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Characterization of complex 
fluvial‑deltaic deposits in Northeast 
India using Poisson impedance 
inversion and non‑parametric 
statistical technique
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Characterizing complex fluvial‑deltaic deposits is a challenging task for finding hydrocarbon 
discoveries. We described a methodology for predicting the hydrocarbon zones from complex 
well‑log and prestack seismic data. In this current study, data analysis involves an integrated 
framework based on Simultaneous prestack seismic inversion (SPSI), target correlation coefficient 
analysis (TCCA), Poisson impedance inversion, and non‑parametric statistical analysis, and Bayesian 
classification. First, seismic elastic attributes from prestack seismic data were estimated. They can 
provide the spatial distribution of petrophysical properties of seismic data. Then target correlation 
coefficient analysis (TCCA) was estimated roration factor “c” from well‑log data. Using the seismic 
elastic attributes and rotation factor “c”, Poisson impedance inversion was performed to predict the 
Poisson impedance volume. Finally, Bayesian classification integrated the Poisson impedance volume 
with non‑parametric probabilistic density functions (PDFs) to estimate the spatial distribution of 
lithofacies. Despite complex characteristics in the elastic properties, the current study successfully 
delineated the complex fluvial‑details deposits. These results were verified with conventional findings 
through numerical analysis.

The lithological types and the hydrocarbon saturation zone are essential in the characterization of  reservoir1. 
Modeling and characterization of lithology are critical in basin analysis and subsequent studies such as drilling 
and reservoir development  studies2. The most difficult challenge in reservoir studies is obtaining accurate lithol-
ogy and fluid saturation zones from various sources, particularly seismic  data3. The most uncertainty is related 
to seismic information due to low resolution, non-unique solutions of seismic inversion techniques, and the 
relation between well-log and seismic  data4,5.

The geoscientist’s quest in the seismic interpretation defines the relationship between geophysical Data 
(Seismic data and well data) and reservoir properties to predict lithology distribution and mapping fluid-sat-
urated  zones6. Geoscientist’s frequently used seismic elastic characteristics and rock physical constants to dis-
tinguish lithologies and locate hydrocarbon-saturated  zones7. Seismic elastic attributes such as P-impedance 
 (ZP), S-impedance  (ZS), density (ρ), and  VP/VS ratio are used for lithology characterization by incorporating 
wireline log  data8. Rock physical attributes such as Young modulus (E), shear modulus(u), bulk modulus(k), 
Lambda-rho (λ), and Mu-rho (µρ) have been used to identify hydrocarbon saturated  zone9. Several methods 
have been proposed in quantitative seismic interpretation to estimate fluid-saturated zones and identify differ-
ent rock  types10,11. For a few years, seismic elastic properties have been used to discriminate hydrocarbon zone 
from other zones (Brine sand and shale)12,13. The seismic inversion technique (prestack inversion and AVO 
analysis) has become essential for understanding elastic properties  (ZP,  ZS, ρ &  VP/VS ratio) of lithology types 
and petrophysical  parameters14. A study explained the practical approach by the different seismic inversion 
techniques to identify the  lithofacies15. Another study explained lithofacies classification from seismic inversion 
in a geothermal  reservoir16. Another researcher differentiated rock type based on petrophysical properties and 
estimated the permeability  zones17.
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Characterizing the prospective zones from the other lithological zones in some reservoirs is very challenging 
if all have similar  characteristics18. A study characterized the low resistivity low contrast reservoirs using the 
lithology impedance  attribute19. Conventionally, low Poisson ratio and low-density values indicate hydrocarbon 
in many reservoirs, and those values are separated in a cross-plot if the lithology is clean sand  C20. However, the 
sand quality might be different and not as clean in reality. Many difficulties are encountered when those elastic 
properties have similar properties, and characterizing lithologies can be  complex21. Figure 1 shows the  ZP and 
 VP/VS ratio cross plot in the study area. Here observed, no proper separation of data points in the cross plot. As 
the color code of data points mentioned, the low Poisson ratio values belong to the hydrocarbon zone, but  ZP 
range values are almost the same for all zones. So only the Poisson ratio or  VP/VS ratio plays a significant role 
in the classification.

