. Interestingly, the fine 
coordination and continuity of motor actions is less frequently analyzed in the previously described experiments. 
Shannon entropy might be an ideal tool to measure the high-order coordination of motor performance since 
the signal gathered from fine motor movements is the result of complex interactions of physiological processes, 
which entail complex fluctuations in the signal (i.e., random small muscle twitches’ effect on the signal while 
moving the mouse). These fluctuations give rise to uncertainty in the continuous signal recording, which can 
be measured by Shannon’s entropy.

Based on the above, we have developed an automated computer assisted hand movement analysis system to 
test VM abilities in the elderly population with a potential for self-administration. The aim of our present work 
was to determine the discriminative power of small amplitude hand movement characteristics in the differentia-
tion of healthy and MCI population in a clinical setting with a proof-of-concept study.

Methods
Participants. Participants were recruited from the AlzEpi Cohort Observational Library (ACOL database) 
of the National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary. The cohort con-
sists of healthy elderly individuals, and patients with MCI or dementia. Their diagnosis was established by a 
multidisciplinary team. The library is part of the Euro-Fingers international database (http:// www. eufin gers. 
com) and includes biometric, demographic, clinical, neuroimaging, neurophysiologic, neuropsychologic and 
CSF data. Every subject was native Hungarian.

In the current experiment, only right-handed, regular internet and email user participants were recruited. 
Individuals with dementia were not included in our research. Participants with the following risk factors of 
cognitive decline were not included: hypothyroidism, renal insufficiency, liver disease, vitamin B12 deficiency, 
alcohol or substance abuse, use of psychoactive drugs which influence cognitive function, demyelinating condi-
tions, clinically important brain lesions (stroke, white matter lesions), head injury accompanied by loss of con-
sciousness, major depression, schizophrenia, electroconvulsive therapy, hydrocephalus, syphilis, HIV infection 
or previous central nervous system infections. Participants with conditions possibly affecting the motor control 
of upper limbs (including tremor disorders, Parkinson’s disease or Parkinsonism, motoneuron disorder, lesions 
in cortical motor areas, neuromuscular disorders, cervical spinal cord disease, damage of peripheral nerves of 
upper limb) were not recruited either.

Participants were categorized into two groups. The subjects in the healthy control (HC) group had nega-
tive neurological status, and their neuropsychological examination excluded cognitive impairment. Structural 
brain magnetic resonance imaging (MRI) did not show significant lesions or cortical atrophy. The patient group 
comprised the MCI patients. Their diagnosis was based on the revised Petersen  criteria6. The presence of cortical 
thinning of the entorhinal cortex, and the reduction of total grey matter volume were confirmed by MRI. MRI 
data were extracted according to a previously published  procedure28,29. Objective decline in cognitive perfor-
mance was reinforced by neuropsychological test battery as detailed below. All research activities took place at 
the National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary. Informed written 
consent was obtained from every participant. Each research activity was performed in accordance with the 
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relevant guidelines and regulations. Our research was authorized by the Hungarian Medical Research Council 
(reference number: (024505/2015/OTIG).