On the other hand, rock physical analysis can be applied to create the relation between rock properties (well 
log data) and seismic  attributes22. Rock physics template (RPT) based on cross-plot analysis uses different rock 
properties to identify hydrocarbon saturated zone and  lithology23. However, since an oil reservoir has indistin-
guishable elastic properties from lithologies and fluid-statured zones, conventional techniques such as prestack 
inversion, AVO analysis, and RPT are not enough to explicitly characterize brine hydrocarbon  zones24.

A notable attribute named Poisson impedance (PI) was introduced to address the issues faced in those 
 reservoirs25. The PI has defined as the difference between  ZP and scaled  ZS. Poisson impedance helps characterize 
a reservoir with fluid content as an elastic constant. Poisson impedance inversion has given remarkable accom-
plishments in distinguishing different lithologies in the oil and gas  industry26. The PI is used as a fluid factor in 
identifying the fluid content in the sandstone  reservoir27. A scaled factor in the Poisson relation is crucial for 
Poisson impedance inversion success. A scale factor (c) is measured from the slope of the cross plot between 
compressional impedance  (ZP) and shear impedance  (ZS). An accurate measure of “c” is a critical task for the 
meaningful interpretation of  PI18.

The Target correlation coefficient analysis (TCCA) was used in this study to estimate the accurate rotation 
parameter “c”28. The TCCA method has been used in many studies to estimate the “c”  factor29. The hydrocarbon 
reservoir was characterized by Poisson impedance inversion, which used the TCCA to estimate factor “c”30. The 
TCCA can be applied to the GR, resistivity, and water saturation log. GR log can be used for lithofacies classifica-
tion, and the resistivity log can be used for fluid classification through the fluid  impedance31.

The non-parametric statistical classification based on the kernel density estimator was implied in this study to 
estimate the Probabilistic Density Functions (PDFs)32. The kernel density estimator of non-parametric statistical 
classification was suitable for geophysical data like well-log  data33. A study has discussed lithology prediction 
using the borehole data using the non-parametric density  estimator34. In many studies, kernel density estimators 

Figure 1.  Cross plot of acoustic impedance  (ZP) and  VP/VS ratio.
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are efficiently distributed classes comparable to parametric  methods35. The bandwidth (h) of the kernel operator 
is the single parameter to be determined in non-parametric kernel estimation. The kernel-based non-parametric 
statistical method provides smoother density  functions36. Unlike the parametric method, these classification 
methods do not require predefined parameter assumptions/restrictions. As in the parametric method, assump-
tions of PDFs are complicated for geophysical data. So this non-parametric kernel estimator avoids the signifi-
cant restrictions of the parametric  approach37. Finally, the Bayesian approach was used in this study to estimate 
lithology volume for lithologies by combining the PDFs of non-parametric kernel estimator and seismic inputs 
(Poisson impedance &  VP/VS ratio). The Bayesian classification methodology is convenient for dealing with 
complex  problems38. The Bayes’ rule can integrate the different data sources and analyze the  uncertainty39.

This study adopted a workflow to predict the hydrocarbon saturated zone of a sandstone reservoir of the 
Tipam formation from the Upper Assam basin, India. The study area has similar seismic velocities and density 
values for different lithologies such as shale, brine sand, and hydrocarbon sand. These issues make it challenging 
to characterize the accurate fluid and lithology, which was impossible in conventional interpretation techniques.

Geological setting. The Assam-Arakan Basin is a petroleum-rich province in Northeast India, consisting 
of various tectonic-controlled  basins40. The eastern Himalayas bounded the Basin in the North, Mikir hills in 
the southwest, and Naga hills at the southeastern  boundary41. The Upper Assam basin contains the depositional 
system from the Eocene to Mio-Pleistocene. The essential litho-units are the Tipam sediments and Girujan 
clay of the Miocene age, Barail formation from the Oligocene age, and Sylhet Limestone and Kopili formation 
from the  Eocene42. However, every stratigraphic horizon from Miocene has shown indications of hydrocarbon 
deposits. The crucial source rocks are the coal-shale unit of the Barial group from the Oligocene age, the shale of 
Koplili formation from Eocene, and Sylhet/Tura’s formations of Paleocene. Girujan clays in the Assam Shelf on 
the northern side and Bokabil clays on the southern part act as major seals in the Upper Assam  Basin14. Further-
more, many interbedded shale bands within the Oligocene formation also act as the local seals within the group.