Neuropsychological evaluation. Each participant was evaluated by a neurologist, neuropsychologist, or 
trained neuroscientist. Our test battery included various neuropsychological tests. The Hungarian version of 
Rey Auditory Verbal Learning Test (RAVLT)30 was used to appraise subjective memory complaints. RAVLT is 
considered a highly sensitive test in the detection of  MCI31. In the test participants are asked to attentively listen 
to and memorize 15 words (list A) read aloud by the examiner then repeat as many words as they can remember. 
The same process is repeated another four times (five recalls in total). The sum of the correctly recalled words 
during the five repetitions gives the immediate recall value (RAVLT Sum5) with a maximum possible score of 75. 
Then the participant is presented the same task, this time with a different list (list B) and only once. Immediately 
after that, the participant must recall list A. To determine the delayed recall score (RAVLT 7) thirty minutes later 
the participant is asked again to recall list A. The sum of correct words gives RAVLT 7 with a maximum of 15 
items. In our research the Hungarian version of Addenbrooke’s Cognitive Examination (ACE)32,33 was chosen to 
assess global cognitive function. ACE includes the Mini Mental State Examination and subscores of various cog-
nitive  domains34,35. Trail Making Test A (TMT-A) was selected to assess attention and cognitive function while 
part B (TMT-B) was applied to estimate cognitive  flexibility36. To complete TMT-A, participants are asked to 
connect circled numbers in an ascending order. In TMT-B, the task is to connect circled numbers in an ascend-
ing order and circled letter in alphabetic order alternately. Since increased level of anxiety and depression might 
worsen cognitive functions, we used the Hungarian version of Spielberger State and Trait Anxiety Inventory 
(STAI)37 and Beck Depression Inventory II (BDI-II)38. State version of STAI was applied to measure anxiety level 
before the experiment (state anxiety: STAI-S) and trait version of STAI to estimate general level of anxiety (trait 
anxiety: STAI- T). STAI-S was administered immediately before the visuo-motor paradigm. The 13-question 
long version of Beck Depression Inventory (BDI-13) was administered to describe the mood. BDI scores < 13 
indicate minimal depression, 14–19 range represents mild, the range 20–28 moderate and a score higher than 
29 signals severe depression. To assess social functioning and independence, Clinical Dementia Rating (CDR) 
Sum-of-Boxes score was administered by the  examiner39. CDR analyzes six functions as memory, orientation, 
judgement, and problem solving, community affairs, home and hobbies and personal care with a 5-point scale 
where 0 means no impairment, 0.5 mild impairment, 1 moderate impairment, 2 severe impairment, 3 loss of 
independent functioning.

Motor paradigm and data extraction. The Precognize system was developed by Precognize Ltd. in col-
laboration with medical specialists and researchers of the National Institute of Mental Health, Neurology and 
Neurosurgery within the National Brain Research Program II in the years of 2017–2021. The main feature of 
the program is the precise recording of mouse movements while the participants are completing simple tasks on 
the computer not focusing on their mouse “handling” but more on to finish the tasks at hand. The Precognize 
system applies research codes for the identification of patients and researchers to ensure that no personal data 
will leave the premises of the hosting institution. As soon as the program begins, these codes need to be filled 
by the research lead, but after this only participants’ mouse movements are allowed as from this moment on 
the computer mouse movements are recorded. On the first screen, the program greets the research participants 
and explains that they will have to solve three tasks. There is a trial version of each task, where the task must be 
solved in a simplified way, thus ensuring that the participant understands the task. The mouse was set so that 
the participants could activate the primary mouse button with index finger during both the right and the left-
handed sample taking.

The development of the task was motivated by the structure of TMT. During the task, nine circled Arabic 
numerals (1–9) are shown on the screen in a fixed position. The task for the participant is to click on the num-
bers using the computer mouse, starting with 1 in ascending order as quickly as possible (1-2-3-4-5…). In the 
event of an error (outside click or wrong order), the program will not allow the participant to proceed, until a 
correct mouse click is performed. During data acquisition, the same mouse and laptop were used with the same 
setup. We also applied an ergonomic protocol ensuring that for data collection only the same chair, table and 
mousepad were used. Participants were tested at the same time each day, between 4 and 6 p.m. We took a left 
and a right-handed sample from each participant.

Mouse movement data were stored as log files. Movement parameters were extracted for both hands individu-
ally and separately for all subsections of the tasks. Subsections were defined as the period between the Arabic 
numbers (connecting the lower to the higher). Altogether 18 subsections were defined for all participants (9 for 
left hand and 9 for right hand). Finally, the computed parameters were averaged for the 9 subsections. Six move-
ment parameters were calculated as distance, entropy, number of tries, time, speed, and velocity. The explanation 
and calculation of these parameters is detailed in Table 1.