The target reservoir is the Tipam formation contains the significant producible sediments belonging to the 
Miocene age, deposited in the fresh-brackish water ecosystems in the Assam  Basin43. This formation has been 
subdivided into Upper, Middle, and Lower Tipam. The middle Tipam formation has the sand/shale alteration 
sequence, and the Lower Tipam formation consists of the Arenaceous  sequence44. The upper Tipam contains an 
arenaceous sequence. Oil and as occur in Tipam sands with porosity ranging from 15 to 22%.

The data for analysis were borehole logs and prestack 3D seismic data volumes. The borehole logs have com-
pressional slowness (DTCO), shear transit slowness (DTSM), density (ρ), resistivity logs (LLS, LLD & MSFL), 
and Gamma-ray (GR), Neutron porosity (NHPI) logs. After pre-conditioning, the seismic offset gathers have con-
verted into angle gathers, which are required for prestack inversion. Well#A and Well#C was used for inversion 
and cross-plot analysis. Other well-logs are kept for quality check of inversion and classification results. Figure 2a 
shows available well-logging curves of Well#03, and Fig. 2b shows raw seismic offset gathers of the study area.

Results and discussion
Seismic attributes determination. The SPSI technique was performed using the prestack seismic data 
and well-logs (Well#A & Well#C). We took advantage of SPSI in the generation of shear properties along with 
acoustic properties. This method transforms the prestack seismic data (angle gathers) into meaningful petro-
physical parameters  ZP,  ZS,  VP/VS ratio, and density. The prestack inversion involves wavelet extraction (statisti-
cal and well based), well to seismic tie, estimation of the background model, and deterministic optimization 
using the simultaneous prestack inversion technique. Prestack angle gathers are inverted into elastic properties 
using well-based angle-dependent wavelets and an initial low-frequency model. Figure 3 shows an arbitrary line 
of inverted seismic volumes  (ZP &  ZS) intersecting all wells, and inverted results were verified with inserted well 
properties  (ZP &  ZS) in the seismic data.

As mentioned earlier, conventional interpretation attributes such as  ZP &  VP/VS ratio are used to classify the 
lithofacies. As seen in Table 1, conventional attribute  ZP is almost similar for classified lithofacies. As mentioned 
earlier, only  VP/VS ratio influences lithofacies characterization. This depositional complexity is difficult to classify 
with conventional attributes.

Poisson impedance (PI) volume extraction. PI analysis was conducted as the second step of the meth-
odology to estimate PI attribute volume from seismic elastic attributes and PI curves from well log data. An 
accurate value of rotation factor “c” is required to estimate the Poisson impedance volume, as mentioned in 
Eq. (2 in the material and methodology section. This rotation factor is generally obtained from regression analy-
sis on the cross-plot of  ZP and  ZS. However, TCCA was utilized to predict the accurate value of the rotation 
factor “c”. the correlation analysis was conducted using the GR log and the PI curves obtained by different “c” 
values. This correlation analysis shows a maximum correlation coefficient at the c-value of 1.4553 for the GR 
curve (cc = 0.685). This “c” value can be used to estimate Poisson impedance volume. Figure 4 shows the target 
correlation coefficient analysis to estimate the “c” value.

As  mentioned25 in Eq. (2), Poisson impedance inversion was performed using the estimated rotation factor 
“c” and seismic elastic volumes such as AI and SI. The PI inversion was applied to seismic volumes and borehole 
logs. The PI volume and curves were created using the  ZP,  ZS, and “c” factor (1.4553). The Arbitrary PI volume 
from seismic attributes is shown in Fig. 5. Figure 5 shows PI attributes volume that reveals that the hydrocarbon 
zone was observed to have a well-defined separation with the effectiveness of the PI attribute. Low PI values 
ranging from 500 ((m/s) *(g/cc) to 1450 ((m/s) *(g/cc) indicates the hydrocarbon zone as classified in cross plot 
analysis (Fig. 6a). PI values 1450–2100 (m/s) *(g/cc) indicates water-bearing sand lithology. PI values ranging 
from 2100–3200 (m/s) *(g/cc) corresponding to shale.
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Lithological characterization by non‑parametric statistical technique and Bayesian classifica‑
tion. This section determines the spatial distribution of lithofacies by applying Bayesian classification using 
the non-parametric PDFs and Poisson impedance attribute. Mathematical information is provided in the meth-
odology section. First, cross-plot analyses are generally conducted to separate different lithologies using seismic 
and well-log  data45. The relation of different attributes is visually represented by cross plots for interpreting the 
hydrocarbon’s presence and other lithologies. Different attribute pairs can be used to identify the lithologies by 

Figure 2.  (a) Well logging curves of Well#03 in the study area. (b) Seismic Raw data (offset gathers) used in this 
study.
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making clusters on data points of cross-plot46. The cross-plot analysis was performed using the PI curves and & 
 VP/VS ratio of Well#A and Well#C to characterize various lithofacies. Figure 6a shows cross-plot analysis, which 
was characterized as hydrocarbon-bearing zones with red color, sand with yellow, and shale with green. Table 2 
shows PI &  VP/VS ratio values to characterize the different lithologies.

The non-parametric statistical mechanism was performed on the cross-plot data points (Fig. 6a) to estimate 
PDFs for each lithofacies. As mentioned in the methodology section, there is no parameter estimation in non-
parametric statistical techniques for predicting PDFs. Based on the non-parametric methodology, different 
bandwidth (h) tried to estimate the PDFs and lithofacies prediction results verified with confusion matrix at well 
locations (Well#A and Well#B). The confusion matrix was applied between true lithofacies (from Well logs) and 
predicted logs (seismic lithofacies at well locations). Seismic lithofacies are estimated by integrating the seismic 
attributes and PDFs using Bayes’  rule1. Here we finalized bandwidth as 4.93, which provided a better confusion 
matrix. The non-parametric PDFs for three lithofacies are shown in Fig. 6b.

The confusion matrix and visual comparison between the true and predicted lithofacies of Well #A and 
Well#C are shown in Fig. 6c,d. The column data in the confusion matrix was true data, and the row data rep-
resented predicted data. The more significant percentages in the confusion matrix indicate the quality of the 

Figure 3.  An arbitrary line of SPSI results along with well locations: (a) acoustic impedance, (b) shear 
impedance.

Table 1.  Interpreted ranges of conventional attributes for lithofacies classification.

Lithofacies class P-Impedance  (ZP) ((m/s) (g/cc)) VP/VS ratio

HC 3800–12,400 1.15–1.82

SAND 3500–14,900 1.82–2.12

SHALE 3500–13,900 2.12–3.1
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results if the high values indicate a good match between the true and predicted lithofacies. It provides mismatch 
information between true lithofacies and predicted lithofacies at well locations. Figure 6d visually inspects pre-
dicted lithofacies of Well#A and Well#C with corresponding true lithofacies. Using the non-parametric PDFs, 
litho-logs (estimated from cross-plot classification), and seismic input such as Poisson impedance &  VP/VS ratio 
to estimate the lithofacies model by Bayesian classification. Lithologs help as prior information in Eq.  447. Figure 7 
shows the arbitrary line of lithofacies volume with three lithofacies such as hydrocarbon zone (Red color), sand 
(yellow), and shale (Green). intersecting at all well locations.

In this study, the estimated Poisson impedance attribute helped to classify the lithofacies. As seen in Table 2, 
two attributes (PI and  VP/VS ratio) play an important role in classifying lithofacies (Fig. 6a). Low PI (500–1450 
) ((m/s) *(g/cc) & low  VP/VS ratio values (1.15–1.82) were identified as hydrocarbon saturated zone, marked as 
red color in the lithology model (Fig. 7). The brine sand was differentiated by PI values ranging from 1450 (m/s) 
*(g/cc) to 2100 (m/s) *(g/cc) &  VP/VS ratio ranging from 1.60–2.45. The shale was modeled with values of PI 
2100–3200 (m/s) *(g/cc) &  VP/VS ratio 1.78–2.43. Figure 8a,b shows three-dimensional slices of conventional 
attributes  (ZP and  VP/VS ratio) at 1820 ms in the seismic data. It was observed in Fig. 8a that acoustic values could 
not able characterize lithofacies due to almost similar values. However, PI impedance volume in Fig. 8c has clear 
separation values for different lithofacies, especially hydrocarbon zones. Figure 8d shows the horizontal slice of 
resultant lithofacies after applying Bayesian classification using the non-parametric PDFs, PI volume (Fig. 8c), 
and  VP/VS ratio (Fig. 8b,c). Hydrocarbon zones are characterized by red color, sand was in yellow color, and 
shale identified with green color. Comparison of 8a, 8b & 8d, PI attribute was clearly distinctive & having very 
low values than conventional attribute  (ZP). Hence, the proposed framework successfully revealed HC, sand, 
and shale using the PI inversion and non-parametric statistical technique.