Data analysis. Distribution of data was analyzed with Kolmogorov–Smirnov test. Continuous variables of 
demographic and cognitive features were analyzed with independent samples t-test or Mann–Whitney U-test. 
Categoric variables were compared with Chi-squared tests. ANCOVA model was set to examine the influence 
of group effect (HC vs MCI as independent variable) on the fine-motor data (dependent variable), while remov-
ing the effect of age, gender, and state anxiety level (covariances). Since motor data might influence each other, 
we applied Benjamini–Hochberg correction for multiple comparisons. Effect sizes were estimated in Cohen’s d 
(0.2 < small effect, 0.5 < medium effect, 0.8 < large effect). Pearson-correlation was applied to analyze the asso-
ciation between neuropsychological performance and visuo-motor data showing significant differences in the 
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intergroup comparisons represented by nominal p’s, suggesting their value as potential discriminative candi-
dates.

Results
Demographic, clinical, and cognitive characteristics. Eighty individuals (31 MCI and 49 controls) 
of the databank matched the selection criteria. Twelve (9 MCI patients and 3 healthy individuals) declined the 
participation. Finally, sixty-eight individuals participated in our research, forty-six of whom belonged to the 
healthy control (HC) group while twenty-two belonged to the mild cognitive impairment (MCI) group. The 
HC group contained 27 females (58.70%) while the MCI group included 12 females (54.55%). Significant differ-
ences across the groups in the distribution of sex (p = 0.225) or in the length of education (p = 0.128) were not 
found. The two groups significantly differed in their age (F = 0.638; p = 0.019) and in some neuropsychological 
features including total ACE score (F = 60.086; p < 0.001), ACE letter fluency (F = 5.07; p = 0.028), ACE category 
fluency (F = 31.48; p < 0.001), RAVLT sum-5 score (F = 110; p = 0.015), RAVLT 7 score (F = 69.84; p = 0.008) and 
CDR score (Z = − 4.284; p < 0.001). MCI group also showed lower entorhinal thickness (F = 3.86, p = 0.017) and 
reduced grey matter volume (F = 4.21, p = 0.012) compared to HC. In other parameters, significant differences 
were not demonstrated (all p’s > 0.05). Demographic data and cognitive characteristic features are presented in 
Table 2.

Inter‑group comparisons of mouse‑movements. We found significant differences between HC and 
MCI groups in the distance of left-hand movements (F = 1.16, p = 0.0134), in the time of movements with left 
hand (F = 4.32; p = 0.005) and in the entropy of the left-hand movements (F = 5.24; p = 0.001) (Fig. 1). The largest 
difference in the left-hand movements was presented in the entropy (largest F value and large effect size). Simi-
lar alterations were presented in the right-hand (dominant hand) movements including the distance (F = 1.03, 
p = 0.019) required time of movements (F = 4.626; p = 0.003) and entropy (F = 8.46; p < 0.001). The most promi-
nent difference was detected in the entropy of right-hand movements (largest F value and large effect size) 
(Fig. 1). The differences survived the Benjamini–Hochberg correction for time and entropy (corrected p < 0.05), 
while significance disappeared for the distance (corrected p > 0.05). A non-significant trend was also visible in 
other motor parameters including more tries, decreased speed, and increased velocity in MCI patients. Exact 
characteristics are presented in Table 3. Sex, age, and state anxiety level did not have significant modifier effect 
(all nominal p’s > 0.05). Based on these estimations, distance, entropy, and duration seemed to be the best candi-
dates for further correlation analysis. Interestingly, data of the left hand showed better potential in these param-
eters (Fig. 1), represented by the fact that effect sizes were larger than that of the dominant hand (Table 3).