Numerical analysis. The superiority of the present methodology has been analyzed by comparing the 
results of non-parametric statistical classification from the different seismic inputs such as  ZP and PI volume 
generated from the traditional method, which involved an inverse slope of the cross plot of  ZP and  ZS in regres-
sion analysis to estimate rotation factor “c”. We have compared these results through the confusion matrix and 
kappa coefficient. The conventional interpretation results of the non-parametric statistical classification using 
the  ZP in this study area were taken  from48. We evaluated the impact of these inputs on the results by compar-
ing each prediction log with the true litho log. Figure 9a,b show the confusion matrix and kappa coefficient of 
these methodologies. The kappa coefficient determines the match between the prediction values and true values.

Figure 4.  Rotation factor “c” estimation from the Target correlation coefficient analysis.

Figure 5.  Arbitrary line of Poisson Impedance (PI) volume intersects at wellbore locations with PI property.
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Kappa coefficient. 

where r = number of rows in the confusion matrix,  nij = number of observations in row i, column j,  ni = total 
number of observations in row i,  nj = total number of observations in row j, M = total number of observations 
in the matrix.

As observed 9a & b, overall accuracy is higher than the present methodology. It shows the overall accuracy is 
83.38%, but the conventional methodology’s overall accuracy was only 63.83, as shown in Fig. 9b. The adopted 
methodology predicted lithofacies better than the conventional methodology in complex fluvial-deltaic deposits 

K̂ =
M

∑r
i=j=1 nij −

∑r
i=j=1 ni ∗ nj

M2 −
∑r

i=j=1 ni ∗ nj

Figure 6.  Lithofacies classification procedure and quality measures: (a) cross-plot analysis between PI and  VP/
VS ratio; (b) non-parametric PDFs; (c) confusion matrix; (d) visual inspection of predicted lithofacies at wells 
(Well#A and Well#C).

Table 2.  Lithofaices characterized values of Poisson impedance (PI) and  VP/VS ratio.

Lithofacies class Poisson impedance (PI) ((m/s) (g/cc)) VP/VS ratio

HC 500–1450 1.15–1.82

SAND 1430–2100 1.60–2.45

SHALE 2050–3200 1.78–3.1
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from the Kappa coefficient score. Conventional attributes may be ineffective in distinguishing fluid-saturated 
zones from non-fluid-saturated zones for complex deposits.

Conclusion
We applied an integrated framework to delineate the lithofacies of complex fluvial-deltaic sandstone reservoirs 
in an oilfield in Northeast India. Our outcomes proved that the adopted methodology improved the lithofacies 
distribution in the Upper Assam Basin. Additionally, our findings proved that PI was more effective in estimating 
hydrocarbon zone than conventional attributes. Seismic elastic attributes are estimated from prestack seismic 

Figure 7.  Arbitrary line of lithofacies model intersects at wellbore locations with inserting the true litho-logs.

Figure 8.  Horizontal slice of seismic attributes (a) acoustic impedance (b) shear impedance (c) Poisson 
impedance (d) Lithofaices at 1820 ms.
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data using the SPSI algorithm. An intermediate procedure of this methodology estimated the rotation factor “c” 
from the Target correlation coefficient analysis (TCCA) of well-logs. The PI volume and curve were estimated 
using the rotation factor “c”. Furthermore, the non-parametric statistical technique was applied to estimate PDFs 
for HC, sand, and shale. Finally, the lithofacies distribution was generated using PDFs, PI volume, and  VP/VS 
ratio in Bayesian classification. Our findings correspond to three lithofacies are characterized as HC with PI 
values (500–1450 ) ((m/s) *(g/cc) & low  VP/VS ratio values (1.15–1.82), sand deposits identified with PI values 
ranging from 1430 (m/s) *(g/cc) to 2100 (m/s) *(g/cc) &  VP/VS ratio ranging from 1.60–2.45. The shale was 
characterized modeled with values of PI 2050–3200 (m/s) *(g/cc) &  VP/VS ratio 1.78–3.1. The results efficiency 
was verified with numerical analysis through kappa coefficient analysis between conventional results and pro-
posed framework results. This analysis has proven that the adopted methodology provided better lithofacies 
characterization (Annexure I).