Correlation analysis between mouse‑movement parameters and neuropsychological perfor‑
mance. Results of Pearson-correlation analysis between the extracted mouse movement parameters and 
neuropsychological performance are presented in Table 4 (p-values) and Fig. 2 (r coefficients). Mouse movement 
parameters showed strong and significant association with the neuropsychological test results including MMSE, 
ACE, RAVLT, TMT and CDR.

However, correlation was not significant between movement parameters, anxiety, and mood measures such 
as STAI-S, STAI-T, BDI-13.

By measures where lower scores indicate worse cognitive status (MMSE, ACE, RAVLT Sum-5, RAVLT 7), 
negative correlation with the motor parameters were demonstrated in all cases (r values ranged between − 0.14 
and − 0.5). The strongest association was found between movement features and ACE total score (average r: 
− 0.37, all p’s < 0.05). Time with left hand movements seemed to be the best predictor of cognitive measures in 
this test series (average r: − 0.38, all p’s < 0.05) (Fig. 3), while entropy was the second best predictor considering 
r values (average − 0.34 for left hand and − 0.31 for right). The two hands did not differ significantly in the r 
values (average r for left hand is − 0.29 vs average r for right hand is − 0.29).

In the analysis of neuropsychological test results where lower scores indicate better cognitive performance 
(TMT-A, TMT-B, CDR), positive correlation was detected in all cases with the movement parameters (r values 
ranged between + 0.1 and + 0.65). The strongest association was present between movement features and the 
CDR score (average r: − 0.36, all p’s < 0.001). Time with left hand movements seemed to be the best predictor 
of cognitive skills in this test series (average r: + 0.62, all p’s < 0.001) (Fig. 3), while entropy was also prominent 

Table 1.  Description of mouse movement parameters. x and y refer to x and y coordinates of the screen, while 
t refers to time.

Motor parameter Description Formula

Distance The overall distance from the mouse movements ∑n
i=1

√

(xn − xn−1)
2
+ (yn − yn−1)

2

Entropy The Shannon entropy of the mouse movements, where the underlying distribution (random variable) is the two-
dimensional coordinate of the location of the mouse on the screen −

∑n
i=1

f (x; y)i × lgf (x; y)i

Number of tries The sum of all mouse clicks
∑

all clicks

Time The time required to complete the task tn − t0

Speed The speed of the mouse movements distance
time

Velocity The velocity of the mouse movements ∑n
i=0

distancen−distancen−1

timen−timen−1
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(average r for left hand: + 0.49). A clear trend was also visible that left hand movements had significantly larger 
r values (average r for left hand is 0.46 vs average r for right hand is 0.21) (Fig. 2).

Discussion and conclusion
In this study, we present the first results obtained with a custom-made digital diagnostic system; the Precognize. 
In our experiment, we determined the utility of this automated, fine-motor test in the recognition of MCI. Our 
patient group consisted of a multidomain MCI population based on their traditional neuropsychological test 
results (ACE, CDR, RAVLT, TMT) (Table 1). While memory impairment was the most characteristic hallmark of 
our patients (largest effect size is present in the scores of RAVLT), significantly reduced cognitive functions were 
also depicted in verbal fluency, global cognitive scores, executive functions (Table 2). According to the literature, 
MCI patients have lower ACE  scores40, RAVLT  scores28,41 and elevated CDR  scores42, as we also demonstrated 
in our sample. As a reinforcement of primary neural loss, MCI patients had significantly decreased grey matter 
volume and entorhinal thickness, as a typical neuroimaging hallmark of  MCI43. Furthermore, the extensive exclu-
sion criteria of potential causes of cognitive impairment are potential selection bias supporting that our patients 
might had MCI exclusively due to neurodegenerative disorders instead of reversible factors. It might indicate 
that our approach is a potential diagnostic tool for the early recognition of neurodegenerative disorders instead 
of the exhaustive screening of the entire MCI population. Further follow-up studies are needed to support the 
impact of these selection criteria on the utility of the method in different MCI patient populations.

During the mouse movement task, right-handed, regular internet user participants were asked to connect 9 
Arabic numbers in ascending order using an electronic mouse Participants performed the test with their right 
and their left-hand as well. The entire procedure took less than 5 min. We extracted 6 movement features (Table 1) 
(distance, duration, velocity, speed, entropy, and the number of clicks or tries) and compared the data of healthy 
individuals to patients with MCI. In the intergroup comparisons, we revealed that MCI patients required signifi-
cantly longer time to perform the protocol and showed higher level of entropy during the movements (Table 3, 
Fig. 1). Interestingly, the left-hand data showed better discriminative values represented by larger effect sizes. In 

Table 2.  Demographic, clinical, and neuropsychological characteristics of the HC and MCI groups. HC 
healthy control, MCI mild cognitive impairment, MMSE Mini-Mental State Examination, ACE Addenbrooke 
Cognitive Examination, RAVLT Rey Auditory Verbal Learning Test, TMT Trail-Making Test, CDR Clinical 
Dementia Rating scale, BDI Beck Depression Inventory, STAI-S Spielberger State and Trait Anxiety Inventory 
State Score, STAI-S Spielberger State and Trait Anxiety Inventory Trait Score. *Indicates significant differences 
(p < 0.05). a Data was analyzed with independent sample t-test. b Data was analyzed with Chi-squared test. 
c Data was analyzed with Mann–Whitney U-test. d Data is given in the form of mean ± standard deviation (SD). 
e Data is given in the form of median and interquartile ranges (IQ1–IQ3). f Lower score associates with better 
cognitive performance.

HC (n = 46) MCI (n = 22) p-value Effect size (Cohen’s d)