Materials and methodology
The methodology involves simultaneous prestack inversion, Poisson impedance analysis, and non-parametric 
statistical classification for explicitly identifying the hydrocarbon zone. The seismic prestack inversion technique 
was applied to predict the seismic elastic properties. Later, Poisson impedance analysis and target correlation 
coefficient analysis are applied to estimate the Poisson impedance from seismic and well log data. After that, 
cross plot analysis was conducted to identify different lithologies using the Poisson impedance and VP/VS 
curves. Finally, non-parametric statistical classification was used to estimate the probability density function. 
The Bayesian classification method is applied to the model distribution of hydrocarbon zones using Poisson 
impedance volume.

Simultaneous prestack inversion (SPSI). Seismic subsurface elastic properties such as  ZP,  ZS, ρ, and 
 VP/VS ratio are estimated from prestack seismic angle gathers using the simultaneous prestack seismic inversion 
 technique49. Conventionally, the outcomes of prestack inversion can be used to optimize, identify prospects, and 
identify ’sweet spots’ in field development studies. The prestack inversion procedure began by conditioning the 

Figure 9.  Confusion matrix Kappa coefficient and overall accuracy (a) conventional methodology (b) present 
methodology.
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seismic offset gathers to improve the signal-to-noise ratio by creating the super gather. This strategy reduces ran-
dom noise while preserving the amplitude versus offset relationships. Using the seismic velocity field, this super 
gather in the offset domain was transformed to angle-gather for the angles between 0°–45°.

After preparation of angle gather, the well-seismic tie was performed to estimate time to depth relation for 
depth stratigraphic markers of well log data and time stratigraphic markers of seismic data using the angle-
dependent wavelet. Two wavelet extraction methods, such as statistical and well-based, were used to estimate 
wavelets. First, the statistical method based on the autocorrelation concept was applied to estimate angle-depend-
ent wavelets. These statistical wavelets were convolved with reflectivity from well-log data for synthetic seismic 
data. This synthetic seismic data is correlated with actual seismic data with a good correlation coefficient at all 
well locations. Following the acceptable correlation, well-based wavelets are estimated by designing a time-
domain operator that is convolved with the actual seismic data. Prestack seismic inversion technique is a process 
to convert the seismic reflection data into a quantitative depiction of reservoir  properties50. Simultaneous prestack 
inversion was explained to estimate the seismic elastic  properties51.  Study52 performed prestack inversion from 
the modified reflectivity  equation53.

where  RPP (θ) is reflectivity, A = (1 +  tan2 θ); B =  − 8(VP/VS)2  sin2 θ; C =  − 0.5tan2 θ + 2(VP/VS)2  sin2 θ,  RP = P 
Reflectivity = 12

[

�VP
VP + �ρ

ρ

]

= �ZP
2ZP  ,  RS = S − Reflectivity = 12

[

�Vs
Vs + �ρ

ρ

]

= �Zs
2Zs  , Rd = density Reflectivity = �ρ

ρ
.

Poisson impedance (PI) analysis. Poisson impedance analysis was proposed  by25, which involved rotat-
ing the cross plot of P-impedance  (ZP) and S-impedance  (ZS) for classifying the hydrocarbon zone accurately 
from other lithofacies. This new parameter called Poisson impedance help as a rock physical parameter in the 
lithofacies classification. According  to54, Poisson impedance is similar to the Fluid factor attribute. One particu-
lar rotation of the axis of the AI-SI cross-plot precisely distinguishes different lithologies and fluid zones. The 
PI attribute can estimate using a rotation that links the Poisson’s ratio (σ) and density (ρ). The density (ρ) and 
Poison’s ratio are significant parameters in the reservoir characterization for their low values for hydrocarbon 
saturated zones. The mathematical notation of the PI attribute is shown in the following equation as explaining 
a rotation of the AI-SI cross plot to discretize the lithologies.

where “c” is a rotation parameter, AI is P-Impedance  (ZP)/Acoustic impedance, SI is Shear impedance  (ZS).
The rotation factor “c” is critical in computing Poisson impedance (PI). The rotation parameter “c” is generally 

determined using a regression analysis of the AI and SI cross plot for the wet  trend18. However, it will not always 
provide accurate value due to fitting issues in regression analysis and is also highly influenced by log quality. 
Another approach, Target correlation coefficient analysis (TCCA), was another approach to obtaining accurate 
rotation factor “c”. The mathematical notation of the TCCA is explained  by28. Generally, different logging curves 
such as Gamma-ray, water saturation, porosity, resistivity, etc., are used to estimate the rotation factor. In this 
study, the GR log calculated the “c” factor to estimate the Poisson  impedance55. As  introduced29, the correlation 
coefficients between PI curve with different c-values and GR log.