Demographics

Age (years)a 66.76 ± 7.63 71.18 ± 5.82 0.019* 0.65

Sex (% of females)b 58.70 54.55 0.225 –

Education (years)a,d 15.54 ± 1.93 14.63 ± 2.38 0.128 0.42

Neuroimaging

Average entorhinal thickness  (mm2)a,d 3.43 ± 0.25 3.11 ± 0.23 0.017* 1.31

Total grey matter volume  (mm3)a,d 576,828 ± 57,471 573,914 ± 57,471 0.012* 0.05

Neuropsychology

MMSEa,d 28.76 ± 1.08 26.5 ± 1.79 0.088 1.55

ACE  totala,d 93.93 ± 3.85 80.22 ± 9.7  < 0.001* 1.88

ACE  orientationa,d 9.77 ± 0.53 9.19 ± 0.16 0.434 0.59

ACE  attentionc,e 8.00 (8.00–8.00) 8.00 (8.00–8.00) 0.307 0.45

ACE  memorya,d 29.93 ± 0.25 23.7 ± 6.07 0.089 1.17

ACE letter  fluencya,d 5.98 ± 1.39 4.29 ± 2.07 0.028* 0.97

ACE category  fluencya,d 6.67 ± 0.04 4.91 ± 1.76  < 0.001* 1.36

ACE  languagea,d 27.93 ± 0.26 26.7 ± 1.88 0.388 0.96

ACE  visuospatiala,d 4.8 ± 0.1 4.1 ± 0.73 0.135 1.2

RAVLT sum-5a,d 49.24 ± 6.36 29.2 ± 7.51 0.015* 2.93

RAVLT  7a,d 10.17 ± 2.73 3.82 ± 2.21 0.008* 2.59

TMT-A (in s)a,d,f 39.98 ± 11.76 85.6 ± 55.1 0.288 1.19

TMT-B (in s)a,d,f 87.83 ± 46.17 186 ± 117.7 0.078 1.12

CDRc,e,f 0 (0–0.2) 0.88 (0.4–1)  < 0.001* 1.19

BDI-13a,d,f 4.3 ± 4.02 5.61 ± 3.15 0.32 0.28

STAI-Sa,d,f 36.5 ± 9.23 43.25 ± 8.38 0.32 0.77

STAI-Ta,d,f 41.95 ± 9.51 42.38 ± 7.85 0.118 0.04
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general, effect sizes for movement differences were in the large range (0.8 <), suggesting robust discriminative 
potential. We also analysed the potential modifier effect of age, sex, and anxiety level on the motor performance 
but none of these factors had significant effect. We also extracted the background of intergroup differences using 
correlation measures to estimate the association of discriminative movement features and neuropsychological 
test results (Table 4, Fig. 2). Correlation analysis revealed that participants who had better global cognitive 
functioning proved by higher ACE and MMSE scores or better memory performance demonstrated in RAVLT 
scores needed less time to perform the protocol and showed reduced entropy during the actions (negative r val-
ues) (Fig. 3). The association was mild or moderate based on the r values, however it was constantly moderate 
with the ACE total score. Since ACE is frequently applied in the diagnosis of cognitive impairment, our results 
seem to represent the potential value of our digital diagnostic system. As a reinforcement, we also showed that 
subjects having worse daily functioning (higher CDR score) and reduced cognitive speed and flexibility (higher 
TMT scores) showed longer time and higher level of entropy (positive r values) (Fig. 3). The correlation was 
moderate. Superiority of left hand was also demonstrated in the correlation analysis (higher r values). Noticeably, 

Figure 1.  Error bars of intergroup comparisons of patients with MCI and healthy controls. Patients had 
significantly higher entropy in the movements and required longer time during the motor task. Difference 
is more characteristic in the left hand. All graphs demonstrate significant differences (p < 0.05). HC: healthy 
control; MCI: mild cognitive impairment.
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significant correlation was not present between test values representing anxiety (STAI) and mood (BDI) level 
and motor performance (Table 4).

Slowing in motor performance and psychomotor abilities is in line with the current MCI  literature44. In 
our experiment, slowing is characterized as an increase in the required time for the task. While it is a known 
phenomenon, its use as an automated diagnostic marker might have important further applications. Interest-
ingly, while Shannon entropy of movements is a barely analysed feature in neurocognitive  studies45, it seemed 
to be the best predictor of cognitive impairment in our sample (largest effect size in intergroup comparisons). A 
higher value of entropy in MCI population could signal that the test subject’s mouse movement characteristics 
was “unexpected”, meaning, it deviated greatly from the expected  route46. Some studies showed that analysis of 
entropy could reveal characteristic features of polyrhythmic, rapid aimed movements in healthy  individuals47,48. 
Others applied it to describe personal eye movement  variations49. These reports suggest that analysis of movement 
entropy can characterize individual motor characteristics and higher level of entropy associate with a more dis-
harmonized motor control. Based on these observations, it is intriguing to measure its utility in motor disorders. 
Some studies showed that entropy analysis of drawing (Archimedes’ spiral, copying of pentagons) can sensitively 
discriminate essential tremor and Parkinson patients from healthy  controls50,51. In Alzheimer spectrum disease, 

Table 3.  Differences in the motor movement characteristics among MCI and HC participants. The required 
time, the distance route and the entropy were significantly increased in the MCI group. p values are 
represented as nominal p’s, while * indicates significant differences following Benjamini–Hochberg correction 
for multiple comparisons. HC healthy control, MCI mild cognitive impairment, ms millisecond.

HC (n = 46) MCI (n = 22) Nominal p-value Effect size (Cohen’s d)

Left hand

Average distance of 9 routes (pixel) 1611.94 ± 1044 2319.31 ± 1368.18 0.0134 0.58

Average entropy of 9 routes 4.26 ± 0.32 4.64 ± 0.47 0.001* 0.94

Average number of tries of 9 routes 2.88 ± 0.31 3.17 ± 0.69 0.329 0.54

Average speed of 9 routes (pixel/ms) 0.53 ± 0.14 0.45 ± 0.2 0.124 0.46

Average time of 9 routes (ms) 2932.41 ± 1601.92 4672.21 ± 2648.63  < 0.005* 0.79

Average velocity of 9 routes (pixel/ms) 4,911,765 ± 9,621,912 7,765,693 ± 7,971,712 0.389 0.32

Right hand

Average distance of 9 routes (pixel) 1181.41 ± 275.2 1714.32 ± 591.35 0.0119 0.22

Average entropy of 9 routes 3.9 ± 0.35 4.28 ± 0.48  < 0.001* 0.9

Average number of tries of 9 routes 3.2 ± 0.62 3.66 ± 1.76 0.97 0.34

Average speed of 9 routes (pixel/ms) 0.57 ± 0.17 0.47 ± 0.19 0.069 0.55

Average time of 9 routes (ms) 1830.25 ± 901.93 3545.95 ± 3064 0.003* 0.75

Average velocity of 9 routes (pixel/ms) 2,462,435 ± 8,318,595 2,923,976 ± 5,945,440 0.5 0.06

Table 4.  Significance results (p-values) of correlation analysis across hand movement parameters and 
neuropsychological performance. Numerous significant correlations were presented between test scores 
measuring cognitive performance and motor actions, while there was no significant correlation among 
movements and neuropsychiatric properties including mood and anxiety measurements. *Indicates significant 
correlation (p < 0.05). MMSE: Mini-Mental State Examination; ACE: Addenbrooke Cognitive Examination; 
RAVLT: Rey Auditory Verbal Learning Test; TMT: Trail-Making Test; CDR: Clinical Dementia Rating scale; 
BDI: Beck Depression Inventory; STAI-S: Spielberger State and Trait Anxiety Inventory State Score; STAI-S: 
Spielberger State and Trait Anxiety Inventory Trait Score. a Lower score associates with better cognitive 
performance.

Left hand: distance (pixel) Left hand: entropy Left hand: time (in ms)
Right hand: distance 
(pixel) Right hand: entropy Right hand: time (in ms)

MMSE 0.064 0.006* 0.006* 0.002* 0.003* 0.013*

ACE total 0.026*  < 0.001*  < 0.001*  < 0.001*  < 0.001* 0.003*

RAVLT SUM-5 0.037* 0.001* 0.002* 0.007* 0.004* 0.121

RAVLT 7 0.097 0.002* 0.025* 0.002* 0.002* 0.037*

TMT-A (in s)a 0.009*  < 0.001*  < 0.001* 0.129 0.009* 0.203

TMT-B (in s)a 0.022*  < 0.001*  < 0.001* 0.225 0.046* 0.139

CDRa  < 0.001*  < 0.001*  < 0.001*  < 0.001*  < 0.001*  < 0.001*

BDI-13a 0.074 0.784 0.984 0.319 0.081 0.544

STAI-Sa 0.321 0.373 0.047 0.217 0.370 0.227

STAI-Ta 0.280 0.241 0.356 0.719 0.437 0.842
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movement entropy seems to be a barely applied analysis method. We found only one study analysing movement 
entropy in MCI showing that increased entropy obtained from gait kinematics depicts cognitive decline in the 
early phase with high  sensitivity52. To our knowledge, our study is the first demonstrating the potential utility of 
hand movement entropy as a diagnostic marker of MCI.