Non‑parametric statistical classification technique & Bayesian modeling. The parametric and 
non-parametric statistical methods are essential for estimating probability densities. The first requires many 
assumptions with known PDFs with predefined parameters such as mean value (μ) and deviation (s). The non-
parametric statistical classification does not require predefined restrictions as conventional parametric statisti-
cal classification. Another advantage is that it uses the data directly without estimating theoretical parameter 
 distribution37. So there is no error and mismatch between the estimated and actual trend of lithology distribu-
tion.

This study used non-parametric statistical classification to estimate probabilistic density functions on the 
lithofacies cross plot between Poisson impedance and  VP/VS ratio. It was used to avoid the assumptions that 
are required in the parametric approach. The kernel estimator of the non-parametric classification method was 
applied to estimate the smother PDFs from the cross-plot space of Poisson impedance and  VP/VS  ratio56. The 
basic notation to analyze univariate data points is the probability density function for non-parametric data 
 distribution57. The density function equation for a random variable that included the probability density func-
tion f(x) is as follows

For any constants a and b.
By using this density function definition, the probability density function can be constructed. There are 

two probability density estimators: histogram and smooth density estimator. The kernel density estimation is a 
simple expanded histogram method. However, the histogram method is discrete and does not provide smooth 
density functions. In the smooth density estimator, summing all kernel functions in the data provides a smooth 
representation of the PDFs. The probability density function can be estimated using a non-parametric kernel 
estimator defined as the following equation for n variable data points  (X1,  X2,….,  Xn) in the cross  plot58.

(1)RPP(θ) = A Rp+ BRs+ CRd

(2)PI = AI− c SI

P(a < X < b) =
b
∫
a
f (x)dx
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where K is a kernel function, h is smoother operator length, and sample size indicates by n  (X1,  X2,…,  Xn).
The smoothing parameter, or bandwidth, h, determines the degree to which the data are smoothed. Minimiz-

ing the mean square error yields the optimal bandwidth  value57. The critical objective is to select an appropriate 
operator bandwidth (h). Kernel functions that employ Gaussian functions are quite  frequent59. The Epanechnikov 
kernel was utilized in this investigation because it had an advantage over Gaussian functions in that it was zero 
outside of its range. So it has a finite length and is optimal for the minimum variance. Numerous studies discussed 
that there is no objective technique for determining the optimum bandwidth (h). However, there is a challenge 
in estimating accurate density function from non-parametric statistical classification, especially in high dimen-
sional spaces. However, the target in this classification is to design and evaluate its performance other than an 
accurate estimationObtaining an accurate density estimate non-parametrically is extremely difficult, especially 
in high-dimensional spaces. The optimal bandwidth kernel is chosen based on several quality parameters and 
then created PDFs for different lithologies.

After preparing PDFs, the Bayesian technique converted the seismic attributes (PI and  VP/VS) into a lithofa-
cies volume by incorporating non-parametric PDFs with seismic PI &  VP/VS ratio  volume60. One classification 
strategy dealing with complex problems is the Bayesian classification  method38. It will provide critical knowledge 
to seismic data classification. The Bayes’ rule is essential for statistical data categorization  expertise61. The Bayes’ 
rule is named a unique reservoir characterization tool due to its combined known classification and prediction 
 classification62.

Using Bayes ’ theorem, prior knowledge is included in probability  estimates63. This theorem posits that an 
event’s probability is related to estimating lithofacies and prior  probability64.

For K number of classes, the Bayes’ rule for a class "L" is written,

where p(S) =
k
∑

i=1

p(S|L)p(L).

Where:

• L is a lithofacies type, i.e., shale or sand
• S is a seismic attribute ( a combined attribute of  ZP and  VP/VS ratio)
• p (L) is the a priori probability for class L.
• p (S | L) represents the conditional probability of attributes X knowing we are in class c (for example, distribu-

tion of  (ZP,  VP/VS ratio) in sand), using the notation for conditional probabilities: "|" means "if."
• p(S) is the attributes(S) probability.
• In the prediction of lithology, p (L) is given by the user, and p (S | L) was computed from the PDFs.

Data availability
All data generated or analyzed during this study are included in this article.
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