While numerous electronic cognitive tasks are being tested for the detection of  MCI22, analysis of small ampli-
tude motor actions are less common. The major aim behind the application of movement analysis as cognitive 
screening is that traditional electronic cognitive tests require long administration time (~ 30 min in average) 
and the results are strongly influenced by pre-evaluation conditions such as emotional, mental tiredness or 
increased anxiety of the  participant22. The major complication with fine motor tests is the large diversity which 
makes generalization difficult. Some authors applied visuo-motor paradigms using sensitive motion sensors and 
eye  trackers53,54 and showed high discriminative potential in the recognition of MCI. Other studies applied fine 
motor actions using a touch screen and showed high classification accuracy between Alzheimer patients and HC. 
While these studies are similar to our approach regarding methodologies, they did not test the discriminative 
potential and classification accuracy in MCI  patients24,27. A similar study approach examined 19 pre-AD patients 
vs 47 HCs and found higher response time in patients with the application of a computer based visuo-motor 
 paradigm26. Some studies have been published also on the kinematic analysis of  handwriting55,56. In hand-writing 
experiments, it is an established common finding that  aging57 and anxiety have a strong modifier effect on the 
movement  parameters58. As a summary, we can state that the limitation in most of these studies as screening 
methods is the complicated setup of the diagnostic system, sometimes the strong financial need, and the modi-
fier effect of anxiety or age. In contrast, these factors represent the strength of our approach: (1) the hardware 
background is widely available and cheap; (2) the examination period is less than 5 min; (3) anxiety, mood, age, 
or gender did not impact the motor parameters; (4) the lack of cultural and language bias.

The limitation of our study is similar to other movement analysis protocols used in the diagnosis of MCI: (1) 
the low sample size; and (2) the lack of validation on independent databases. To overcome these difficulties, we 
plan to expand the analysis to a population wide experiment using various databanks.

In conclusion, our proof-of-concept phase experiment shows promising potential of the Precognize system 
in the early recognition of MCI. The strength of this approach is the low time needed to perform the test and the 
cost-effectiveness of this system. Our results also reinforce previous data showing the early impairment of fine-
motor control in MCI. We also draw attention to the potential application of movement entropy characterisation 

Figure 2.  Corrgram between hand movement parameters and neuropsychological test results. Blue color 
indicates negative correlations, while red demonstrates positive correlations. A clear trend is visible, patients 
with lower cognitive scores in MMSE, ACE, RAVLT have higher movement values (negative r). However, lower 
cognitive scores are also indicated with higher TMT and CDR scores, where mouse movements show also 
higher values (positive r). In conclusion, increase in motor parameters indicates worse cognitive performance. 
Highest r values are presented in time of left-hand movements. A trend is also visible for higher r values of other 
movement parameters in case of the left hand. MMSE Mini-Mental State Examination, ACE Addenbrooke 
Cognitive Examination, RAVLT Rey Auditory Verbal Learning Test, TMT Trail-Making Test, CDR Clinical 
Dementia Rating scale, BDI Beck Depression Inventory, STAI-S Spielberger State and Trait Anxiety Inventory 
State Score, STAI-T Spielberger State and Trait Anxiety Inventory Trait Score.
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in the early recognition of cognitive decline. Analysis of fine movements might provide an ideal battery for cog-
nitive screening of large populations due to the potential for automatization, self-administration, and potential 
application of artificial intelligence solutions for large population studies as well.

Data availability
Raw data are available upon request to the corresponding author.

Figure 3.  Scatter dots of correlation analysis across time average of left-hand movements (in ms) and 
neuropsychological test results. Where worse cognitive performance is characterized by lower cognitive scores 
(Addenbrooke Cognitive Examination (ACE) ranging between 0 and 100 and Rey Auditory Verbal Learning 
(RAVLT) summary of first 5 trials ranging between 0 and 75), negative correlation is presented with the 
time required for mouse movements. However, where worse cognitive performance associates with higher 
neuropsychological scores (Clinical Dementia Rating Scale (CDR) ranging between 0 and 3 and Trail-Making 
Test B (TMT-B) measured in required seconds), positive correlation is found. ACE Addenbrooke Cognitive 
Examination, RAVLT Sum-5 Rey Auditory Verbal Learning Test Summary of first 5 trials. TMT-B Trail-Making 
Test B, CDR Clinical Dementia Rating scale.
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